1
|
Li J, Yin K, Wu SR, Zhuang Y, Wan X, Sun L, Chen B. Subcritical water extraction improves the ability of Auricularia cornea var. Li. Polysaccharides to stabilize hydrogels and emulsion gels. Int J Biol Macromol 2025; 305:141246. [PMID: 39978510 DOI: 10.1016/j.ijbiomac.2025.141246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
In this work, polysaccharides from Auricularia cornea var. Li. (ACP) were extracted by a novel subcritical water extraction (SWE) method. Their structural properties and ability to stabilize hydrogels and emulsion gels were investigated and compared with those obtained by the conventional hot water extraction (HWE) method. The results showed that the polysaccharide yield of SWE (45.11 ± 0.23 %) was higher than that of HWE (17.85 ± 0.51 %). The two polysaccharides had the same type of monosaccharides but different compositions, and the molecular weight of ACP-SWE was slightly lower. The molecular conformation of ACP-HWE exhibited a long-chain structure, whereas ACP-SWE was multi-branched with obvious entanglements between the molecular chains. Both polysaccharides were able to form gels at concentrations above 1.0 %, with the ACP-SWE hydrogel having a denser network structure with better rheological and textural properties. ACP-SWE also had a greater ability to stabilize emulsion gels. By adjusting the polysaccharide concentration (c, 0.2 %-1.0 %) and the oil phase volume fraction (φ, 0.4-0.8), ACP-SWE emulsion gels could be prepared in a single step of shear homogenization. This work revealed that the adsorption of ACP-SWE at the oil-water interface and cross-linking in the bulk phase, together with the filling effect of oil droplets, contributed to the stabilization of ACP-SWE emulsion gels.
Collapse
Affiliation(s)
- Jiapeng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Kaiwen Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Su-Rui Wu
- Yunnan Academy of Edible Fungi Industry Development, Kunming 650221, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Xing Wan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Bifen Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China.
| |
Collapse
|
2
|
Ye L, Huang Y, Zhang L, Li X, Zhang B, Yang X, Luo J, Liu H, Zhang X, Song C, Ao Z, Shen C, Tan W, Li X. Structural characterization and antioxidant activity evaluation of a polysaccharide from pink Auricularia cornea. Int J Biol Macromol 2025; 284:138149. [PMID: 39613087 DOI: 10.1016/j.ijbiomac.2024.138149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
An acidic polysaccharose (YL-D2N2) was isolated from crude polysaccharides of pink Auricularia cornea and characterized for its structural and antioxidant properties. YL-D2N2 consists of fucose, galactose, glucose, xylose, mannose and glucuronic acid in a molar ratio of 0.85: 1.50: 4.44: 27.52: 46.56: 19.13. It has a number-average molecular weight of about 52.811 kDa and a weight-average molecular weight of about 135.457 kDa. Structural characterization showed that YL-D2N2 consists of nine residues (Xylp-(1→, GlcpA-(1→, →2)-Xylp-(1→, →3)-Galp-(1→, →3)-Manp-(1→, →4)-GlcpA-(1→, →2,3)-Manp-(1→, →3,4)-Glcp-(1→, →3,6)-Manp-(1→), with a backbone of →3)-β-D-Manp-(1→, →2,3)-α-D-Manp-(1→, →3,6)-α-D-Manp-(1 → and side chains containing β-D-Xylp-(1 → and α-D-GlcpA-(1→. Notably, YL-D2N2 exhibits significant radical scavenging activity for superoxide anions, reaching 50.82 ± 0.64 % at a concentration of 3.2 mg/mL. Overall, YL-D2N2 exhibits a unique chemical structure and specialized applications for targeting superoxide anion radicals, providing valuable insights for further exploration of its structure-activity relationship.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jianhua Luo
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Hongping Liu
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | | | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| |
Collapse
|
3
|
Chen Y, Huang Y, Gan Q, Zhang W, Sun H, Zhu L, Wang W. Characterization of tea polysaccharides from Tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways. J Food Sci 2024; 89:10064-10078. [PMID: 39636766 DOI: 10.1111/1750-3841.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
In the present study, we succeeded in extracting tea polysaccharide (TPS) from Tieguanyin oolong tea, and the TPS was characterized. TPS is an acidic heteropolysaccharide containing rhamnose, arabinose, galactose, glucose (Glc), xylose, mannose, galacturonic acid, and guluronic acid. We found that TPS supplementation partially reversed the elevated levels of serum alanine aminotransferase, total cholesterol, and low-density lipoprotein cholesterol in high-fat diet (HD)-induced nonalcoholic fatty liver disease (NAFLD) mice (p < 0.05), and hepatic steatosis and impaired Glc tolerance were also ameliorated. After HD intervention, the activity of Adenosine 5'-monophosphate-activated protein kinase (AMPK) and its downstream genes, including Sirtuin 1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP1c), acetyl-coenzyme A carboxylase 1 (ACC1), and adipose triglyceride lipase (ATGL), was significantly inhibited (p < 0.05). TPS can increase the expression of these genes. The hepatoprotective effects of TPS in AMPK-/- mice almost completely disappeared. Moreover, the expression levels of SIRT1, SREBP1c, ACC1, and ATGL did not significantly change after TPS supplementation (p > 0.05). Therefore, our findings suggest that TPS protects the liver from hepatic glucolipid metabolism disorders in HD-induced NAFLD mice by activating AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanxin Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nutrition, The 95th Hospital of Putian, Putian, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingling Zhu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N. Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - Progress or setback? Biochimie 2024; 227:119-128. [PMID: 38996998 DOI: 10.1016/j.biochi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Diabetes is a substantial public health issue, while its prevalence continues to rise worldwide, affecting millions of persons between the ages of 20 and 80, the development of new therapeutic classes improving glycemic control and consequently micro and macrovascular complications are needed. Today, diabetes treatment is daily for life, and should not be interrupted. However, insulin secretagogues medications, and exogenous self-administration of insulin provide efficient antidiabetic effects, but their misuse leads to hypoglycemic complications besides other risks, hence the need to look for other natural products not to use solely but in concert with others types of medications. In this review, we will highlight briefly the pathophysiology of diabetes and its complications, then we will report the main bioactive macromolecules derived from various sources of natural products providing anti-diabetic properties. However, further researches need to be carried out to face the limitations hampering the development of effective natural drugs for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Chbel
- Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur Du Maroc, 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco; INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807, Villejuif Cedex, France.
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
5
|
Ye L, Huang Y, Yang X, Zhang B, Li X, Zhang X, Tan W, Song C, Ao Z, Shen C, Li X. Metabolic profiles and biomarkers of Auricularia cornea based on de-oiled camphor leaf substrate. Food Res Int 2024; 191:114704. [PMID: 39059912 DOI: 10.1016/j.foodres.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
This study investigates the metabolic responses of Auricularia cornea when cultured on de-oiled leaves of Cinnamomum longepaniculatum (DeCL), an underutilized waste product. The metabolic profiles of A. cornea cultured with four different quality ratios of DeCL substrate (0 %, 14 %, 28 % and 42 %) were analyzed by UHPLC-MS/MS-based metabolomics. A total of 516 metabolites were identified and classified into 78 categories, with phenols, alkaloids and flavonoids accounting for 26.7 % of the total. In addition, 32 metabolite biomarkers associated with eight major metabolic pathways were identified. This pioneering research provides valuable insights into the utilization of DeCL, and expands our knowledge of the metabolic dynamics underlying the growth of A. cornea on alternative substrates.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Xin Li
- College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Chuan Song
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | | | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China.
| |
Collapse
|
6
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
7
|
Wang T, Jia Z, An C, Ren P, Yang Y, Wang W, Su L. The Protective Effect of Auricularia cornea var. Li. Polysaccharide on Alcoholic Liver Disease and Its Effect on Intestinal Microbiota. Molecules 2023; 28:8003. [PMID: 38138493 PMCID: PMC10745760 DOI: 10.3390/molecules28248003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
This study's objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.
Collapse
Affiliation(s)
- Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Zikun Jia
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Canghai An
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Ping Ren
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiting Yang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wanting Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
8
|
Zhao X, Lin G, Liu T, Zhang X, Xu Y. Comparative Analysis of Metabolic Compositions and Trace Elements of Ornithogalum caudatum with Different Growth Years. ACS OMEGA 2023; 8:23889-23900. [PMID: 37426248 PMCID: PMC10324082 DOI: 10.1021/acsomega.3c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
As a traditional medicine with extensive history, Ornithogalum caudatum has high nutritional and medicinal value. However, its quality evaluation criteria are insufficient because it is not included in the pharmacopeia. Simultaneously, it is a perennial plant, and the medicinal ingredients change with the growth years. Currently, studies on the synthesis and accumulation of metabolites and elements in O. caudatum during different growth years are unavailable. To address this issue, in this study, the 8 main active substances, metabolism profiles, and 12 trace elements of O. caudatum from different growth years (1, 3, and 5 years old) were analyzed. The main substances of O. caudatum changed significantly in different years of growth. Saponin and sterol contents increased with age; however, the polysaccharide content decreased. For metabolism profiling, ultrahigh-performance liquid chromatography tandem mass spectrometry was performed. Among the three groups, 156 differential metabolites with variable importance in projection values >1.0 and p < 0.05 were identified. Among the differential metabolites, 16 increased with increasing years of growth and have the potential to become age-identified markers. A trace element study showed that the contents of K, Ca, and Mg were higher, and the ratio of Zn/Cu was less than 0.1%. Heavy metal ions in O. caudatum did not increase with age. The results of this study provide a basis to evaluate the edible values of O. caudatum and facilitate further exploitation.
Collapse
Affiliation(s)
- Xueliang Zhao
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Guangyu Lin
- Animal
Husbandry Information Center, Changchun, Jilin 130000, China
- Jilin
Agricultural University, Changchun, Jilin 130018, China
| | - Tong Liu
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Xue Zhang
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Yang Xu
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| |
Collapse
|
9
|
Li X, Zhu J, Wang T, Sun J, Guo T, Zhang L, Yu G, Xia X. Antidiabetic activity of Armillaria mellea polysaccharides: Joint ultrasonic and enzyme assisted extraction. ULTRASONICS SONOCHEMISTRY 2023; 95:106370. [PMID: 36965312 PMCID: PMC10060363 DOI: 10.1016/j.ultsonch.2023.106370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Armillaria mellea polysaccharides (AMPs) were obtained by ultrasonic assisted extraction (U), enzyme assisted extraction (E) and ultrasonic-enzyme assisted extraction (UE), respectively. The yield of UE-AMPs (6.32 ± 0.14%) was 1.64 times higher than that of U-AMPs (3.86 ± 0.11%) and 1.21 times higher than that of E-AMPs (5.21 ± 0.09%); meanwhile, the highest total sugar content and the lowest protein content were found in UE-AMPs. AMPs obtained from the three extraction methods had the same monosaccharide composition but in different proportions, allowing UE-AMPs to have the most potent antioxidant activity. The antidiabetic activity of UE-AMPs was investigated in streptozotocin (STZ)-induced diabetic mice. UE-AMPs, when given by gavage, greatly prevented weight loss, increased water intake, and considerably decreased blood glucose levels in diabetic mice, which were dose-dependent (P < 0.05). In addition, UE-AMPs also had a positive effect on the reduction of lipid levels in the blood, oxidative damage and liver function impairment. The pathological observation by hematoxylin-eosin staining (HE) revealed that UE-AMPs protected the organs of mice from diabetic complications (liver disease and nephropathy). Hence, our findings demonstrate that UE-AMPs are a suitable choice for improving diabetes and its complications and have great application prospects in the fields of natural medicine and functional food.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingshu Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|