1
|
Nwaudah EI, Mbaeyi-Nwaoha IE, Ofoegbu DC, Onyeaka H. Oyster Mushroom ( Pleurotus ostreatus) and Okara Flour as Nutritional Enhancers in Wheat Biscuits: A Study on Storage Stability. Foods 2025; 14:539. [PMID: 39942132 PMCID: PMC11817232 DOI: 10.3390/foods14030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
In response to the scarcity and high cost of wheat in Nigeria, this study investigates the potential of oyster mushroom (Pleurotus ostreatus) and okara flour to enhance the nutritional quality and storage stability of wheat biscuits. By incorporating 10-50% oyster mushroom powder into wheat flour, this study observed significant increases in the nutritional profile of the biscuits. The protein content notably increased from 8.26% to 16.12%, while the crude fibre and ash content also saw over a 50% increment. Storage studies revealed that biscuits (baked for 18 min at 180 °C) packaged in cartons within polyethene were more shelf-stable than those in low-density polyethylene (LDPE) bags, maintaining quality over two months at ambient temperature. The inclusion of oyster mushroom and okara flour in wheat biscuits significantly enhances their nutritional value and shelf life, presenting a viable solution to the challenges of wheat scarcity and global malnutrition. The optimal mushroom flour enrichment level was identified at 20% to maintain consumer appeal.
Collapse
Affiliation(s)
- Emmanuella Ifunanya Nwaudah
- Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria, Nsukka 410105, Enugu State, Nigeria; (E.I.N.); (I.E.M.-N.); (D.C.O.)
| | - Ifeoma Elizabeth Mbaeyi-Nwaoha
- Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria, Nsukka 410105, Enugu State, Nigeria; (E.I.N.); (I.E.M.-N.); (D.C.O.)
| | - Deborah Chinwendu Ofoegbu
- Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria, Nsukka 410105, Enugu State, Nigeria; (E.I.N.); (I.E.M.-N.); (D.C.O.)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B152 TT, UK
| |
Collapse
|
2
|
Zhou S, Liu X, Cui Y, Chen S, Zhong F, Lu J, Kong C. Molecular investigation of soybean protein for improving the stability of quinoa (Chenopodium quinoa willd.) milk substitute. Food Chem 2024; 461:140829. [PMID: 39146685 DOI: 10.1016/j.foodchem.2024.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Soybean could greatly improve stability of quinoa milk substitute. However, the key compound and underlying mechanisms remained unclear. Here we showed that soybean protein was the key component for improving quinoa milk substitute stability but not oil or okara. Supplementary level of soybean protein at 0%, 2%, 4%, and 8% of quinoa (w/w) was optimized. Median level at 4% could effectively enhance physical stability, reduce particle size, narrow down particle size distribution, and decrease apparent viscosity of quinoa milk substitute. Microscopic observation further confirmed that soybean protein could prevent phase separation. Besides, soybean protein showed increased surface hydrophobicity. Molecular docking simulated that soybean protein but not quinoa protein, could provide over 10 anchoring points for the most abundant quinoa vanillic acid, through hydrogen bond and Van-der-Waals. These results contribute to improve stability of quinoa based milk substitute, and provide theoretical basis for the interaction of quinoa phenolics and soybean protein.
Collapse
Affiliation(s)
- Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinghao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yajun Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siyi Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Zhong
- Science Center for Future Food, Jiangnan University, Wuxi 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
3
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollán GC. Quinoa sourdough fermented with Lactiplantibacillus plantarum CRL 1964, a powerful tool to enhance the nutritional features of quinoa snacks. J Food Sci 2024; 89:8410-8419. [PMID: 39437230 DOI: 10.1111/1750-3841.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
The remarkable nutritional attributes and potential health advantages of quinoa make it an important candidate for developing innovative ready-to-eat food products. This work aimed to develop a functional ready-to-eat snack based on quinoa sourdough fermented by Lactiplantibacillus (L.) plantarum CRL 1964. Phytate, phosphates, and soluble mineral content (Fe, Mn, Zn, Mg, Ca, and P) were determined in snacks formulated with sourdough and control doughs. An in vitro digestion model was performed on quinoa snacks to assess their mineral bioaccessibility and dialyzability. Phytate content was significantly lower (ca. 42.3%) while phosphates were higher (ca. eightfold) in quinoa-based sourdough and sourdough-based snacks (S1964) than in controls. Soluble minerals were higher (10.2%-32.0%) in S1964 than in controls. Mineral bioaccessibility and mineral dialyzability were also higher (ca. 24.5%) among S1964 and control snacks. The developed quinoa snack made from sourdough fermented by L. plantarum CRL 1964 had less phytate concentration and high bioaccessibility of minerals. These findings underscore the relevance of this innovative technology in creating food products that are not only highly nutritious but also represent a valuable contribution to the market of healthy foods. PRACTICAL APPLICATION: In this study, a novel snack based on quinoa sourdough with improved nutritional properties was developed. The addition of quinoa sourdough fermented by Lactiplantibacillus plantarum CRL 1964 to the preparation of quinoa snacks resulted in a product with a lower concentration of phytate and a higher content of phosphates and minerals (soluble, bioaccessible, and dialyzable). These results underline the efficacy of the new snack as a promising alternative to conventional mineral fortification methods. This innovative approach holds promise for addressing nutritional deficiencies and the demand for healthy snack options in today's market.
Collapse
Affiliation(s)
| | | | - Carla Luciana Gerez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | | |
Collapse
|
4
|
Moscoso-Mujica G, Mujica Á, Chura E, Begazo N, Jayo-Silva K, Oliva M. Kañihua ( Chenopodium pallidicaule Aellen), an ancestral Inca seed and optimal functional food and nutraceutical for the industry: Review. Heliyon 2024; 10:e34589. [PMID: 39113956 PMCID: PMC11305323 DOI: 10.1016/j.heliyon.2024.e34589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The Andean kañihua seed (Chenopodium pallidicaule Aellen) is widely used as an ancestral nutraceutical with great industrial potential and is a little-researched seed. It has high biological and nutritional value due to its protein content of 15-19 %, optimal balance of essential amino acids, essential fatty acids, mineral content, vitamins, and non-bitter saponin content. It is a potential source of peptides with different pharmacological activities such as antimicrobials, antioxidants, antihypertensives, and antidiabetics, among others. It has been a functional food in the Altiplano of Peru and Bolivia since the time of the Incas (between the 12th and 16th centuries) and is a functional food proposal for the world. In this bibliographic review, we present a detailed scientific description of the botanical characteristics, genetics, phytochemical composition, bioactives, and nutritional value. The potential uses at an industrial, medical, pharmacological, and biotechnological level and current advances in scientific research on the kañihua seed. In addition, it is an alternative grain to guarantee food security in terms of quantity, quality, and opportunity.
Collapse
Affiliation(s)
- Gladys Moscoso-Mujica
- Universidad Nacional Mayor de San Marcos, Research Group of Toxicological Biochemistry–Biochemistry Department, Faculty of Pharmacy and Biochemistry, Lima 1, Peru
| | - Ángel Mujica
- Postgraduate School, National University of Altiplano, Puno, Peru
| | - Ernesto Chura
- Postgraduate School, National University of Altiplano, Puno, Peru
| | - Noelia Begazo
- Postgraduate in Environmental Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Karin Jayo-Silva
- Faculty of Pharmacy and Biochemistry, National University of San Antonio Abad of Cusco, Cusco, Peru
| | - Marcos Oliva
- Universidad Nacional Mayor de San Marcos, Research Group of Toxicological Biochemistry–Biochemistry Department, Faculty of Pharmacy and Biochemistry, Lima 1, Peru
| |
Collapse
|
5
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
7
|
Paucar-Menacho LM, Vásquez Guzmán JC, Simpalo-Lopez WD, Castillo-Martínez WE, Martínez-Villaluenga C. Enhancing Nutritional Profile of Pasta: The Impact of Sprouted Pseudocereals and Cushuro on Digestibility and Health Potential. Foods 2023; 12:4395. [PMID: 38137199 PMCID: PMC10742926 DOI: 10.3390/foods12244395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We hypothesized that optimizing the formulation of pasta by incorporating sprouted pseudocereal flours, specifically quinoa (Chenopodium quinoa Willd) or kiwicha (Amaranthus caudatus L.) and cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) flours, could offer the potential to simultaneously enhance nutritional quality and health-promoting properties in pasta. In this study, our objective was to optimize the formulation of composite flour (a ternary blend of wheat, sprouted pseudocereal, and cushuro flours) using a mixture composite design to maximize total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA), antioxidant activity, and mineral bioaccesilability by reducing phytic acid (PA) content. Two optimal formulations were identified: one consisting of 79% wheat flour (WF), 13% SQF, and 8% CuF (oPQC), and the other composed of 70% WF, 15% SKF, and 15% CuF (oPKC). These optimized pastas exhibited reduced starch content and notably higher levels of total dietary fiber (1.5-3.61-fold), protein (1.16-fold), fat (1.3-1.5-fold), ash (2.2-2.7-fold), minerals (K, Na, Fe, Zn, Mg, Mn, and Ca), PA (3-4.5-fold), TSPC (1.3-1.9-fold), GABA (1.2-2.6-fold), and ORAC (6.5-8.7-fold) compared to control pasta (100% WF). Notably, the glycemic index of oPQC (59.8) was lower than that of oPKC (54.7) and control pasta (63.1). The nutritional profile of the optimized pasta was largely retained after cooking, although some significant losses were observed for soluble dietary fiber (18.2-44.0%), K (47.5-50.7%), Na (42.5-63.6), GABA (41.68-51.4%), TSPC (8-18%), and antioxidant activity (45.4-46.4%). In vitro digestion of cooked oPQC and oPKC demonstrated higher bioaccessible content of GABA (6.7-16.26 mg/100 g), TSPC (257.7-261.8 mg GAE/100 g), Ca (58.40-93.5 mg/100 g), and Fe (7.35-7.52 mg/100 g), as well as antioxidant activity (164.9-171.1 µmol TE/g) in intestinal digestates compared to control pasta. These findings suggest that the incorporation of sprouted pseudocereals and cushuro flour offers a promising approach to enhance the nutritional quality and bioactive content of wheat-based pasta, potentially providing health benefits beyond traditional formulations.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Juan Carlos Vásquez Guzmán
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Williams Esteward Castillo-Martínez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
8
|
Coţovanu I, Mironeasa C, Mironeasa S. Incorporation of Buckwheat Flour at Different Particle Sizes and Distinctive Doses in Wheat Flour to Manufacture an Improved Wheat Bread. Foods 2023; 12:foods12081730. [PMID: 37107525 PMCID: PMC10137971 DOI: 10.3390/foods12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study explored the effect of substituting wheat flour (WF) with distinctive optimal doses of buckwheat flour (BF) corresponding to large, medium, and small particle sizes (PS), previously established based on an optimization process, on composite flour characteristics, dough rheology, and bread quality. The optimal dose for each PS was established in a previous study. The highest value for protein, lipid, mineral, and amino acids was found in the optimal composite flour with medium PS, with significant differences between those with large and small PS. The addition of BF in WF at doses corresponding to each fraction provides optimum rheological properties, with the large and medium PS providing higher performance compared to the small one. The same tendency was observed for volume and texture parameters of bread made from optimal composite flours with medium and large PS, respectively, but the crust and crumb lightness presented lower values than bread with small PS. Regarding the bread nutritional profile, the sample with medium PS possessed the highest protein, lipid, and ash content. Compared to the wheat bread, a considerably higher amino acid content, up to 21.22%, was found in bread made from optimal composite flours with medium and small PS, respectively. The bread samples with medium and large PS, respectively were superior in minerals, the value being up to 2.63 times higher compared to the control. Sensory characteristics results revealed that the bread samples containing 9.13% large and 10.57% medium PS were the most preferred by panelists. The results of this research make an important base to suitably develop wheat-buckwheat bread applications in the future.
Collapse
Affiliation(s)
- Ionica Coţovanu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| |
Collapse
|
9
|
Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods 2022; 11:foods11213405. [DOI: 10.3390/foods11213405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The need for partial or total substitution of animal protein sources by vegetable sources of high protein quality with good sensory acceptance is a promising alternative. The objective was to develop a hamburger with vegetable protein using a mixture design based on quinoa (Chenopodium quinoa Willd.), Peruvian Andean corn (Zea mays) and Andean lupine (Lupinus mutabilis Sweet). The design of these mixtures allowed obtaining eleven formulations, three of which were selected for complying with the amino acid intake for adults recommended by FAO. Then, a completely randomized design was applied to the selected samples plus a commercial product. Proximal composition was measured on a dry basis (protein, fat, carbohydrates, and ash), calculation of the Protein Digestibility Corrected Amino Acid Score (PDCAAS) and a sensory analysis was carried out using the Check-All-That-Apply (CATA) method with acceptability in 132 regular consumers of vegetarian products. Protein, fat, carbohydrate, and ash contents ranged from 18.5–24.5, 4.1–7.5, 65.4–72.1 and 2.8–5.9%, respectively. The use of Andean crops favored the protein content and the contribution of sulfur amino acids (SAA) and tryptophan from quinoa and lysine and threonine from lupin. The samples with Andean crops were described as easy to cut, soft, good, healthy, legume flavor, tasty and light brown, however the commercial sample was characterized as difficult to cut, hard, dark brown, uneven color, dry and grainy. The sample with 50% quinoa and 50% lupin was the most acceptable and reached a digestibility of 0.92. It complied with the lysine, threonine, and tryptophan intake, with the exception of SAA, according to the essential amino acid pattern proposed by the Food and Agriculture Organization of the United Nations.
Collapse
|
10
|
Andean Sprouted Pseudocereals to Produce Healthier Extrudates: Impact in Nutritional and Physicochemical Properties. Foods 2022. [PMCID: PMC9601839 DOI: 10.3390/foods11203259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile and physicochemical properties of corn extrudates as influenced by the complete or partial replacement by sprouted quinoa (Chenopodium quinoa Willd) and cañihua (Chenopodium pallidicaule Aellen) were investigated. A simplex centroid mixture design was used to study the effects of formulation on nutritional and physicochemical properties of extrudates, and a desirability function was applied to identify the optimal ingredient ratio in flour blends to achieve desired nutritional, texture and color goals. Partial incorporation of sprouted quinoa flour (SQF) and cañihua flour (SCF) in corn grits (CG)-based extrudates increased phytic acid (PA), total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA) and oxygen radical antioxidant activity (ORAC) of the extrudates. Sprouted grain flour usually results in an deleterious effect physicochemical properties of extrudates, but the partial mixture of CG with SQF and SCF circumvented the negative effect of germinated flours, improving technological properties, favoring the expansion index and bulk density and increasing water solubility. Two optimal formulations were identified: 0% CG, 14% SQF and 86% SCF (OPM1) and 24% CG, 17% SQF and 59% SCF (OPM2). The optimized extrudates showed a reduced amount of starch and remarkably higher content of total dietary fiber, protein, lipids, ash, PA, TSPC, GABA and ORAC as compared to those in 100% CG extrudates. During digestion, PA, TSPC, GABA and ORAC showed good stability in physiological conditions. Higher antioxidant activity and amounts of bioaccessible TSPC and GABA were found in OPM1 and OPM2 digestates as compared to those in 100% CG extrudates.
Collapse
|