1
|
Ghadin N, Baharum SN, Ahmad Raston NH, Low CF. Truncation-Enhanced Aptamer Binding Affinity and Its Potential as a Sensor for Macrobrachium rosenbergii Nodavirus Detection. JOURNAL OF FISH DISEASES 2025; 48:e14093. [PMID: 39887434 DOI: 10.1111/jfd.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
White tail disease in Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) infection, resulting in up to 100% mortality in larvae and post-larvae stages, severely impacting aquaculture production. Existing genome-based detection methods for MrNV are costly and time-consuming, highlighting the need for rapid and cost-effective diagnostic tests. This study evaluated the effects of truncating selected aptamer on its binding affinity to the MrNV capsid protein. The previously isolated and identified aptamer through magnetic-capture SELEX and Next Generation Sequencing demonstrated high binding affinity to the MrNV capsid protein. Truncation at the primer overhang was found to improve binding affinity, reducing the dissociation constant from 347 nM to 30.1 nM. The calculated limit of detection for the truncated aptamer decreased from 5.64 nM to 1.7 nM, while the limit of quantification decreased from 17.1 nM to 5.16 nM. These reductions indicate that the truncated aptamer has higher sensitivity compared to the full-length aptamer. In tests with MrNV-infected M. rosenbergii samples, both the enzyme-linked aptamer assay and the gold nanoparticle aptasensor assay showed consistent results when 0.5 μg of total protein lysate was used. This indicates that the prawn protein concentration interferes with the detection of the viral protein. These findings suggest the potential application of the truncated aptamer as a sensor in the development of a practical aptamer-based diagnostic kit. For instance, an aptamer-based lateral flow assay test kit could provide a user-friendly, cost-effective solution that eliminates the need for sophisticated instrumentation for diagnosis or data interpretation, making it ideal for detecting MrNV infection in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Norazli Ghadin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Li H, Zhang KL, Kou Y, Xu S, Guo XM, Fu SY, Li Z, Zhang YJ, Chen X, Li JF. Resonance SERS probe based on the bifunctional molecule IR808 combined with SA test strips for highly sensitive detection of monkeypox virus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125761. [PMID: 39862575 DOI: 10.1016/j.saa.2025.125761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed. Its 0.2 mm spot width ensures full coverage of the T-line and stability of the obtained SERS spectrum of the test strip. Finally, in the pharyngeal swab system, the false positives generated by complex matrix interference were effectively reduced by utilizing the excellent hydrophobicity of S9 surfactant at a concentration of 0.5 %, ultimately achieving a detection limit of 1 pg/mL and taking less than 15 min. Experimental data shows that the SERS performance of SERRS probes is at least 2 orders of magnitude better than that of other highly sensitive molecular probes. Based on the use of bifunctional molecules and the affinity of the BiO-SA system, this approach ensures the strength of SERS signals, more efficient antibody loading, and the ability of the test strip to capture probes, and the effectiveness of surfactant S9% in suppressing false positives in throat swab systems was verified. The experiment proved that the scheme had certain reference value for the high-sensitivity POCT rapid detection of monkeypox virus based on SERS technology.
Collapse
Affiliation(s)
- Hongmei Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Kai-Le Zhang
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Yichuan Kou
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Shanshan Xu
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Xian-Ming Guo
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Shi-Ying Fu
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Zhiyong Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Yue-Jiao Zhang
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Xueqin Chen
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Jian-Feng Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China.
| |
Collapse
|
3
|
Erkocyigit B, Man E, Efecan E, Ozufuklar O, Devecioglu D, Bagci B, Aldemir E, Coskunol H, Evran S, Guler Celik E. Non-Invasive Point-of-Care Detection of Methamphetamine and Cocaine via Aptamer-Based Lateral Flow Test. BIOSENSORS 2025; 15:31. [PMID: 39852082 PMCID: PMC11764150 DOI: 10.3390/bios15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Drug abuse is a major public problem in the workplace, traffic, and forensic issues, which requires a standardized test device to monitor on-site drug use. For field testing, the most important requirements are portability, sensitivity, non-invasiveness, and quick results. Motivated by this problem, a point of care (POC) test based on lateral flow assay (LFA) was developed for the detection of cocaine (COC) and methamphetamine (MET) in saliva which has been selected as the matrix for this study due to its rapid and non-invasive collection process. In the design strategy of an LFA test, the use of gold nanoparticles (AuNPs) with strong optical properties has been combined with the advantages of selecting aptamers under in vitro conditions, making it a highly specific and stable recognition probe for the detection of small molecules in saliva. The developed aptamer-based LFA in a competitive format, was able to detect COC and MET in synthetic saliva at concentrations as low as 5.0 ng/mL. After analytical performance studies, the test system also detected COC and MET in real patient samples, which was verified by chromatographic methods.
Collapse
Affiliation(s)
- Bilge Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35040 Izmir, Türkiye
| | - Ece Efecan
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, 35040 Izmir, Türkiye
| | - Deniz Devecioglu
- Department of Psychiatry, Ataturk Educational and Research Hospital, Katip Celebi University, 35360 Izmir, Türkiye
| | - Basak Bagci
- Department of Psychiatry, Ataturk Educational and Research Hospital, Katip Celebi University, 35360 Izmir, Türkiye
| | - Ebru Aldemir
- Department of Psychiatry, Faculty of Medicine, Izmir Tinaztepe University, 35400 Izmir, Türkiye
| | - Hakan Coskunol
- Department of Psychiatry, Faculty of Medicine, Ege University, 35040 Izmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35040 Izmir, Türkiye
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35040 Izmir, Türkiye
- Ege Science Pro Scientific Research Inc., 35040 Izmir, Türkiye
| |
Collapse
|
4
|
Banahene JCM, Ofosu IW, Odai BT, Lutterodt HE, Agyemang PA, Ellis WO. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024; 10:e39313. [PMID: 39640601 PMCID: PMC11620267 DOI: 10.1016/j.heliyon.2024.e39313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by species of Aspergillus and Penicillium that contaminate agricultural products and pose significant health risks to both humans and animals. This review examines the mechanisms of OTA toxicity, its occurrence in various food commodities, and the implications for public health and trade. Literature pertaining to OTA was sourced from Google Scholar, covering the period from 2004 to 2024. OTA exposure is linked to multiple adverse health effects, including teratogenicity, immunotoxicity, and hepatotoxicity, with a primary impact on kidney function, and it is classified as a possible human carcinogen (Group 2B). Its toxic effects are attributed to several mechanisms, including lipid peroxidation, inhibition of protein synthesis, DNA damage, oxidative stress, and mitochondrial dysfunction. Notable findings included the presence of OTA in 46.7 % of cocoa products in Turkey, 32 % of cocoa samples in Côte d'Ivoire exceeding the OTA threshold of 2 μg/kg, and 91.5 % of ready-to-sell cocoa beans in Nigeria testing positive for OTA. Coffee beans are particularly susceptible to OTA contamination, which underscores the need for vigilant monitoring. Additionally, OTA contamination impacts agricultural productivity and food safety, leading to significant economic consequences, particularly in regions reliant on exports, such as cocoa and coffee. Several countries regulate the OTA levels in food products to safeguard public health. However, these regulations can impede trade, particularly in countries with high levels of contamination. Balancing regulatory compliance with economic viability is crucial for affected nations. Current strategies for managing OTA include improved agronomic practices, such as the use of biocontrol agents for pest management, enhanced storage conditions to prevent mould growth, and the implementation of detoxification techniques to reduce OTA levels in food products. Despite these strategies, OTA remains a significant threat to public health and the agricultural economy worldwide. The complexity of contamination in food products requires robust prevention, control, and management strategies to mitigate its impact. Continuous research and regulatory initiatives are essential for safeguarding consumers and ensuring food safety.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre–BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Herman Erick Lutterodt
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Paul Ayiku Agyemang
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Williams Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| |
Collapse
|
5
|
Wang S, Zhou Z, Cao M, Pan Y, Zhang Y, Fang Y, Sun Q, Lei X, Le T. A comprehensive review of aptamer screening and application for lateral flow strip: Current status and future perspectives. Talanta 2024; 275:126181. [PMID: 38692047 DOI: 10.1016/j.talanta.2024.126181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The detection of biomarkers is of great significance for medical diagnosis, food safety, environmental monitoring, and agriculture. However, bio-detection technology at present often necessitates complex instruments, expensive reagents, specialized expertise, and prolonged procedures, making it challenging to fulfill the demand for rapid, sensitive, user-friendly, and economical testing. In contrast, lateral flow strip (LFS) technology offers simple, fast, and visually accessible detection modality, allowing real-time analysis of clinical specimens, thus finding widespread utility across various domains. Within the realm of LFS, the application of aptamers as molecular recognition probes presents distinct advantages over antibodies, including cost-effectiveness, smaller size, ease of synthesis, and chemical stability. In recent years, aptamer-based LFS has found extensive application in qualitative, semi-quantitative, and quantitative detection across food safety, environmental surveillance, clinical diagnostics, and other domains. This review provided a concise overview of different aptamer screening methodologies, selection strategies, underlying principles, and procedural, elucidating their respective advantages, limitations, and applications. Additionally, we summarized recent strategies and mechanisms for aptamer-based LFS, such as the sandwich and competitive methods. Furthermore, we classified LFSs constructed based on aptamers, considering the rapid advancements in this area, and discussed their applications in biological and chemical detection. Finally, we delved into the current challenges and future directions in the development of aptamer and aptamer-based LFS. Although this review was not thoroughly, it would serve as a valuable reference for understanding the research progress of aptamer-based LFS and aid in the development of new types of aptasensors.
Collapse
Affiliation(s)
- Sixian Wang
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China.
| | - Zhaoyang Zhou
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Mingdong Cao
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Yangwei Pan
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Yongkang Zhang
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Yu Fang
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Xianlu Lei
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Collaborative Innovation Center for Rapid Detection of Food Quality and Safety, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Wu Y, Huang T, Chen X, Wang M, Wang X, Zhang Y, Zhou N. A lateral flow strip for on-site detection of homocysteine based on a truncated aptamer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2456-2463. [PMID: 38591267 DOI: 10.1039/d4ay00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
An elevated level of homocysteine (Hcy) in serum is closely related to the development of various diseases. Therefore, homocysteine has been widely employed as a biomarker in medical diagnosis and the on-site detection of homocysteine is highly desired. In this study, a truncated highly specific aptamer for homocysteine was screened and used to design a lateral flow strip (LFS) for the detection of homocysteine. The aptamer was derived from a previously reported sequence. Based on the result of molecular docking, the original sequence was subjected to truncation, resulting in a reduction of the length from 66 nt to 55 nt. Based on the truncated aptamer, the LFS was designed for the detection of homocysteine. In the presence of homocysteine, the aptamer selectively binds to it, releasing cDNA from the aptamer/cDNA duplex. This allows cDNA to bind to the capture probe immobilized on the T zone of the strip, resulting in a red signal on the T zone from gold nanoparticles (AuNPs). The strip enables the visual detection of homocysteine in 5 min. Quantitative detection can be facilitated with the aid of ImageJ software. In this mode, the linear detection range for homocysteine is within 5-50 μM, with a detection limit of 4.18 μM. The strip has been effectively utilized for the detection of homocysteine in human serum. Consequently, the combination of the truncated aptamer and the strip offers a method that is sensitive, quick, and economical for the on-site detection of homocysteine.
Collapse
Affiliation(s)
- Yunqing Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Tianyu Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Mingyuan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Li X, Wang J, Yang G, Fang X, Zhao L, Luo Z, Dong Y. The Development of Aptamer-Based Gold Nanoparticle Lateral Flow Test Strips for the Detection of SARS-CoV-2 S Proteins on the Surface of Cold-Chain Food Packaging. Molecules 2024; 29:1776. [PMID: 38675595 PMCID: PMC11052266 DOI: 10.3390/molecules29081776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic over recent years has shown a great need for the rapid, low-cost, and on-site detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an aptamer-based colloidal gold nanoparticle lateral flow test strip was well developed to realize the visual detection of wild-type SARS-CoV-2 spike proteins (SPs) and multiple variants. Under the optimal reaction conditions, a low detection limit of SARS-CoV-2 S proteins of 0.68 nM was acquired, and the actual detection recovery was 83.3% to 108.8% for real-world samples. This suggests a potential tool for the prompt detection of SARS-CoV-2 with good sensitivity and accuracy, and a new method for the development of alternative antibody test strips for the detection of other viral targets.
Collapse
Affiliation(s)
- Xiaotong Li
- Laboratory of Food Safety and Risk Assessment, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (J.W.); (L.Z.)
| | - Jiachen Wang
- Laboratory of Food Safety and Risk Assessment, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (J.W.); (L.Z.)
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Xiaona Fang
- Department of Basic Medicine, Anhui Medical College, Hefei 230601, China;
| | - Lianhui Zhao
- Laboratory of Food Safety and Risk Assessment, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (J.W.); (L.Z.)
| | - Zhaofeng Luo
- Key Laboratory of Zhejiang Province for Aptamers and Theragnostic, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yiyang Dong
- Laboratory of Food Safety and Risk Assessment, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (J.W.); (L.Z.)
| |
Collapse
|
8
|
Li Z, Jallow A, Nidiaye S, Huang Y, Zhang Q, Li P, Tang X. Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13255. [PMID: 38284606 DOI: 10.1111/1541-4337.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxins are dangerous human and animal health-threatening secondary fungal metabolites that can be found in various food and agricultural products. Several countries have established regulations to restrict their presence in food and agricultural products destined for human and animal consumption. Consequently, the need to develop highly sensitive and smart detection systems was recognized worldwide. Lateral flow assay possesses the advantages of easy operation, rapidity, stability, accuracy, and specificity, and it plays an important role in the detection of mycotoxins. Nevertheless, strategies to comprehensively improve the sensitivity of lateral flow assay to mycotoxins in food have rarely been highlighted and discussed. In this article, a comprehensive overview was presented on the application of lateral flow assay in mycotoxin detection in food samples by highlighting the principle of lateral flow assay, presenting a detailed discussion on various analytical performance-improvement strategies, such as the development of high-affinity recognition reagents, immunogen immobilization methods, and signal amplification. Additionally, a detailed discussion on the various signal analyzers and interpretation approaches was provided. Finally, current hurdles and future perspectives on the application of lateral flow assay in the detection of mycotoxins were discussed.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Abdoulie Jallow
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Seyni Nidiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
9
|
Mermiga E, Pagkali V, Kokkinos C, Economou A. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples. Molecules 2023; 28:8135. [PMID: 38138623 PMCID: PMC10746035 DOI: 10.3390/molecules28248135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, a simple and cost-efficient aptasensor strip is developed for the rapid detection of OTA in food samples. The biosensor is based on the lateral flow assay concept using an OTA-specific aptamer for biorecognition of the target analyte. The strip consists of a sample pad, a conjugate pad, a nitrocellulose membrane (NC) and an absorbent pad. The conjugate pad is loaded with the OTA-specific aptamer conjugated with gold nanoparticles (AuNPs). The test line of the NC membrane is loaded with a specific OTA-aptamer probe and the control line is loaded with a control probe. The assay is based on a competitive format, where the OTA present in the sample combines with the OTA aptamer-AuNP conjugate and prevents the interaction between the specific probe immobilized on the test line and the OTA aptamer-AuNP conjugates; therefore, the color intensity of the test line decreases as the concentration of OTA in the sample increases. Qualitative detection of OTA is performed visually, while quantification is performed by reflectance colorimetry using a commercial scanner and image analysis. All the parameters of the assay are investigated in detail and the analytical features are established. The visual limit of detection (LOD) of the strip is 0.05 ng mL-1, while the LOD for semi-quantitative detection using reflectance colorimetry is 0.02 ng mL-1. The lateral flow strip aptasensor is applied to the detection of OTA in wine, beer, apple juice and milk samples with recoveries in the range from 91 to 114%. The assay exhibits a satisfactory selectivity for OTA with respect to other mycotoxins and lasts 20 min. Therefore, the lateral flow strip aptasensor could be useful for the rapid, low-cost and fit-for-purpose on-site detection of OTA in food samples.
Collapse
Affiliation(s)
| | | | | | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (E.M.); (V.P.); (C.K.)
| |
Collapse
|
10
|
Wang S, Zong Z, Xu J, Yao B, Xu Z, Yao L, Chen W. Recognition-Activated Primer-Mediated Exponential Rolling Circle Amplification for Signal Probe Production and Ultrasensitive Visual Detection of Ochratoxin A with Nucleic Acid Lateral Flow Strips. Anal Chem 2023; 95:16398-16406. [PMID: 37878604 DOI: 10.1021/acs.analchem.3c03995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We proposed a visual strategy for rapid and ultrasensitive detection of ochratoxin A (OTA) by integration of primer-mediated exponential rolling circle amplification (P-ERCA) with a designed nucleic acid lateral flow strip (LFS). The recognition component was preimmobilized in the tube by hybridization between the immobilized functionalized aptamer and complementary ssDNA. Recognition of OTA induces the release of complementary ssDNA from the tube, which will also act as the primer of the designed P-ERCA. Three nicking sites on the template P-ERCA could contribute to the production of enormous signal probes based on the simultaneous amplification-nicking model, which can be visually measured directly with the constructed nucleic acid LFS. Importantly, the nicked signal probe can also act as the trigger of the new-round RCA, achieving exponential growth of signal probes for measurement and signal enhancement. Taking advantage of the extraordinary amplification efficiency of P-ERCA and the simplicity of LFS, this P-ERCA-LFS method demonstrates ultrasensitive detection of OTA with a visual limit of detection as low as 100 fg/mL for qualitative screening and a limit of detection of 35 fg/mL for semiquantitative analysis. This designed strategy could also be utilized as a universal method for detection of other chemical analytes with the replacement of the aptamer for recognition, and the nucleic acid LFS unit could also be a useful protocol for direct ssDNA analysis.
Collapse
Affiliation(s)
- Shiyi Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziwen Zong
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Qiu Y, Liu Z, Mao Y, Teng W, Li M. DNA-bridged double gold nanoparticles-based immunochromatography for dual-mode detection of ochratoxin A. J Food Sci 2023; 88:4316-4326. [PMID: 37732469 DOI: 10.1111/1750-3841.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
A novel immunochromatography strip (ICS) based on the DNA-bridged double gold nanoparticles was established and evaluated for the dual-mode detection of ochratoxin A (OTA). For this purpose, the streptavidin was coupled with the big size of gold nanoparticle (40 nm, AuNP), the OTA monoclonal antibody and biotinylated DNA-SH were simultaneously immobilized on the small size of AuNP (20 nm), and then the enhanced ICS was self-assembled and evaluated. The dual-mode detection of semi-quantification and quantification had been achieved and performed by the proposed ICS. The LOD for semi-quantification (semi-Q-LOD) was 0.06 ng/mL by the directly naked eye (eightfold enhanced than conventional ICS). By the on-site reader, the LOD for quantification (Q-LOD) was 0.03 ng/mL (threefold enhanced), with the detection range between 0.03 and 1.2 ng/mL. The specificity, reliability, and practicability had been well represented. Furthermore, the OTA-positive results of the enhanced ICS method correlated well with those obtained by the referenced HPLC-MS/MS for the market samples. This study provided a new ICS pattern of semi-quantification and quantification for OTA contamination, which could be used as a valuable reference for improving the ICS technology and enhancing the sensitivity.
Collapse
Affiliation(s)
- Youxin Qiu
- School of the Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, P. R. China
| | - Zhaoying Liu
- School of the Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, P. R. China
| | - Yuhao Mao
- School of the Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, P. R. China
| | - Weipeng Teng
- School of the Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, P. R. China
| | - Ming Li
- School of the Environment and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P. R. China
| |
Collapse
|
12
|
Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z. Fluorescent Sensor Based on Magnetic Separation and Strand Displacement Amplification for the Sensitive Detection of Ochratoxin A. ACS OMEGA 2023; 8:15741-15750. [PMID: 37151502 PMCID: PMC10157876 DOI: 10.1021/acsomega.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5-128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92-7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
Collapse
Affiliation(s)
- Ruoyu Wu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jiaping Guo
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Minkai Wang
- Department
of Neurosurgery, First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
| | - Huimin Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lihua Ding
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ruiying Yang
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Li-e Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyong Liu
- Key
Laboratory of Food Safety Quick Testing and Smart Supervision Technology
for State Market Regulation, Beijing 100094, People’s
Republic of China
| |
Collapse
|
13
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|