1
|
Peng X, Li Y, Wang H, Yu J, Wen R, Zhang H, Zhao K. Effect of whey protein hydrolysate on the structural and functional stability of surimi myofibrillar protein gels during freeze-thaw cycles. Int J Biol Macromol 2024; 281:136494. [PMID: 39393721 DOI: 10.1016/j.ijbiomac.2024.136494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
This study investigates the effects of varying concentrations of whey protein hydrolysate (WPH) (5 %, 10 %, 15 %) on surimi myofibrillar protein gels subjected to freeze-thaw (FT) cycles. With an increase in the number of FT cycles, there was a decrease in both ionic and hydrogen bonding, resulting in reduced chewiness and elasticity. At the same time, hydrophobic interactions were strengthened, leading to disruptions in protein secondary structures. In contrast, the addition of WPH significantly improved and stabilized the gels' intermolecular interactions and textural properties, particularly at the 15 % concentration, which demonstrated superior effects compared to both the untreated control and the positive control treated with 0.02 % butylated hydroxyanisole (BHA) (P < 0.05). Furthermore, 15 % WPH effectively preserved the gel's secondary structure and water-holding capacity, significantly outperforming the 0.02 % BHA positive control group (P < 0.05). These findings highlight the potential of WPH to enhance intermolecular interactions and preserve the structural integrity of myofibrillar protein gels during FT cycles, indicating its promising application in food science.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China.
| | - Yunying Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Haowen Wang
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Juan Yu
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Rongxin Wen
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Huiyun Zhang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Ke Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Xiao N, Tian Z, Zhang Q, Xu H, Yin Y, Liu S, Shi W. Cryoprotective effect of epigallocatechin gallate replacing sucrose on Hypophythalmichthys molitrix surimi during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6649-6656. [PMID: 38529727 DOI: 10.1002/jsfa.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Zhihang Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Zhou F, Jiang W, Tian H, Wang L, Zhu J, Luo W, Liang J, Xiang L, Cai X, Wang S, Wu Q, Lin H. Influence of EGCG ( Epigallocatechin Gallate) on Physicochemical-Rheological Properties of Surimi Gel and Mechanism Based on Molecular Docking. Foods 2024; 13:2412. [PMID: 39123603 PMCID: PMC11312070 DOI: 10.3390/foods13152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered β-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.
Collapse
Affiliation(s)
- Fengchao Zhou
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Wenting Jiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Han Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Liuyun Wang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Jiasi Zhu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Wei Luo
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Jie Liang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Leiwen Xiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
| | - Xixi Cai
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Shaoyun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Qiming Wu
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| | - Honglai Lin
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| |
Collapse
|
4
|
Luo X, Huang K, Niu Y, Zhang X, An Y, Liu R, Xiong S, Hu Y. Effects of freezing methods on physicochemical properties, protein/fat oxidation and odor characteristics of surimi gels with different cross-linking degrees. Food Chem 2024; 432:137268. [PMID: 37657334 DOI: 10.1016/j.foodchem.2023.137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This work investigated the effects of liquid nitrogen immersion freezing (LNF), -35 °C air freezing (AF-35℃) and -18 °C air freezing (AF-18℃) on the physical and chemical characteristics and flavor quality of surimi gels with different cross-linking degrees. Compared to AF-35 °C and AF-18 °C, LNF was shown to considerably delay the texture deterioration and water migration of frozen gels, as well as the accumulation of thiobarbituric acid reactive substance values and carbonyl contents. Additionally, an appropriate increase of cross-linking degree (45.83 to 62.99%) was found able to improve gel properties and inhibit quality deterioration during freezing. Moreover, LNF-treated gels were closer to fresh gels in the amount of volatile compounds, in contrast to most significant negative aroma changes in AF-18℃-treated gels. Furthermore, 29, 29 and 31 key differential volatile compounds were screened for gels with a cross-linking degree of 29.66, 45.83 and 62.99%, respectively, mainly including aldehydes, alcohols and esters.
Collapse
Affiliation(s)
- Xiaoying Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Yongxin Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Zhang
- Guangdong Medical Devices Quality Surveillance and Test Institute, Guangzhou, Guangdong 510663, China
| | - Yueqi An
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Wen Y, Che QT, Wang S, Park HJ, Kim HW. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps. Compr Rev Food Sci Food Saf 2024; 23:e13267. [PMID: 38284586 DOI: 10.1111/1541-4337.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 01/30/2024]
Abstract
Three-dimensional (3D) printing has been applied to produce food products with intricate and fancy shapes. Dimensional quality, such as dimensional stability, surface smoothness, shape fidelity, and resolution, are essential for the attractive appearance of 3D-printed food. Various methods have been extensively studied and proposed to control the dimensional quality of printed foods, but few papers focused on comprehensively and deeply summarizing the key factors of the dimensional quality of printed products at each stage-before, during, and after printing-of the 3D printing process. Therefore, the effects of pretreatment, printing parameters and rheological properties, and cooking and storage on the dimensional quality of the printed foods are summarized, and solutions are also provided for improving the dimensional quality of the printed products at each step. Before printing, incorporating additives or applying physical, chemical, or biological pretreatments can improve the dimensional quality of carbohydrate-based, protein-based, or lipid-based printed food. During printing, controlling the printing parameters and modifying the rheological properties of inks can affect the shape of printed products. Furthermore, post-processing is essential for some printed foods. After printing, changing formulations, incorporating additives, and selecting post-processing methods and conditions may help achieve the desired shape of 3D-printed or 4D-printed products during cooking. Additives help in the storage stability of printed food. Finally, various opportunities have been proposed to regulate the dimensional properties of 3D-printed structures. This review provides detailed guidelines for researchers and users of 3D printers to produce various printed foods with the desired shapes and appearances.
Collapse
Affiliation(s)
- Yaxin Wen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Quang Tuan Che
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wang Z, Yin F, Li D, Wang X, Guo C, Liu D, Zhu B, Zhou D. Encapsulation Alleviates the Auto-browning of Epigallocatechin-3-gallate in Aqueous Solutions through Regulating Molecular Self-Aggregation Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14720-14730. [PMID: 37756148 DOI: 10.1021/acs.jafc.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Catechins are widely recognized for superb antioxidant capability, but their application as food antioxidants is hindered by susceptibility to auto-browning under high-moisture conditions. Here, we proposed a strategy of ordered encapsulation with cyclodextrin-based metal-organic frameworks (CD-MOFs) to alleviate the auto-browning phenomenon of catechins while preserving their antioxidant capability and demonstrated the feasibility of this strategy via selecting epigallocatechin-3-gallate (EGCG) as a model. Even in aqueous solutions, EGCG@CD-MOFs still possessed delayed browning, in contrast with pristine EGCG, characterized by suppressed efficiencies on the generation of oxidative dimers (theasinensin A) and semiquinone radicals. Mechanism insights revealed that ordered encapsulation brought dual regulations on the self-aggregation behavior of EGCG: EGCG@CD-MOFs exhibited a gradual structural collapse from the framework toward irregular aggregates as O-K bonds broke progressively, which restricted molecular mobility of EGCG, and EGCG molecular conformations became constrained by the structure of EGCG@CD-MOFs as well as rich intermolecular forces, even after structural collapse.
Collapse
Affiliation(s)
- Zonghan Wang
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fawen Yin
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Deyang Li
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Xinmiao Wang
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Chao Guo
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| |
Collapse
|
7
|
Yin T, Shi L. Processing and Preservation of Aquatic Products. Foods 2023; 12:2061. [PMID: 37238879 PMCID: PMC10217379 DOI: 10.3390/foods12102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Aquatic products represent an important food source; they include products such as fish, shrimp, shellfish, crab, and seaweed, and provide high-quality proteins, fatty acids, minerals, and other nutritional elements [...].
Collapse
Affiliation(s)
- Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Shi
- Institute for Agricultural Products Processing and Nuclear—Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China;
| |
Collapse
|
8
|
Wang Z, Guo C, Li D, Zhou D, Liu D, Zhu B. Nanoprecipitates of γ-cyclodextrin/epigallocatechin-3-gallate inclusion complexes as efficient antioxidants for preservation of shrimp surimi products: synthesis, performance and mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3129-3138. [PMID: 36637042 DOI: 10.1002/jsfa.12449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) is well known for excellent chain-breaking antioxidant capability. However, browning by oxidation and aggregation of EGCG is a non-negligible defect that hinders its applications as an antioxidant in various foodstuffs. Therefore, how to eliminate or mitigate browning efficiently, while retaining functionalities as food additive is a challenge in the food industry. RESULTS Our results demonstrated that EGCG could be anchored within the internal cavity of γ-cyclodextrin (γ-CD) to form an inclusion structure, where hydrophobic interaction, hydrogen bonding, and π-stacking were identified to be the primary drivers. The interplay between two molecules and the steric hindrance from γ-CD could restrict the motion and aggregation of EGCG efficiently, thus alleviating the browning effect. In addition, the conformational adaption of EGCG within the inclusions would result in general decreases in hydrogen-bond dissociation enthalpies for the pyrogallol-type structure on the b ring, thus enhancing the antioxidant capability. In practical application, the nanoscale γ-CD/EGCG inclusion complexes were validated preliminarily as efficient additives in the preservation of shrimp surimi, presenting significant effects on prolonging the shelf-life of products. CONCLUSION Here, nanoscale γ-CD/EGCG inclusion complexes as alternatives to EGCG were tailored as food antioxidants for the preservation of shrimp surimi products, exerting antioxidant effects while mitigating the browning effects of EGCG on products. Through self-assembly, EGCG would be anchored with the cavity of γ-CD, which could regulate the release modes and restrict the aggregation of EGCG. This facile strategy has great potential in food preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zonghan Wang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Chao Guo
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Deyang Li
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang Q, Xiao N, Xu H, Tian Z, Li B, Qiu W, Shi W. Changes of Physicochemical Characteristics and Flavor during Suanyu Fermentation with Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Foods 2022; 11:foods11244085. [PMID: 36553827 PMCID: PMC9778392 DOI: 10.3390/foods11244085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigates the changes of the physicochemical characteristics and flavor of fermented Suanyu (Chinese fermented fish) during fermentation with Lactiplantibacillus plantarum (L. plantarum) and Saccharomyces cerevisiae (S. cerevisiae). The related indicators, including pH, water activity (Aw), volatile base nitrogen (TVB-N), thiobarbituric acid (TBA), free amino acids (FAAs), microbial community, and volatile compounds were determined. L. plantarum fermentation samples (LP) and natural fermentation samples (NF) were used as controls. The pH and Aw of three groups of Suanyu samples decreased continuously through the entire fermentation process. Meanwhile, the TVB-N of three groups of samples increased gradually, while TBA first increased and then decreased. Notably, the pH, Aw, TVB-N, and TBA of MF group samples (inoculated L. plantarum and S. cerevisiae) were significantly lower than the NF group samples. In addition, both TVB-N and TBA of the MF group samples were lower than those of the LP group samples during fermentation, suggesting that combined fermentation could inhibit the growth of undesirable microorganisms more effectively. Lactobacillus were the main bacterial genus of the three group fermented samples during fermentation, and combined fermentation could promote the growth of Lactobacillus more significantly. In addition, the highest content of umami (145.16 mg/100 g), sweet amino acids (405.75 mg/100 g), and volatile compounds (especially alcohols and esters) were found in MF group samples, followed by the NF and LP group samples, indicating that combined fermentation could give Suanyu a better flavor quality. This study may provide a theoretical basis for the industrial production of fermented fish products and the improvement of fermentation technology.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Naiyong Xiao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihang Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bowen Li
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqiang Qiu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.Q.); (W.S.)
| | - Wenzheng Shi
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
- Correspondence: (W.Q.); (W.S.)
| |
Collapse
|
10
|
Analysis of the shape retention ability of antifreeze peptide-based surimi 3D structures: Potential in freezing and thawing cycles. Food Chem 2022; 405:134780. [DOI: 10.1016/j.foodchem.2022.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
|