1
|
Li X, Yong J, Zhao B, Zhu Y, Luo J, Sheng J, Tian Y. Hypoglycemic effect of dietary fibers from Moringa oleifera leaves: In vitro and in vivo studies. Food Res Int 2025; 209:116196. [PMID: 40253172 DOI: 10.1016/j.foodres.2025.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Moringa leaf is traditionally regarded as a natural antagonistic diabetic herb in many countries. This study aimed to investigate the potential hypoglycemic activity of Moringa dietary fibers (MDFs) with different particle sizes in vitro and in vivo and reveal the related mechanisms. Among MDFs, MDF200 exhibited the highest glucose adsorption and diffusion retarding capacities and the most effective inhibition of digestive enzyme activities in vitro. All MDF interventions ameliorated insulin resistance and tissue damage, alleviated oxidative stress and dyslipidemia in high-fat diet and streptozotocin induced type 2 diabetes mice in vivo. MDF interventions, especially MDF80 and MDF200, remarkably promoted the diversity of cecum flora and the abundance of beneficial intestinal bacteria (Ileibacterium, Bifidobacterium), while inhibited the harmful bacteria (Clostridium_sensu_stricto_1). The ratio of Firmicutes/Bacteroidetes was significantly reduced by MDF40 and MDF80 interventions. MDF80 promoted fecal acetic acid, butyric acid and total short-chain fatty acids (SCFAs), while MDF40 promoted fecal propionic acid. All MDF interventions remarkably promoted the secretion of glucagon-like peptide-1 (GLP-1) and stimulated higher G protein-coupled receptor 43 (GPR43) protein expression in liver. Larger MDF activated phosphorylation of AMPK and Erk, while smaller MDF stimulated GLP-1, more PI3K and phosphorylation of Akt protein expression. These results revealed that MDFs ameliorated T2DM through modulating microbiota-SCFAs receptor (GPR43)/AMPK signaling pathways and stimulating GLP-1 secretion and activated liver PI3K/Akt signaling pathways. This study offers an effective case for MDFs as a potential dietary intervention or adjuvant treatment for type 2 diabetes and the application of Moringa leaf as a functional food material.
Collapse
Affiliation(s)
- Xiufen Li
- College of Food Science and Technology, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China
| | - Jinye Yong
- College of Food Science and Technology, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China
| | - Bing Zhao
- College of Food Science and Technology, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China
| | - Yubo Zhu
- College of Food Science and Technology, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China
| | - Jia Luo
- Kunming Branch, CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, Yunnan, PR China.
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China.
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, 425 Fengyuan Road, Kunming 650201, Yunnan, PR China; Pu'er University, Pu'er 665000, Yunnan, PR China.
| |
Collapse
|
2
|
Xiao Q, Yang L, Guo J, Zhang X, Huang Y, Fu Q. Preparation, Structural Characterization, and Hypoglycemic Activity of Dietary Fiber from Sea Buckthorn Pomace. Foods 2024; 13:3665. [PMID: 39594081 PMCID: PMC11593619 DOI: 10.3390/foods13223665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Sea buckthorn pomace is often discarded as a by-product during the sea buckthorn processing stage. Consequently, its richness in dietary fiber is usually overlooked. In this study, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were extracted from sea buckthorn pomace using ultrasound combined with the enzyme method. The optimal values of the independent variable were determined by a combinatorial design and a response surface optimization test with SDF/IDF as the dependent variable, prepared as follows: 5% enzyme addition, ultrasonic power of 380 W, enzymatic time of 30 min, and alcoholic precipitation liquid ratio of 4:1. Under these conditions, the SDF/IDF ratio was 17.07%. The structural characterization and hypoglycemic activity of the two dietary fibers were then compared. The results show that two dietary fibers have respective structures and functional groups of fibers. SDF was less crystalline than IDF, and its structure was looser. Furthermore, the hypoglycemic activity of SDF was significantly better than IDF's (p < 0.05). The glucose adsorption capacity of SDF was 1.08-1.12 times higher than that of IDF. SDF inhibited α-amylase and α-glucosidase by 1.76 and 4.71 times more than IDF, respectively. These findings provide a reference for improving the utilization of sea buckthorn processing by-products.
Collapse
Affiliation(s)
- Qi Xiao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Liting Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Jingjing Guo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Xiyu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Yu Huang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
| | - Qun Fu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Q.X.); (L.Y.); (J.G.); (X.Z.); (Y.H.)
- Key Laboratory of Forest Food Resource Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
3
|
Zhang S, Wang A, Lu Z, Lu F, Zhao H. Fermentation of millet bran with Bacillus natto: enhancement of bioactivity levels and the bioactivity of bran extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6196-6207. [PMID: 38459922 DOI: 10.1002/jsfa.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the β-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shimei Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - An Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
4
|
Tian XY, Liu JF, Cheng Z, Wu NN, Tan B. Structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber obtained from rice bran with steam explosion treatment: Effect of different steam pressure and particle size of rice bran. Food Res Int 2024; 187:114310. [PMID: 38763627 DOI: 10.1016/j.foodres.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Rice bran was modified by steam explosion (SE) treatment to investigate the impact of different steam pressure (0.4, 0.8, 1.2, 1.6, and 2.0 MPa) with rice bran through 60 mesh and rice bran pulverization (60, 80, and 100 mesh) with the steam pressure of 1.2 MPa on the structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber (IDF) extracted from rice bran. IDF with SE treatment from scanning electron microscopy images showed a porous honeycomb structure, and lamellar shape in IDF became obvious with the increase of steam pressure. The relative crystallinity and polymerization degree of crystalline regions in IDF from rice bran with SE treatment from X-ray diffraction analysis were decreased. Differential scanning calorimetry results showed that thermal stability of IDF with SE treatment increased with the increase of crushing degree. The results of FT-IR also suggested that some glycosidic and hydrogen bonds in IDF could be broken, and some cellulose and hemicellulose were degraded during SE process. The physicochemical and functional characteristics of IDF, including water-holding capacity, oil-holding, glucose adsorption capacity, α-amylase and pancreatic lipase inhibition capacity were decreased with the increase of steam pressure and crushing degree. The swelling and nitrite adsorption capacities of IDF were increased first and then decreased with the increase of steam pressure. The physicochemical and functional characteristics of IDF from rice bran were improved after SE treatment, which might provide references for the utilization of IDF from rice bran with SE treatment.
Collapse
Affiliation(s)
- Xin-Yi Tian
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jian-Fu Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhuo Cheng
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Na-Na Wu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
5
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Wang X, Zhang X, Zhang D. Enhancement of cation exchange and glucose binding capacity, flavonoids release and antioxidant capacity of Tartary buckwheat powder with ultrafine grinding. Front Nutr 2023; 10:1276017. [PMID: 37927498 PMCID: PMC10620305 DOI: 10.3389/fnut.2023.1276017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
The objective of this paper was to study the effects of ultrafine grinding on the cation exchange capacity, glucose binding capacity and in vitro digestion characteristics of Tartary buckwheat powder. The results showed that the cation exchange ability and glucose binding strength of Tartary buckwheat powder, Tartary buckwheat bran powder and Tartary buckwheat core powder increased significantly with the increase of crushing frequency (20, 40 and 60 Hz), and the Tartary buckwheat bran powder was the highest. The results of in vitro digestion showed that ultrafine grinding improved the flavonoid release and antioxidant activity of Tartary buckwheat bran powder in the in vitro digestion process. The correlation analysis indicated that the amount of flavonoids released in digestive fluid was significantly related to antioxidant activity. This study may provide a theoretical basis for improving the physicochemical properties and functions of Tartary buckwheat by ultrafine grinding technology.
Collapse
Affiliation(s)
- Xinhui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xue Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, Heilongjiang Province, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China
| |
Collapse
|
7
|
Wang Y, He B, Zhang L, Zhu R, Huang L. Physicochemical properties of superfine grinding-microwave modified artichoke soluble dietary fiber and their alleviation of alcoholic fatty liver in mice. Front Nutr 2023; 10:1253963. [PMID: 37662596 PMCID: PMC10473878 DOI: 10.3389/fnut.2023.1253963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of superfine grinding (SG) and microwave treatment (MT) on the structure and physicochemical properties of artichoke soluble dietary fiber (ASDF) and its protective effects on mice with alcoholic fatty liver (AFL) were studied. We compared the changes in structural characteristics and physicochemical properties of ASDF, SG-ASDF (ASDF treated by SG), MT-ASDF (ASDF treated by MT), and CM-ASDF (ASDF treated by SG and MT). Moreover, we evaluated the effects of the obtained ASDF on the growth characteristics, blood lipid levels, and liver of mice with AFL. Our results of the study showed that CM-ASDF had a more concentrated and uniform particle size, a higher extraction rate of ASDF and significantly improved water-holding capacity (WHC), oil-holding capacity (OHC) and water swelling capacity (WSC) of ASDF (p < 0.05). After the ASDF intervention, mice with AFL exhibited a significant improvement in body lipid levels and reduce liver inflammation. Specifically, aspartate aminotransferase (AST), alanine aminotransferase (ALT), malonaldehyde (MDA), Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) were significantly decreased, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were significantly increased (p < 0.05). And the hematoxylin-eosin (HE) staining results showed significant improvement of hepatic steatosis in mice with AFL. In summary, our study found that both SG and MT could improve the structure and physicochemical properties of ASDF, with CM-ASDF being the most effective. Additionally, CM-ASDF was selected to continue the investigation and demonstrated an excellent protective effect on mice with AFL, with the high dose group (H-ASDF) showing the greatest benefit. These findings provided some new insights for future comprehensive utilization of ASDF and drug development for the treatment of AFL.
Collapse
Affiliation(s)
- Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Bian He
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Renwei Zhu
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| |
Collapse
|