1
|
Oh JK, Kim JH, An GEH, Chang HR. Simultaneous Determination of Six Acidic Pesticides, Including 2,4-DB and 2,4,5-T with No Established MRL in Korea Using LC-MS/MS and QuEChERS for the Safety of Imported Agricultural Products. Foods 2025; 14:904. [PMID: 40077607 PMCID: PMC11898764 DOI: 10.3390/foods14050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The use of pesticides is essential for the production of high-quality agricultural products. However, the repeated application of pesticides has led to the contamination of environments, such as the atmosphere, soil, and surface water, affecting ecosystems and leading to residues on crops, which pose potential risks to human health. Accordingly, regulations regarding pesticide usage, application frequency, timing, and maximum residue limits have been established to manage residual pesticides. The Positive List System (PLS), with a default tolerance of 0.01 ppm, has been applied to both domestic and imported agricultural products for which no established maximum residue limits (MRLs) exist in Korea. This study developed a multi-residue analytical method for the simultaneous determination of six pesticides, including 2,4-DB and 2,4,5-T, for which no domestic MRLs have been established, as well as for 2,4-D, 4-CPA, Dicamba, and Dichlorprop, for the management of imported agricultural products. The target pesticides were extracted and purified using the QuEChERS method and quantified by LC-MS/MS. The analytical method was validated according to the CODEX (CAC/GL 40-1993) and the Guidelines of Standard Procedures of Test Methods for Foods and Other Substances established by the MFDS. Using the developed and validated analytical method, monitoring of imported agricultural products was conducted.
Collapse
Affiliation(s)
| | | | | | - Hee-Ra Chang
- Department of Pharmaceutical Engineering, Graduate School, Hoseo University, Asan 31499, Republic of Korea; (J.-K.O.); (J.-H.K.); (G.-E.-H.A.)
| |
Collapse
|
2
|
Vaidya K, Regan MS, Lin J, Houle J, Gupta A, Stopka SA, Agar NYR, Hammond PT, Boehnke N. Pooled Nanoparticle Screening Using a Chemical Barcoding Approach. Angew Chem Int Ed Engl 2025; 64:e202420052. [PMID: 39714325 PMCID: PMC11773315 DOI: 10.1002/anie.202420052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties. To demonstrate the utility of our platform for pooled screening, we synthesized a halocoded library of polylactide-co-glycolide (PLGA) nanoparticles and quantified uptake in ovarian cancer cells in a pooled manner. Our findings correlate with conventional fluorescence-based assays. Additionally, we demonstrate the potential of halocodes for spatial mapping of nanoparticles using mass spectrometry imaging (MSI). Halocoding presents an accessible and modular nanoparticle screening platform capable of quantifying delivery of pooled nanocarrier libraries in a range of biological settings.
Collapse
Affiliation(s)
- Katherine Vaidya
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Michael S. Regan
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
| | - James Lin
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Jenna Houle
- Department of BioengineeringMassachusetts Institute of TechnologyCambridge, MAUSA
| | - Aanchal Gupta
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Sylwia A. Stopka
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
- Department of Radiology Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
- Department of Cancer Biology Dana-Farber Cancer InstituteHarvard Medical SchoolBoston, MAUSA
| | - Paula T. Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge, MAUSA
- Koch Institute for Integrative Cancer Research at MITMassachusetts Institute of TechnologyCambridge, MAUSA
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| |
Collapse
|
3
|
Majumder S, Kumar A, Debnath S, Abhinay, Singh AN, Behera TK. Development of an advanced analytical technique for detecting multiple pesticide residues in vegetables through liquid chromatography tandem mass spectroscopy (LC-MS/MS). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:663-677. [PMID: 39356543 DOI: 10.1080/03601234.2024.2407713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
A comprehensive LC-MS/MS method, which employs Positive Electrospray Ionization (PEI) and Multiple Reaction Monitoring (MRM) was developed for the simultaneous determination of 35 pesticides belonging to various chemical classes in tomato, brinjal, chili, and okra samples. Extraction was facilitated using a modified QuEChERS method, which allows efficient sample analysis in a single run. Calibration curves for each pesticide exhibited linearity within the concentration range of 0.0025 to 0.1 µg mL-1, with correlation coefficients ranging from 0.993 to 0.999. Mean recoveries at five fortification levels (0.01 to 0.5 µg kg-1) ranged from 80 to 90%, demonstrating satisfactory precision (RSD < 20%). The matrix effects, mitigated through an optimized cleanup process, were observed within the range of 6.42% to 19.52%. The developed method having the limit of quantification of 0.01 mg kg-1 for all 35 pesticides, proved to be highly sensitive and rapid for multi-residue estimation in diverse vegetable samples. Subsequently, the method was used to analyze the market samples from Varanasi, India, which revealed the presence of pesticides like Chlorpyrifos, Chlorantraniliproleand Indoxacarb in tomato, brinjal, chili and okra. Therefore, the method could be considered as a robust tool for monitoring pesticide residues in vegetables, aiding in quality assessment and regulatory compliance in the agriculture sector.
Collapse
Affiliation(s)
- Sujan Majumder
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Arvind Kumar
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
- Department of Chemistry, D.S.B Campus, Kumaun University, Nainital, India
| | - Sadhan Debnath
- National Institute of Plant Genome Research, New Delhi, India
| | - Abhinay
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - A N Singh
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | | |
Collapse
|
4
|
Tasic AM, Ninković M, Pavlović I. Validation and application of a method for determination of multi-class pesticides in muscle chicken breast fillets using QuEChERS extraction and GC/MS. J Vet Res 2024; 68:223-232. [PMID: 38947162 PMCID: PMC11210362 DOI: 10.2478/jvetres-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The occurrence of pesticide residues in animal products deserves attention because of the contamination by environmental pollutants and pesticides that may be present in the food that animals are fed. The goal of this work was the validation of a method for detection of residues of multiple classes of pesticide and determination of their residues in chicken breast fillets. Material and Methods Gas chromatography with mass spectrometry was used for analysis. A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was put into practice for its validation and applied to real samples. The study optimised mass detection and investigated the effect of a freezing step during the preparation of samples. Pesticides were determined in samples from conventional and organic production. Results The impact of the matrix effect decreased, with the largest number of pesticides and satisfactory recovery determined by the application of mixed solvent acetonitrile and ethyl acetate for extraction. Detection of pesticide residues was achieved in a linear range between 5 and 50 µg/kg with satisfactory excellent correlation coefficients greater than 0.99. The recovery of all the pesticide residues ranged between 71.2 and 118.80%. The relative standard deviation was from 2.9% to 18.1% for all validated pesticide residues. The limits of quantification were in the range of 3.0-4.9 µg/kg. Out of 56 pesticide residues analysed in real samples, 5 were detected: α endosulfan, cypermethrin, endosulfan sulphate, permethrin and p,p´-dichlorodiphenyltrichloroethane (DDT) and their concentrations ranged from 4.9 to 15.2 µg/kg. Conclusion All tested samples were compliant with the evaluation criteria, and detected values of pesticide residues were lower than the maximum residual levels.
Collapse
Affiliation(s)
| | | | - Ivan Pavlović
- Department of Bacteriology and Parasitology, Scientific Institute of Veterinary Medicine of Serbia, 11000Belgrade, Serbia
| |
Collapse
|
5
|
Sliti A, Singh V, Ibal JC, Jeong M, Shin JH. Impact of propiconazole fungicide on soil microbiome (bacterial and fungal) diversity, functional profile, and associated dehydrogenase activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8240-8253. [PMID: 38175519 DOI: 10.1007/s11356-023-31643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Pesticides, protect crops but can harm the environment and human health when used without caution. This study evaluated the impact of propiconazole, a fungicide that acts on fungal cell membranes, on soil microbiome abundance, diversity, and functional profile, as well as soil dehydrogenase activity (DHA). The study conducted microcosm experiments using soil samples treated with propiconazole and employed next-generation sequencing (MiSeq) and chromatographic approaches (GC-MS/MS) to analyze the shift in microbial communities and propiconazole level, respectively. The results showed that propiconazole significantly altered the distribution of microbial communities, with notable changes in the abundance of various bacterial and fungal taxa. Among soil bacterial communities, the relative abundance of Proteobacteria and Planctomycetota increased, while that of Acidobacteria decreased after propiconazole treatment. In the fungal communities, propiconazole increased the abundance of Ascomycota and Basidiomycota in the treated soil, while that of Mortierellomycota was reduced. Fungicide application further triggered a significant decrease in DHA over time. Analysis of the functional profile of bacterial communities showed that propiconazole significantly affected bacterial cellular and metabolic pathways. The carbon degradation pathway was upregulated, indicating the microbial detoxification of the contaminant in the treated soil. Our findings suggest that propiconazole application has a discernible impact on soil microbial communities, which could have long-term consequences for soil health, quality, and function.
Collapse
Affiliation(s)
- Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jerald Conrad Ibal
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 2023; 10:1244459. [PMID: 37593680 PMCID: PMC10428016 DOI: 10.3389/fnut.2023.1244459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.
Collapse
Affiliation(s)
- Qiannan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, Henan, China
| | - Yide Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Song W, Peng C, Liu Y, Han F, Zhu H, Zhou D, Wang Y, Chen L, Meng X, Hou R. Simultaneous Analysis of 53 Pesticides in Safflower ( Carthamus tinctorius L.) by Using LC-MS/MS Coupled with a Modified QuEChERS Technique. TOXICS 2023; 11:537. [PMID: 37368637 DOI: 10.3390/toxics11060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE An optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique was investigated and compared with the conventional QuEChERS technique for the simultaneous analysis of fifty-three pesticide residues in safflower using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). METHOD Graphitic carbon nitride (g-C3N4) consisting of a major amount of carbon and nitrogen with a large surface area was used as a QuEChERS adsorbent instead of graphitized carbon black (GCB) for safflower extraction purification. Validation experiments were performed using spiked pesticide samples, and real samples were analyzed. RESULTS The linearity of the modified QuEChERS technique was evaluated with high coefficients of determination (R-2) being higher than 0.99. The limits of detection were <10 μg/kg. The spiked recoveries ranged from 70.4% to 97.6% with a relative standard deviation of less than 10.0%. The fifty-three pesticides exhibited negligible matrix effects (<20%). Thiamethoxam, acetamiprid, metolachlor, and difenoconazole were detected in real samples using an established method. CONCLUSION This work provides a new g-C3N4-based modified QuEChERS technique for multi-pesticide residue analysis in complex food matrices.
Collapse
Affiliation(s)
- Wei Song
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Chuanyi Peng
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuxin Liu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Fang Han
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Haitao Zhu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Dianbing Zhou
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Yu Wang
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Lijun Chen
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Xiaodi Meng
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Ruyan Hou
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Qi Y, Zhang J, Shan W, Zhang W, Sun J, Zhang L, Jin Y, Shao B. Magnetic amino-rich hyper-crosslinked polymers for fat-rich foodstuffs pretreatment in nontargeted analysis of chemical hazards. Food Chem 2023; 425:136467. [PMID: 37270884 DOI: 10.1016/j.foodchem.2023.136467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Nontargeted analysis for chemical hazards is highly desirable in controlling food safety to ensure human health. As the dominating interference in fat-rich foodstuffs, lipids removal is a great challenge in sample pretreatment. Herein, diverse lipids from both animal and vegetable oils are effectively removed and 565 chemical hazards with various physicochemical properties are used for method validation. These benefits are from the designed magnetic amino-rich hyper-crosslinked core-shell polymeric composites (Fe3O4@poly(MAAM-co-EGDMA)) and the application of an auto extraction system. Among them, the amino groups are the key factors for lipid removal. Theoretical calculations, isothermal titration calorimetry (ITC), and functional monomer replacement demonstrated that the mechanisms to universally capture free fatty acids (FFAs) and triglycerides (TGs) are electrostatic interaction and supplemented by hydrogen bonding. Overall, this work highlights the great application potentials of polymeric adsorbents as sample pretreatment materials for nontargeted analysis in food safety.
Collapse
Affiliation(s)
- Yan Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Wenchong Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weichunbai Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jing Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| |
Collapse
|
9
|
Pang X, Qiu J, Zhang Z, Li P, Xing J, Su X, Liu G, Yu C, Weng R. Wide-Scope Multi-residue analysis of pesticides in beef by gas chromatography coupled with quadrupole Orbitrap mass spectrometry. Food Chem 2023; 407:135171. [PMID: 36508866 DOI: 10.1016/j.foodchem.2022.135171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Increasing pesticide contamination in foods of animal origin has made the wide-scope multi-residue analysis of pesticides an international concern. By using 191 pesticides, this study investigates a sensitive and reliable method for multi-residue analysis of pesticides in beef to determine the extent of the application of this method. The QuEChERS method was employed to extract and purify the pesticides as C18 was utilized as the absorbents. Then, the purified pesticides were analysed using gas chromatography - quadrupole orbitrap mass spectrometry (GC-Q-Orbitrap-MS). The validation test results revealed that this method was satisfactorily sensitive since its screening detection limit (SDL) ranged from 0.2 to 100 µg∙kg-1. The recovery tests implemented at three spiking levels, namely 100, 200, and 500 µg∙kg-1, generated the results of 71.95 %-113.97 %, while the intra- and inter-day precisions were 0.27 %-17.94 %, indicating that this method had excellent accuracy and precision.
Collapse
Affiliation(s)
- Xu Pang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Jing Qiu
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaoyang Zhang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | | | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiqiao Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Jahan T, Yasmin S, Ali Shaikh MA, Ibn Yousuf MJ, Islam MS, Islam Choudhury MT, Kabir MH. Development and validation of a modified QuEChERS method coupled with LC-MS/MS for simultaneous determination of difenoconazole, dimethoate, pymetrozine, and chlorantraniliprole in brinjal collected from fields and markets places to assess human health risk. Heliyon 2023; 9:e14972. [PMID: 37064478 PMCID: PMC10102411 DOI: 10.1016/j.heliyon.2023.e14972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
An effective and sensitive analytical method was developed to quantify the most common pesticide residues (difenoconazole, dimethoate, pymetrozine, and chlorantraniliprole) used for brinjal cultivation in Bangladesh. The quantification of the analytes was done using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using a modified QuEChERS method and followed by purification with dispersive solid phase extraction (d-SPE) sorbents (PSA, GCB, and C18). Matrix-matched calibration with a regression coefficient R2 ≥ 0.9964 were used to minimize the brinjal matrix effect. The method was validated in quintuple (n = 5) at five different spiked levels (8-400 μg/kg) having recoveries in the range of 70.3-113.2% with relative standard deviations RSDs ≤6.8%, limits of detection (LOD) and limits of quantification (LOQ) was in the range of 0.15-0.66 μg/kg and 0.4-2.0 μg/kg, respectively, for the four analytes. A total 100 samples (50 samples directly from fields of Jessore district, Bangladesh and 50 samples from local market of Dhaka, Bangladesh) were collected to analyse the pesticides residue. The result showed that pesticides residue was found in both the field and market collected samples, 54% and 38%, respectively. The overall mean residue levels of four pesticides in field samples were significantly higher than those of market samples. Moreover, 20% of the field samples and 10% of the market samples had dimethoate residues, which were the most abundant among the four analytes and it ranged from 0.017 to 0.252 mg/kg. In terms of health risk assessments, dimethoate showed the highest estimated daily intake (EDI) and hazard quotient (HQ) values that are 3.02 × 10-5 mg/kg/day and 1.51%, respectively, in field samples. Till now, there have been no regulations or guidelines for the maximum admissible pesticide residue in Bangladesh. Therefore, the above findings will be an initial step for the regulatory authorities of Bangladesh to implement regulations and guidelines for pesticide usage.
Collapse
|
11
|
Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin. Molecules 2023; 28:molecules28031468. [PMID: 36771134 PMCID: PMC9921091 DOI: 10.3390/molecules28031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.
Collapse
|
12
|
Zhai W, Cao M, Xiao Z, Li D, Wang M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022; 11:3597. [PMID: 36429190 PMCID: PMC9689543 DOI: 10.3390/foods11223597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 μg L-1 with LODs down to 3.62, 41.46, and 15.69 μg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiyong Xiao
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|