1
|
De Giani A, Perillo F, Baeri A, Finazzi M, Facciotti F, Di Gennaro P. Positive modulation of a new reconstructed human gut microbiota by Maitake extract helpfully boosts the intestinal environment in vitro. PLoS One 2024; 19:e0301822. [PMID: 38603764 PMCID: PMC11008829 DOI: 10.1371/journal.pone.0301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Finazzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Lonati E, Sala G, Corbetta P, Pagliari S, Cazzaniga E, Botto L, Rovellini P, Bruni I, Palestini P, Bulbarelli A. Digested Cinnamon ( Cinnamomum verum J. Presl) Bark Extract Modulates Claudin-2 Gene Expression and Protein Levels under TNFα/IL-1β Inflammatory Stimulus. Int J Mol Sci 2023; 24:9201. [PMID: 37298151 PMCID: PMC10253083 DOI: 10.3390/ijms24119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1β (TNF-α/IL-1) β cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.
Collapse
Affiliation(s)
- Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Gessica Sala
- Milan Center for Neuroscience (NeuroMI), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Stefania Pagliari
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milan, Italy
| | - Ilaria Bruni
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
3
|
Lamichhane G, Sharma G, Sapkota B, Adhikari M, Ghimire S, Poudel P, Jung HJ. Screening of Antioxidant, Antibacterial, Anti-Adipogenic, and Anti-Inflammatory Activities of Five Selected Medicinal Plants of Nepal. J Exp Pharmacol 2023; 15:93-106. [PMID: 36891159 PMCID: PMC9987241 DOI: 10.2147/jep.s388968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Herbal products have been widely used for the treatment of diseases throughout the ages. In this research, we investigated antioxidant, antibacterial, anti-adipogenic, and anti-inflammatory activities of methanolic extracts of five ethnomedicinally important plants; namely, Alnus nepalensis, Dryopteris sparsa, Artocarpus lacucha, Litsea monopetala, and Lyonia ovalifolia. Methods We investigated the DPPH free radical scavenging potential, sensitivity of selected bacterial strains towards the extracts using a disc diffusion assay, anti-inflammatory activity in RAW-264.7 cells, and anti-adipogenic activity by the ORO assay in 3T3-L1 preadipocytes. Results and discussion The extract of A. nepalensis showed significant antioxidant activity (IC50=4.838 µg/mL), followed by A. lacucha, L. monopetala, and L. ovalifolia, exhibiting comparable IC50 values to that of ascorbic acid (IC50=5.063 µg/mL). Alnus nepalensis also showed good antibacterial activity in disc diffusion methods, with remarkable zones of inhibition in A. baumannii (14.66 mm) and P. mirabilis (15.50 mm) bacterial species. In addition, A. nepalensis was found to increase adipogenesis in 3T3-L1 cells, evidenced by increased lipid deposition in differentiated 3T3-L1 cells. A similar pattern of increased adipogenesis was observed on treatment with L. ovalifolia extracts. On the other hand, A. lacucha effectively reduced lipid deposition in 3T3-L1 cells at 100 µg/mL (75.18±6.42%) by inhibiting adipogenesis, showing its potential use in the management of obesity. Furthermore, A. lacucha 100 µg/mL (15.91±0.277 µM) and L. monopetala 75 µg/mL (12.52±0.05 µM) and 100 µg/mL (11.77±0.33 µM) significantly inhibited LPS-induced nitric oxide production in RAW 264.7 cells. Also, A. nepalensis and L. ovalifolia inhibited NO production significantly, endorsing their anti-inflammatory potential. Conclusion The findings from these in-vitro studies suggest that the selected five plants possess remarkable antioxidant, antibacterial, anti-adipogenic, and anti-inflammatory activities. This study opens the door to conduct further advanced in-vivo experiments to find possible lead compounds for the development of valuable therapeutic agents for common health problems.
Collapse
Affiliation(s)
- Gopal Lamichhane
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk-do, 570-749, South Korea
| | - Grinsun Sharma
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 570-749, South Korea
| | - Biswash Sapkota
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
- Department of Pharmacy and Clinical Pharmacology, Madan Bhandari Academy of Health Sciences, Hetauda, 44107, Nepal
| | - Mahendra Adhikari
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
- Department of Pharmacy, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Sandhaya Ghimire
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
| | - Prakash Poudel
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Pokhara, 33700, Nepal
- Pharmacy Program, Gandaki University, Pokhara, 33700, Nepal
| | - Hyun-Ju Jung
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk-do, 570-749, South Korea
| |
Collapse
|
4
|
Park SY, Kim YD, Kim MS, Kim KT, Kim JY. Cinnamon ( Cinnamomum cassia) water extract improves diarrhea symptoms by changing the gut environment: a randomized controlled trial. Food Funct 2023; 14:1520-1529. [PMID: 36655542 DOI: 10.1039/d2fo01835g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cinnamon is a spice obtained from the bark of Cinnamomum and contains anti-inflammatory ingredients such as coumarin, cinnamaldehyde, and cinnamic acid. This study evaluated the effect of cinnamon water extract (CWE) on the symptoms of subjects with diarrhea in an 8-week randomized controlled trial. Seventy subjects with diarrhea symptoms were randomized and received three capsules of 400 mg CWE or placebo twice daily for 8 weeks. CWE intake significantly increased colonic transit time (p = 0.019) and fecal isobutyric acid (p = 0.008) and spermidine (p = 0.009) contents compared to placebo intake. In contrast, CWE decreased fecal indole (p = 0.032) and agmatine (p = 0.018) contents. Gut microbiota analysis showed increased alpha diversity and significant changes in strains such as Bifidobacterium longum ATCC 55813 (LDA = 1.38) in the CWE group compared with the placebo group. Bifidobacterium longum ATCC 55813 showed a positive correlation with colon transit time and stool phenol and spermidine contents. CWE improved diarrhea symptoms and changed the composition of stools and the gut microbiota. These results indicate that cinnamon intake relieves diarrhea symptoms through metabolic changes due to changes in intestinal microbial groups.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Yong Dae Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Min Seo Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Ki-Tae Kim
- Department of Korean Internal Medicine, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
5
|
Pagliari S, Forcella M, Lonati E, Sacco G, Romaniello F, Rovellini P, Fusi P, Palestini P, Campone L, Labra M, Bulbarelli A, Bruni I. Antioxidant and Anti-Inflammatory Effect of Cinnamon ( Cinnamomum verum J. Presl) Bark Extract after In Vitro Digestion Simulation. Foods 2023; 12:452. [PMID: 36765979 PMCID: PMC9914695 DOI: 10.3390/foods12030452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.
Collapse
Affiliation(s)
- Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Grazia Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Romaniello
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Luca Campone
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Ilaria Bruni
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
6
|
De Giani A, Oldani M, Forcella M, Lasagni M, Fusi P, Di Gennaro P. Synergistic Antioxidant Effect of Prebiotic Ginseng Berries Extract and Probiotic Strains on Healthy and Tumoral Colorectal Cell Lines. Int J Mol Sci 2022; 24:373. [PMID: 36613815 PMCID: PMC9820163 DOI: 10.3390/ijms24010373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS, O2•−, HO•, and H2O2) affects the aging process and the development of several diseases. A new frontier on its prevention includes functional foods with both specific probiotics and natural extracts as antioxidants. In this work, Panax ginseng C.A. Meyer berries extract was characterized for the presence of beneficial molecules (54.3% pectin-based polysaccharides and 12% ginsenosides), able to specifically support probiotics growth (OD600nm > 5) with a prebiotic index of 0.49. The administration of the extract to a probiotic consortium induced the production of short-chain fatty acids (lactic, butyric, and propionic acids) and other secondary metabolites derived from the biotransformation of Ginseng components. Healthy and tumoral colorectal cell lines (CCD841 and HT-29) were then challenged with these metabolites at concentrations of 0.1, 0.5, and 1 mg/mL. The cell viability of HT-29 decreased in a dose-dependent manner after the exposition to the metabolites, while CCD841 vitality was not affected. Regarding ROS production, the metabolites protected CCD841 cells, while ROS levels were increased in HT-29 cells, potentially correlating with the less functionality of glutathione S-transferase, catalase, and total superoxide dismutase enzymes, and a significant increase in oxidized glutathione.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Monica Oldani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|