1
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Alessandroni L, Sagratini G, Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100194. [PMID: 38298469 PMCID: PMC10828576 DOI: 10.1016/j.fochms.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
3
|
Vesga DA, Torres RNS, Moreira JBS, Granja-Salcedo YT, Neto ORM, Chardulo LAL, Nair MN, Carvalho PHV, Baldassini WA. Performance, nutrient utilization and meat quality traits in Bos indicus cattle: a meta-analysis examining the effect of residual feed intake. Trop Anim Health Prod 2024; 56:214. [PMID: 39004692 DOI: 10.1007/s11250-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
This meta-analysis aims to investigate the effects of residual feed intake (RFI) phenotype on performance, nutrient utilization and meat quality traits in Zebu (Bos indicus) cattle. Twenty-three peer-reviewed publications with 37 treatment means were included in the dataset. Weighted mean difference analysis compared animals categorized into low RFI (more efficient) versus medium or high RFI (less efficient) groups. Data heterogeneity via meta-regression and subgroup analysis, considering variables such as animal age, sex class, experimental duration, RFI group, dietary concentrate, and estimated metabolizable energy intake were also explored. The predominant genetic group of cattle in the dataset was Nellore (89.18%), followed by Brahman (10.81%). More efficient animals (low RFI phenotype) exhibited less dry matter intake (DMI; P < 0.010) than medium or high RFI animals (-0.95 kg vs. -0.42 kg/d). Cattle dietary crude protein and fiber digestibility were consistent across RFI groups (P > 0.05), while dietary ether extract digestibility tended to decrease (P = 0.050) in low RFI animals (-13.20 g/kg DM). Low RFI animals tended to increased (P = 0.065) ribeye area (REA) compared to the high/medium RFI groups, while carcass backfat thickness (BFT) decreased (P = 0.042) compared to high/medium RFI groups. Moreover, there was an increase (P < 0.001) of 0.22 kg in Warner-Bratzler shear force (WBSF) and a reduction (P < 0.001) in the myofibrillar fragmentation index (MFI) in low RFI animals. Meat color parameters (lightness [L*] and yellowness [b*]) and visual marbling scores were consistent (P > 0.05) across RFI groups. In conclusion, Zebu cattle classified as efficient (low RFI) exhibited reduced DMI, which improves their feed efficiency. However, BFT and meat quality parameters such as tenderness (WBSF and MFI) and redness [a*] were compromised by low RFI phenotype, highlighting the challenge of enhancing feed efficiency and meat quality traits in Zebu cattle.
Collapse
Affiliation(s)
- Daniela A Vesga
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Rodrigo N S Torres
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - José B S Moreira
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Yury T Granja-Salcedo
- El Nus Research Center, Colombian Agricultural Research Corporation, San Roque, Antioquia, Colombia
| | - Otavio R Machado Neto
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Luis Artur L Chardulo
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Pedro H V Carvalho
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Welder A Baldassini
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil.
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
5
|
Ramos PM, Scheffler TL, Beline M, Bodmer J, Gerrard DE, Silva SL. Challenges and opportunities of using Bos indicus cattle to meet consumers' demand for quality beef. Meat Sci 2024; 207:109375. [PMID: 37924645 DOI: 10.1016/j.meatsci.2023.109375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Beef consumption is expected to increase worldwide, which necessitates the use of Bos indicus cattle that are well-adapted to harsher climates, like the tropics. Yet, beef from these cattle is considered inferior to that of Bos taurus breeds, primarily due to lowered tenderness values and reduced intramuscular fat content. However, the benefits of using Bos indicus genetics are numerous and undeniable. Herein, we explore how decreases in meat quality in these cattle may be offset by increases in livability. Further, we review the knowledge surrounding beef tenderness and explore the processes occurring during the early events of the transformation of muscle to meat that are different in this biological type and may be altered by stress. Growth rate, calpastatin activity and mitochondrial function will be discussed as they relate to tenderness. The opportunities of using Bos indicus cattle are of great interest to the beef industry worldwide, especially given the pressures for enhancing the overall sustainability and carbon footprint of this sector. Delivering a consistently high-quality product for consumers by exploiting Bos indicus genetics in a more sustainable manner will be proposed. Information on novel factors that influence the conversion of muscle to meat is explored to provide insights into opportunities for maximizing beef tenderization and maturation across all cattle. Exploring the use of Bos indicus cattle in modern production schemes, while addressing the mechanisms undergirding meat tenderness should provide the industry with a path forward for building greater demand through producing higher quality beef.
Collapse
Affiliation(s)
- Patricia M Ramos
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Tracy L Scheffler
- Animal Science Department, University of Florida, Gainesville, FL, USA
| | - Mariane Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jocelyn Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Saulo Luz Silva
- Animal Science Department, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
6
|
Lamri M, Della Malva A, Djenane D, López-Pedrouso M, Franco D, Albenzio M, Lorenzo JM, Gagaoua M. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics 2023; 278:104868. [PMID: 36871648 DOI: 10.1016/j.jprot.2023.104868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to identify for the first time protein biomarkers of meat quality traits from Longissimus thoracis (LT) muscle of goats (Capra hircus). Male goats of similar age and weight reared under extensive rearing conditions were used to relate the LT muscle proteome with multiple meat quality traits. The early post-mortem muscle proteome analyzed using label-free proteomics was compared among three texture clusters built using hierarchical clustering analysis. Twenty-five proteins were differentially abundant and their mining using bioinformatics revealed three major biological pathways to be involved: 10 muscle structure proteins (MYL1, MYL4, MYLPF, MYL6B, MYH1, MYH2, ACTA1, ACTBL2, FHL1 and MYOZ1); 6 energy metabolism proteins (ALDOA, PGAM2, ATP5F1A, GAPDH, PGM1 and ATP5IF1), and two heat shock proteins: HSPB1 (small) and HSPA8 (large). Seven other miscellaneous proteins belonging to pathways such as regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding were further identified to play a role in the variability of goat meat quality. The differentially abundant proteins were correlated with the goat meat quality traits in addition to multivariate regression models built to propose the first regression equations of each quality trait. This study is the first to highlight in a multi-trait quality comparison the early post-mortem changes in the goat LT muscle proteome. It also evidenced the mechanisms underpinning the development of several quality traits of interest in goat meat production along the major biochemical pathways at interplay. SIGNIFICANCE: The discovery of protein biomarkers in the field of meat research is an emerging topic. In the case of goat meat quality, very few studies using proteomics have been conducted with the aim of proposing biomarkers. Therefore, this study is the first to quest for biomarkers of goat meat quality using label-free shotgun proteomics with a focus on multiple quality traits. We identified the molecular signatures underlying goat meat texture variation, which were found to belong to muscle structure and related proteins, energy metabolism and heat shock proteins along with other proteins involved in regulation, proteolysis, apoptosis, transport and binding, tRNA processing or calmodulin-binding. We further evaluated the potential of the candidate biomarkers to explain meat quality using the differentially abundant proteins by means of correlation and regression analyses. The results allowed the explanation of the variation in multiple traits such as pH, color, water-holding capacity, drip and cook losses traits and texture.
Collapse
Affiliation(s)
- Melisa Lamri
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - Djamel Djenane
- Department of Food Science, Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box. 17, Tizi-Ouzou 15000, Algeria
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 71121 Foggia, Italy
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
7
|
Alshamiry FA, Alharthi AS, Al-Baadani HH, Aljumaah RS, Alhidary IA. Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes. Life (Basel) 2023; 13:409. [PMID: 36836766 PMCID: PMC9966752 DOI: 10.3390/life13020409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
A total of 75 male Awassi (mean BW 23.5 ± 2.0 kg; 3 months old) were used in an 84-day trial to investigate the effects of different feeding regimes on productive performance, carcass characteristics, and meat quality, and the fatty acid profile of growing lambs. Animals were randomly allocated into 3 groups of 25 lambs each. The dietary treatments were as follows: (1) whole barley grain (60%) plus alfalfa hay (40%; GB-AH; the basal diet); (2) a concentrate pelleted diet plus alfalfa hay (CP-AH); and (3) a complete pelleted diet (CPD). Feed intake was measured weekly, and all lambs were weighed every two weeks for an evaluation of the productive parameters. Blood samples were collected from all lambs for the measurement of biochemical and enzymatic variables. At the end of the experiment, 13 lambs from each treatment were slaughtered to evaluate the carcass characteristics, meat quality, and fatty acid composition. The final body weight, body weight gain, average daily gain, and feed efficiency of lambs were lowest (p < 0.05) in lambs on the grain and alfalfa diet compared with the other groups. Feeding lambs either the CP-AH or CPD diets resulted (p < 0.05) in increases in slaughter weight, carcass weights (hot and cold), the percentage of liver and shoulder, carcass length, back fat thickness, and the area of longissimus thoracis muscle compared with those lambs on the GB-AF diet. The proportion of saturated fatty acids in meat was greater (p = 0.04) in lambs fed on the GA-AH diet than in those of lambs fed on the pelleted diets. Lambs on the CP-AH diet had (p < 0.05) the highest ratios of PUFA to SFA and omega 6 to omega 3, and the proportion of omega 6. The atherogenic and thrombogenic indexes were lower (p < 0.05) in the CP-AH group compared with the GB-AH group. In conclusion, the results indicate that feeding growing lambs on concentrate pellets instead of whole barley grain improves the growth rate, traits, meat quality, and fatty acid profile, which have important implications for productivity, efficiency, and profitability in the livestock industry.
Collapse
Affiliation(s)
| | | | | | | | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|