1
|
Akomolafe SF, Ajayi OO, Agboola OE, Adewale OO. Comparative evaluation of the antidiabetic potential of three varieties of Ipomoea batatas L.. Toxicol Rep 2025; 14:102015. [PMID: 40230512 PMCID: PMC11995110 DOI: 10.1016/j.toxrep.2025.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Sweet potato (Ipomoea batatas L.) is a nutrient-dense tuber often used in traditional diabetic treatment. This research compares the antidiabetic potential of three sweet potato varieties: orange-fleshed (OFSP), purple-peel white-fleshed (PPWSP), and white-peel white-fleshed (WPWSP), utilising in vitro and in vivo techniques. Sweet potatoes (OFSP, PPWSP, and WPWSP) boiled at 100°C for 20 minutes were incorporated into formulated diets and administered to streptozotocin-induced diabetic rats for 14 days. Aqueous extracts of the diets were tested in vitro for antioxidants and phytochemicals. Glycaemic control parameters, lipid profiles, oxidative stress indicators, and pancreatic histology were investigated. Gene expression analysis was performed on critical diabetes-related pathways. OFSP showed significant strong anti-diabetic benefits, including better glycemic control, weight maintenance, lower HOMA-IR scores, and lowered α-amylase and α-glucosidase activity. OFSP-fed rats had higher insulin, glycogen, and hexokinase activity than those given PPWSP and WPWSP. OFSP decreased mRNA expression of DPP-4 while increasing GLP-1 expression. OFSP also improved lipid profiles, increasing HDLc while decreasing LDLc and triglycerides more than other varieties. Histopathological examination revealed restorative effects in pancreatic beta cells. OFSP demonstrated more pronounced antidiabetic effects compared to PPWSP and WPWSP, particularly in terms of glycemic control, insulin regulation, and lipid profile improvement. These findings suggest that OFSP may offer significant potential for diabetes management. However, further clinical studies are needed to validate these results and explore the practical dietary applications of OFSP in diabetes control.
Collapse
Affiliation(s)
- Seun F. Akomolafe
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| | - Oluwadamilare O. Ajayi
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
| | - Oluwaseun E. Agboola
- Institute for Drug Research and Development, Afe Babalola University, Ado Ekiti, Nigeria
- DamSem Scientific Laboratory and Research, Oke-Ila, Ado Ekiti, Nigeria
| | | |
Collapse
|
2
|
Hajfathalian M, Ghelichi S, Jacobsen C. Anti-obesity peptides from food: Production, evaluation, sources, and commercialization. Compr Rev Food Sci Food Saf 2025; 24:e70158. [PMID: 40111015 PMCID: PMC11924896 DOI: 10.1111/1541-4337.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
The global obesity epidemic has heightened interest in natural solutions, with anti-obesity peptides emerging as promising candidates. Derived from food sources such as plants, algae, marine organisms, and products like milk and eggs, these peptides combat obesity through various mechanisms but face challenges in production and scalability. The aim of this review is to explore their sources, mechanisms, measurement, and synthesis methods, including innovative approaches such as de novo synthesis, proteomics, and bioinformatics. Its unique contribution lies in critically analyzing the current state of research while highlighting novel synthesis techniques and their practical relevance in addressing commercialization challenges, offering valuable insights for advancing anti-obesity peptide development. Diverse methods for assessing the anti-obesity properties of these peptides are discussed, encompassing both in vitro and in vivo experimental approaches, as well as emerging alternatives. The review also explores the integration of cutting-edge technologies in peptide synthesis with the potential to revolutionize scalability and cost-effectiveness. Key findings assert that despite the great potential of peptides from various food sources to fight against obesity and advances in their identification and analysis, challenges like scalability, regulatory hurdles, bioavailability issues, high production costs, and consumer appeal persist. Future research should explore the use of bioinformatics tools and advanced peptide screening technologies to identify and design peptides with enhanced efficacy and bioavailability, efficient and cost-effective extraction and purification methods, sustainable practices such as utilizing byproducts from the food industry, and the efficacy of products containing isolated anti-obesity peptides versus whole materials in clinical settings.
Collapse
Affiliation(s)
- Mona Hajfathalian
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Haładyn K, Wojdyło A, Nowicka P. Shaping the bioactive potential, health-promoting properties, and bioavailability of o/w nanoemulsions by modulating the dose of a carotenoid preparation isolated from Calendula officinalis L. Food Chem 2024; 456:139990. [PMID: 38852448 DOI: 10.1016/j.foodchem.2024.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The use of nanotechnology in food production (in particular protein base nanoemulsion) is a solution that is gaining popularity, which allows to design of smart food with targeted health-promoting properties. This study aimed to assess the impact of the dose of the phytochemical extract (1%; 3%; 5% w/w) comprising isolated lipophilic compounds from Calendula officinalis L. on selected physicochemical properties of the emulsion, antioxidant, antidiabetic and antiaging effects, and its impact on carotenoids content and their in vitro bioavailability. The results showed that the use of a 3% extract dosage appears to be optimal for obtaining a nanoemulsion. This variant was characterized by the highest antidiabetic activity and there was no overloading of the nanostructure. Additionally, the use of a pea protein - lipophilic compounds - sunflower/hemp oil matrix to create nanoforms seems to be a promising solution in the context of pro-health properties and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Kamil Haładyn
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| |
Collapse
|
4
|
Dhanasekaran S, Jeyabalan S, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Sekar M, Subramaniyan V, Shing WL. Harnessing Phytochemicals to Regulate Catalytic Residues of Alpha-Amylase and Alpha-Glucosidase in Type 2 Diabetes. Cell Biochem Biophys 2024:10.1007/s12013-024-01575-4. [PMID: 39384699 DOI: 10.1007/s12013-024-01575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/11/2024]
Abstract
Type 2 diabetes (T2D), also known as non-insulin-dependent diabetes mellitus, represents the prevailing manifestation of diabetes, encompassing a substantial majority of cases, ~90-95%. Plant-derived antidiabetic leads are being intensively explored due to their safety and effectiveness. The main objective of the present study is to evaluate the anti-diabetic potential of the traditional formulation Karisalai Karpam through in-vitro and in-silico investigations. The in-vitro and in-silico investigation of traditional polyherbal preparation Karisalai Karpam (KK) chooranam were performed to ascertain its inhibitory potential against α-amylase and α-glucosidase enzymes along with antioxidant (DPPH and ABTS) and phytochemical analysis. The results of enzyme inhibitory activity of KK witnessed highest activity against α-glucosidase enzyme with a percentage inhibition of 84.66 ± 2.50% (IC50,187.9 ± 5.79 μg/ml) followed by moderate level of α-amylase inhibition exhibited with 72.94 ± 3.66% (IC50, 241.6 ± 9.76 μg/ml). Additionally, the strongest antioxidant activity was observed in quenching DPPH• (IC50,154.8 ± 14.53 μg/ml) and ABTS+• radicals (IC50,148.6 ± 29.74 μg/ml). The outcome of the molecular docking studies indicated that among the 17 compounds analysed, the lead such as acalyphin, apigenin, humulene, and indirubin exhibited a prominent binding affinity over the residual binding site of α-glucosidase. It's important to note that the catalytic site of the enzyme α-amylase is primarily occupied by amyrin, apigenin, arjunolic acid, β-sitosterol, geraniol, and tricetin. In conclusion, the formulation KK demonstrates robust alpha-glucosidase and alpha-amylase inhibitory activity. It's also worth noting that the formulation exhibits noteworthy antioxidant properties, which could provide additional health benefits. The binding mode and energies of the identified phytochemicals against the target enzymes further support the formulation's antidiabetic potential.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Srikanth Jeyabalan
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | | | | | - Tamilanban Thamaraikani
- Department of Pharmacology, Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Selangor Darul Ehsan, Malaysia
| | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Rochín-Medina JJ, Ramírez-Serrano ES, Ramírez K. Inhibition of α-glucosidase activity by potential peptides derived from fermented spent coffee grounds. Food Chem 2024; 454:139791. [PMID: 38795616 DOI: 10.1016/j.foodchem.2024.139791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The control of α-glucosidase activity has been associated with managing diabetes. We previously identified three peptides with high bioactive indices derived from protein hydrolysates of fermented spent coffee grounds. In this study, the peptides YGF, GMCC, and RMYRY were synthesized and tested in vitro for their α-glucosidase inhibition activity, complemented by in silico analyses. Two of the three peptides significantly inhibited α-glucosidase activity, with the more efficient peptides being YGF and GMCC (0.42 mg/mL), resulting in decreased enzymatic activity of 95.31% and 89.79%, respectively. These peptides exhibited binding free energies with the α-glucosidase complex of -8.5 and - 6.6 kcal/mol, respectively, through hydrogen bonds and van der Waals interactions with amino acids from the active site. Pharmacokinetic analysis indicated that YGF and GMCC profiles were unrelated to toxicity. These results underscore the importance of focusing on food waste bioprocessing products to expand the range of alternatives that could aid in diabetes treatment.
Collapse
Affiliation(s)
- Jesús J Rochín-Medina
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| | - Estéphany S Ramírez-Serrano
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| | - Karina Ramírez
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| |
Collapse
|
6
|
Ullah H, Uddin I, Ali HZ, Hassan W, Mehnaz G, Maryam L, Sarfraz M, Khan MS, Islam MS, Almarhoon ZM, Iqbal R, Nabi M. A promising α-glucosidase and α-amylase inhibitors based on benzimidazole-oxadiazole hybrid analogues: Evidence based in vitro and in silico studies. RESULTS IN CHEMISTRY 2024; 11:101832. [DOI: 10.1016/j.rechem.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
|
7
|
Zuo Y, Gong S, Zhang L, Zhou J, Wu JL, Li N. A Deep Mining Strategy for Peptide Rapid Identification in Lactobacillus reuteri Based on LC-MS/MS Integrated with FBMN and De Novo Sequencing. Metabolites 2024; 14:467. [PMID: 39330474 PMCID: PMC11434120 DOI: 10.3390/metabo14090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Lactobacillus reuteri (L. reuteri) is widely recognized as a probiotic that produces prebiotics. However, studies on bioactive peptides or amino acid (AA) derivatives produced by L. reuteri are still lacking, whereas many bioactive peptides and AA derivatives have been found in other Lactobacillus species. In addition, rapid identification of peptides is challenged by the large amount of data and is limited by the coverage of protein databases. In this study, we performed a rapid and thorough profile of peptides in L. reuteri incorporating Global Natural Products Social Molecular Networking (GNPS) platform database searching, de novo sequencing, and deep mining, based on feature-based molecular networking (FBMN). According to FBMN, it was found that peptides containing identical or similar AA compositions were grouped into the same clusters, especially cyclic dipeptides (CDPs). Therefore, the grouping characteristics of clusters, differences in precursor ions, and characteristic fragment ions were utilized for the mining of deeply unknown compounds. Through this strategy, a total of 192 compounds, including 184 peptides, were rapidly identified. Among them, 53 CDPs, including four novel ones, were found for the first time in L. reuteri. Then, one of the novel CDPs, cyclo(5-OMe-Glu-4-OH-Pro), was isolated and characterized, which was consistent with the identification results. Moreover, some of the identified peptides exhibited considerable interactions with seven anti-inflammatory-related target proteins through molecular docking. According to the binding energies of peptides with different AA consistencies, it was considered that the existence of unnatural AAs in CDPs might contribute to their anti-inflammatory activity. These results provide a valuable strategy for the rapid identification of peptides, including CDPs. This study also reveals the substance basis for the potential anti-inflammatory effects exerted by L. reuteri.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.Z.); (S.G.); (L.Z.); (J.Z.)
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China; (Y.Z.); (S.G.); (L.Z.); (J.Z.)
| |
Collapse
|
8
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Alnasser SM, Bendaif H, Aalilou Y, Qasem A, Attar A, Bouyahya A, Ardianto C, Ming LC, Goh KW, Fikri-Benbrahim K, Mrabti HN. Exploring the antidiabetic and anti-inflammatory potential of Lavandula officinalis essential oil: In vitro and in silico insights. Heliyon 2024; 10:e34135. [PMID: 39170293 PMCID: PMC11336354 DOI: 10.1016/j.heliyon.2024.e34135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Medicinal plants have been utilized for centuries in traditional medicine systems worldwide, providing a rich source of bioactive compounds with diverse biological activities. Lavandula officinalis, a member of the Lamiaceae family, has been recognized for its multifaceted pharmacological activities. In this current investigation, our primary objective was to scrutinize the in vitro inhibitory potential of L. officinalis essential oil (LOEO) against alpha-amylase and alpha-glucosidase, with the aim of understanding its antidiabetic effects. Additionally, the assay encompassed tyrosinase and lipoxygenase (LOX) to assess its anti-inflammatory attributes. Unraveling the underlying molecular mechanisms of these activities prompted an in-silico study. The purpose was to establish correlations between in-vitro observations and computational insights derived from molecular docking, which forecasts the interaction of LOEO molecules with their respective targets, alongside ADMET prediction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis allow to identify eighteen compounds, with the dominance of L-camphor (43.12 %), 1,8-cineole (34.27 %) and borneol (8.60 %) in LOEO. The antidiabetic evaluation revealed that LOEO exhibited noteworthy inhibitory activity against both α-amylase and α-glucosidase, displaying IC50 values of 3.14 ± 0.05 mg/mL and 2.07 ± 0.03 mg/mL, respectively. The subsequent in-silico study highlighted the particularly strong binding affinity of (E)-Farnesene, with a binding score of -7.4 kcal/mol for alpha-glucosidase, while Germacrene D displayed the highest affinity among the ligands (-7.9 kcal/mol) for the alpha-amylase target. Furthermore, the investigation into in vitro anti-inflammatory activity unveiled LOEO efficacy against tyrosinase (IC50 = 42.74 μg/mL) and LOX (IC50 = 11.58 ± 0.07 μg/mL). The in-silico analysis echoed these findings, indicating α-Cadinene's notable binding affinity of 6 kcal/mol with tyrosinase and α-Cedrene's binding score of -6.5 kcal/mol for LOX. Impressively, for both COX-1 and COX-2, α-Cedrene exhibited significant binding affinities of -7.6 and -7.3 kcal/mol, respectively. The convergence between the in vitro and in silico outcomes underscores the potential of LOEO and its constituent compounds as potent inhibitors targeting both diabetes and the inflammatory processes.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Hajar Bendaif
- Laboratoire des Ressources Naturelles et Environnement, Faculté Polydisciplinaire de Taza, Morocco
| | - Youssra Aalilou
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, BE1410, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez, 30000, Morocco
| |
Collapse
|
9
|
Hong L, Fan L, Wu J, Yang J, Hou D, Yao Y, Zhou S. Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients 2024; 16:1845. [PMID: 38931200 PMCID: PMC11206746 DOI: 10.3390/nu16121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pulses, as an important part of the human diet, can act as a source of high-quality plant proteins. Pulse proteins and their hydrolysates have shown promising results in alleviating metabolic syndrome and modulating the gut microbiome. Their bioactivities have become a focus of research, with many new findings added in recent studies. This paper comprehensively reviews the anti-hypertension, anti-hyperglycemia, anti-dyslipidemia and anti-obesity bioactivities of pulse proteins and their hydrolysates in recent in vitro and in vivo studies, which show great potential for the prevention and treatment of metabolic syndrome. In addition, pulse proteins and their hydrolysates can regulate the gut microbiome, which in turn can have a positive impact on the treatment of metabolic syndrome. Furthermore, the beneficial effects of some pulse proteins and their hydrolysates on metabolic syndrome have been supported by clinical studies. This review might provide a reference for the application of pulse proteins and their hydrolysates in functional foods or nutritional supplements for people with metabolic syndrome.
Collapse
Affiliation(s)
- Lingyu Hong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Linlin Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Junchao Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Jiaqi Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| |
Collapse
|
10
|
Mudgil P, Al Dhaheri MKO, Alsubousi MSM, Khan H, Redha AA, Yap PG, Gan CY, Maqsood S. Molecular docking studies on α-amylase inhibitory peptides from milk of different farm animals. J Dairy Sci 2024; 107:2633-2652. [PMID: 38101739 DOI: 10.3168/jds.2023-24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Milk-derived peptides have emerged as a popular mean to manage various lifestyle disorders such as diabetes. Fermentation is being explored as one of the faster and efficient way of producing peptides with antidiabetic potential. Therefore, in this study, an attempt was made to comparatively investigate the pancreatic α-amylase (PAA) inhibitory properties of peptides derived from milk of different farm animals through probiotic fermentation. Peptide's identification was carried out using liquid chromatography-quadrupole time-of-flight mass spectrometry and inhibition mechanisms were characterized by molecular docking. Results obtained showed a PAA-IC50 value (the amount of protein equivalent needed to inhibit 50% of enzymes) between 2.39 and 36.1 µg protein equivalent for different fermented samples. Overall, Pediococcus pentosaceus MF000957-derived fermented milk from all animals indicated higher PAA inhibition than other probiotic derived fermented milk (PAA-IC50 values of 6.01, 3.53, 15.6, and 10.8 µg protein equivalent for bovine, camel, goat, and sheep fermented milk). Further, molecular docking analysis indicated that camel milk-derived peptide IMEQQQTEDEQQDK and goat milk-derived peptide DQHQKAMKPWTQPK were the most potent PAA inhibitory peptides. Overall, the study concluded that fermentation derived peptides may prove useful in for managing diabetes via inhibition of carbohydrate digesting enzyme PAA.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mouza Khamis Obaid Al Dhaheri
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Maitha Saif Mohammed Alsubousi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hina Khan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
11
|
Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023; 15:4267. [PMID: 37836551 PMCID: PMC10574726 DOI: 10.3390/nu15194267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
With the change in people's lifestyle, diabetes has emerged as a chronic disease that poses a serious threat to human health, alongside tumor, cardiovascular, and cerebrovascular diseases. α-glucosidase inhibitors, which are oral drugs, have proven effective in preventing and managing this disease. Studies have suggested that bioactive peptides could serve as a potential source of α-glucosidase inhibitors. These peptides possess certain hypoglycemic activity and can effectively regulate postprandial blood glucose levels by inhibiting α-glucosidase activity, thus intervening and regulating diabetes. This paper provides a systematic summary of the sources, isolation, purification, bioavailability, and possible mechanisms of α-glucosidase inhibitory peptides. The sources of the α-glucosidase inhibitory peptides were introduced with emphasis on animals, plants, and microorganisms. This paper also points out the problems in the research process of α-glucosidase inhibitory peptide, with a view to providing certain theoretical support for the further study of this peptide.
Collapse
Affiliation(s)
- Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya School of Medicine, Central South University, Changsha 410008, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
12
|
Zhang Y, Chen Y, Liu X, Wang W, Wang J, Li X, Sun S. Preparation and Identification of Peptides with α-Glucosidase Inhibitory Activity from Shiitake Mushroom ( Lentinus edodes) Protein. Foods 2023; 12:2534. [PMID: 37444272 DOI: 10.3390/foods12132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The shiitake mushroom is the most commonly cultivated edible mushroom in the world, and is rich in protein. This study aims to obtain the peptides with α-glucosidase inhibition activity from shiitake mushroom protein hydrolysate. The conditions of enzymatic hydrolysis of shiitake mushroom protein were optimized by response surface test. The results showed that the optimal conditions were as follows: the E/S was 3390 U/g, the solid-liquid ratio was 1:20, the hydrolysis temperature and time were 46 °C and 3.4 h, respectively, and the pH was 7. The active peptides were separated by gel filtration and identified by LC-MS/MS analysis and virtual screening. The results indicated that fourteen peptides were identified by LC-MS/MS. Among them, four new peptides (EGEPKLP, KDDLRSP, TPELKL, and LDYGKL) with the higher docking score were selected and chemically synthesized to verify their inhibition activity. The IC50 values of EGEPKLP, KDDLRSP, TPELKL, and LDYGKL for α-glucosidase inhibition activity ranged from 452 ± 36 μmol/L to 696 ± 39 μmol/L. The molecular docking results showed that the hydrogen bond and arene-cation bond were the two major interactions between four peptides and 2QMJ. The hydrogen bonds were crucial to the inhibition activity of α-glucosidase. The results indicate the potential of using the peptides from shiitake mushroom protein as functional food with α-glucosidase inhibition activity.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou 310021, China
| | - Yu Chen
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xinyang Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Wine, North West Agriculture and Forestry University, Xi'an 712199, China
| | - Wei Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China
| | - Junhong Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou 310021, China
| | - Suling Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
13
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
14
|
Estivi L, Fusi D, Brandolini A, Hidalgo A. Effect of Debittering with Different Solvents and Ultrasound on Carotenoids, Tocopherols, and Phenolics of Lupinus albus Seeds. Antioxidants (Basel) 2022; 11:antiox11122481. [PMID: 36552688 PMCID: PMC9774723 DOI: 10.3390/antiox11122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lupin seeds represent a rich nutritional source of bioactive compounds, including antioxidant molecules such as carotenoids, tocopherols, and phenolics. However, before consumption, the lupin seeds must be debittered in order to remove their bitter and toxic alkaloids. This study analyzed the impact on the bioactive compounds of Lupinus albus seeds of a recent time- and water-saving debittering method, which employs alternative washing solutions (0.5% or 1% of either NaCl or citric acid), with or without the assistance of ultrasound. The results were compared with those of two control methods using water or a NaCl solution. The sonication, when it was significant, led to a large loss of bioactive compounds, which was most likely due to its extraction capability. The seeds that were debittered without ultrasound presented high concentrations of tocopherols (172.8-241.3 mg/kg DM), carotenoids (10.9-25.1 mg/kg DM), and soluble-free (106.9-361.1 mg/kg DM), soluble-conjugated (93.9-118.9 mg/kg DM), and insoluble-bound (59.2-156.7 mg/kg DM) phenolics. The soluble-free fraction showed the greatest loss after a prolonged treatment. Overall, debittering with citric acid or NaCl preserved the highest concentration of antioxidant compounds by shortening the treatment time, thus preventing extensive leaching.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.); Tel.: +39-02-50319189 (A.H.)
| | - Davide Fusi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Brandolini
- Research Centre for Animal Production and Aquaculture (CREA-ZA), Council for Agricultural Research and Economics, Via Piacenza 29, 26900 Lodi, Italy
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.); Tel.: +39-02-50319189 (A.H.)
| |
Collapse
|