1
|
Roobab U, Aadil RM, Kurup SS, Maqsood S. Comparative evaluation of ultrasound-assisted extraction with other green extraction methods for sustainable recycling and processing of date palm bioresources and by-products: A review of recent research. ULTRASONICS SONOCHEMISTRY 2025; 114:107252. [PMID: 39985822 PMCID: PMC11904522 DOI: 10.1016/j.ultsonch.2025.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The global food waste crisis has significantly contributed to climate change, water pollution, and land degradation. Date palm waste, including seeds, fronds, and fruit pulp residues, represents a valuable source of bioactive compounds with potential applications in food, pharmaceutical, and cosmetic industries. This study presents a comparative evaluation of ultrasound-assisted extraction and other novel extraction techniques, such as pressure-based extraction, pulsed electric fields, microwaves, and natural deep eutectic solvents, for recovering bioactive compounds from date palm waste. These methods were assessed for their efficiency and sustainability in extracting antioxidants and phenolic compounds, and other bioactives while minimizing the use of harmful solvents and high temperatures. Critical factors, such as extraction time, solvent type, temperature, and pressure were crucial indicators to achieve higher extraction efficiencies with lower environmental impacts compared to traditional methods. Additionally, combining these techniques may further optimize the extraction process. This study contributes to the development of sustainable strategies for valorizing date palm byproducts and promoting a circular economy in the food industry. By developing sustainable extraction methods that minimize environmental impacts, this research directly supports the United Nations' Sustainable Development Goals, particularly SDG 12 (Responsible Consumption and Production) and SDG 13 (Climate Action).
Collapse
Affiliation(s)
- Ume Roobab
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shyam Sreedhara Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Gutiérrez-Paz C, Rodríguez-Moreno MC, Hernández-Gómez MS, Fernández-Trujillo JP. The Cashew Pseudofruit ( Anacardium occidentale): Composition, Processing Effects on Bioactive Compounds and Potential Benefits for Human Health. Foods 2024; 13:2357. [PMID: 39123548 PMCID: PMC11311269 DOI: 10.3390/foods13152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The fruit of the cashew, a tree belonging to the family Anacardiaceae, is composed of approximately 10% nut (cashew) and 90% stalk or pseudofruit, usually discarded in situ and fermented in the soil. This review identifies cashew pseudofruit's physicochemical characteristics and bioactive compounds and their possible relationship to health benefits. Different processing techniques have been used to preserve the pseudofruit, and the effect of these techniques on its nutrients is also reviewed in this work. Cashew is a highly perishable product with moisture content above 80% w/w and 10% w/w sugars. It also has a high content of polyphenols, flavonoids, and tannins and high antioxidant properties that are best preserved by nonthermal processing techniques. The pseudofruit presents the high inhibitory activity of α-amylase and lipase enzymes, has anti-inflammatory and body weight reduction properties and healing activity, and controls glucose levels, insulinemia, and insulin resistance. For all these reasons, cashews have been promoted as a propitious food/ingredient for preventive and therapeutic management of different pathologies such as diabetes, dyslipidemia, obesity, hypertension, fatty liver, and acne. Moreover, it has positive effects on the intestinal microflora, among others. This pseudofruit has a high potential for the development of functional foods.
Collapse
Affiliation(s)
- Carina Gutiérrez-Paz
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Carrera 30 Calle 45, Bogotá 111321, Colombia; (C.G.-P.); (M.-S.H.-G.)
- Centro de Pensamiento Turístico de Colombia, Escuela de Turismo y Gastronomía, Fundación Universitaria Cafam, Ak 68 #90-88, Bogotá 111211, Colombia;
| | - María-Constanza Rodríguez-Moreno
- Centro de Pensamiento Turístico de Colombia, Escuela de Turismo y Gastronomía, Fundación Universitaria Cafam, Ak 68 #90-88, Bogotá 111211, Colombia;
| | - María-Soledad Hernández-Gómez
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Carrera 30 Calle 45, Bogotá 111321, Colombia; (C.G.-P.); (M.-S.H.-G.)
| | - Juan Pablo Fernández-Trujillo
- Department of Agronomical Engineering, Technical University of Cartagena, Paseo Alfonso XIII, 48, ETSIA, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
3
|
Olaoye S, Oladele S, Badmus T, Filani I, Jaiyeoba F, Sedara A, Olalusi A. Thermaland non-thermal pasteurization of citrus fruits: A bibliometrics analysis. Heliyon 2024; 10:e30905. [PMID: 38803896 PMCID: PMC11128875 DOI: 10.1016/j.heliyon.2024.e30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Thermal and non-thermal pasteurization (TNP) process of food is not new to food technology, disparities in the merits and demerits of the two pasteurizations necessitate their uses concurrently. Bibliometric analysis of the subject matter is expedient to analyses of database for published publications. Especially to provide times, state-of-the art innovations and prospects of the techniques. In addressing these lacunas, we utilized VOSview visualization to establish connections among crucial elements within a dataset of 495 research publications gathered from Web of Science. This approach facilitated the identification of links and collaboration networks among key factors in the research landscape. Analysis of publications indicate thermal pasteurization is an age long practices, while non-thermal pasteurization is gaining more acceptance. This study exposed ranking differences in scholar's collaboration, citations of scholars, impactful institution and most published countries. United State, China, United Kingdom have largest publications of research in TNP among the top 10 countries. Coupling network and Sankey illustration showed new area of research where new researchers and scholars can begin new phase of findings.
Collapse
Affiliation(s)
- S.A. Olaoye
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - S.O. Oladele
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - T.A. Badmus
- Department of Agricultural and Bioresources Engineering, University of Calabar, Nigeria
| | - I. Filani
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - F.K. Jaiyeoba
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.M. Sedara
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.P. Olalusi
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| |
Collapse
|
4
|
Martínez-Zamora L, Hashemi S, Cano-Lamadrid M, Bueso MC, Aguayo E, Kessler M, Artés-Hernández F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024; 13:1441. [PMID: 38790742 PMCID: PMC11120188 DOI: 10.3390/foods13101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this work was to gain insight into the operating conditions that affect the efficiency of ultrasound-assisted extraction (UAE) parameters to achieve the best recovery of bioactive compounds from broccoli leaf and floret byproducts. Therefore, total phenolic content (TPC) and the main sulfur bioactive compounds (sulforaphane (SFN) and glucosinolates (GLSs)) were assayed. Distilled water was used as solvent. For each byproduct type, solid/liquid ratio (1:25 and 2:25 g/mL), temperature (25, 40, and 55 °C), and extraction time (2.5, 5, 7.5, 10, 15, and 20 min) were the studied variables to optimize the UAE process by using a kinetic and a cubic regression model. TPC was 12.5-fold higher in broccoli leaves than in florets, while SFN was from 2.5- to 4.5-fold higher in florets regarding the leaf's extracts obtained from the same plants, their precursors (GLS) being in similar amounts for both plant tissues. The most efficient extraction conditions were at 25 °C, ratio 2:25, and during 15 or 20 min according to the target phytochemical to extract. In conclusion, the type of plant tissue and used ratio significantly influenced the extraction of bioactive compounds, the most efficient UAE parameters being those with lower energy consumption.
Collapse
Affiliation(s)
- Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - María Carmen Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - Mathieu Kessler
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| |
Collapse
|
5
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
6
|
Bebek Markovinović A, Stulić V, Putnik P, Bekavac N, Pavlić B, Milošević S, Velebit B, Herceg Z, Bursać Kovačević D. High-Power Ultrasound (HPU) and Pulsed Electric Field (PEF) in the Hurdle Concept for the Preservation of Antioxidant Bioactive Compounds in Strawberry Juice-A Chemometric Evaluation-Part II. Foods 2024; 13:537. [PMID: 38397513 PMCID: PMC10888059 DOI: 10.3390/foods13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In this work, the influence of high-power ultrasound (HPU) followed by pulsed electric field (PEF) in the hurdle concept (HPU + PEF) on the content of biologically active compounds (BACs) and antioxidant activity in strawberry juices stored at 4 °C/7 days was investigated. The HPU was performed with an amplitude of 25% and pulse of 50% during 2.5, 5.0 and 7.5 min, while the PEF was performed with an electric field strength of 30 kV cm-1 and frequency of 100 Hz during 1.5, 3 and 4.5 min. The results obtained indicate that the synergy of the mechanisms of action for technologies in the hurdle concept plays a critical role in the stability of BACs and antioxidant activity. Juices treated with HPU + PEF hurdle technology and kept at 4 °C for 7 days showed a statistically significant decrease in all BACs, antioxidant capacity and pH. Shorter HPU + PEF treatment times favored the preservation of BACs in juices. Regarding total phenolic compounds, flavonols, condensed tannins and antioxidant capacity, optimization of hurdle parameters showed that a shorter HPU treatment time of 2.5 min provided the best yield of these compounds. In summary, by optimizing and adjusting the parameters of the HPU/PEF technology, it is possible to produce functional strawberry juice.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (S.M.)
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (S.M.)
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia;
| | - Zoran Herceg
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.B.M.); (V.S.); (N.B.); (Z.H.)
| |
Collapse
|
7
|
Kim Y, Kim YJ, Shin Y. Comparative Analysis of Polyphenol Content and Antioxidant Activity of Different Parts of Five Onion Cultivars Harvested in Korea. Antioxidants (Basel) 2024; 13:197. [PMID: 38397795 PMCID: PMC10886331 DOI: 10.3390/antiox13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Onions are typically consumed as the bulb, but the peel and root are discarded as by-products during processing. This study investigated the potential functional use of these by-products by analyzing the polyphenols, antioxidant compounds, and antioxidant activity contained in onions. In this study, the bulb, peel, and root of five onion cultivars ('Tank', 'Bomul', 'Gujji' 'Cobra', and 'Hongbanjang') harvested in Korea were investigated. Caffeic acid and quercetin were most abundant in the peel, whereas methyl gallate was the predominant polyphenol in the bulb. Both DPPH and ABTS radical scavenging activity were higher in onion peel and root than in the bulb. These findings suggest that onion peel and roots, which are often discarded, have abundant antioxidant substances and excellent antioxidant activity. This study provides basic data for the future use of onion peel and roots as functional ingredients with high added value.
Collapse
Affiliation(s)
- Yena Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea;
| | - Young-Jun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngjae Shin
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea;
| |
Collapse
|
8
|
Cano-Lamadrid M, Martínez-Zamora L, Mozafari L, Bueso MC, Kessler M, Artés-Hernández F. Response Surface Methodology to Optimize the Extraction of Carotenoids from Horticultural By-Products-A Systematic Review. Foods 2023; 12:4456. [PMID: 38137260 PMCID: PMC10742715 DOI: 10.3390/foods12244456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Response Surface Methodology (RSM) is a widely used mathematical tool for process optimization, setting their main factorial variables. The current research analyzes and summarizes the current knowledge about the RSM in the extraction of carotenoids from fruit and vegetable by-products, following a systematic review protocol (Prisma 2020 Statement). After an identification of manuscripts in Web of Science (September 2023) using inclusion search terms ("carotenoids", "extraction", "response-surface methodology", "ultrasound", "microwave" and "enzyme"), they were screened by titles and abstracts. Finally, 29 manuscripts were selected according to the PRISMA methodology (an evidence-based minimum set of items for reporting in systematic reviews), then, 16 questions related to the quality criteria developed by authors were applied. All studies were classified as having an acceptable level of quality criteria (≤50% "yes answers"), with four of them reaching a moderate level (>50 to ≤70% "yes answers"). No studies were cataloged as complete (>70% "yes answers"). Most studies are mainly focused on ultrasound-assisted extraction, which has been widely developed compared to microwave or enzymatic-assisted extractions. Most evidence shows that it is important to provide information when RSM is applied, such as the rationale for selecting a particular design, the specification of input variables and their potential levels, a discussion on the statistical model's validity, and an explanation of the optimization procedure. In addition, the principles of open science, specifically data availability, should be included in future scientific manuscripts related to RSM and revalorization.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (L.M.-Z.); (L.M.)
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (L.M.-Z.); (L.M.)
- Department of Food Technology, Nutrition and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Laleh Mozafari
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (L.M.-Z.); (L.M.)
| | - María Carmen Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Mathieu Kessler
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (L.M.-Z.); (L.M.)
| |
Collapse
|
9
|
Pérez P, Hashemi S, Cano-Lamadrid M, Martínez-Zamora L, Gómez PA, Artés-Hernández F. Effect of Ultrasound and High Hydrostatic Pressure Processing on Quality and Bioactive Compounds during the Shelf Life of a Broccoli and Carrot By-Products Beverage. Foods 2023; 12:3808. [PMID: 37893701 PMCID: PMC10606312 DOI: 10.3390/foods12203808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Vegetable beverages are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant by-products to increase functional quality. The main objective was to develop a new veggie beverage from broccoli stalks and carrot by-products seasoned with natural antioxidants and antimicrobial ingredients. Pasteurization, Ultrasound (US), and High Hydrostatic Pressure (HHP) and their combinations were used as processing treatments, while no treatment was used as a control (CTRL). A shelf-life study of 28 days at 4 °C was assayed. Microbial load, antioxidant capacity, and bioactive compounds were periodically measured. Non-thermal treatments have successfully preserved antioxidants (~6 mg/L ΣCarotenoids) and sulfur compounds (~1.25 g/L ΣGlucosinolates and ~5.5 mg/L sulforaphane) throughout the refrigerated storage, with a longer shelf life compared to a pasteurized beverage. Total vial count was reduced by 1.5-2 log CFU/mL at day 0 and by 6 log CFU/mL at the end of the storage in HHP treatments. Thus, the product developed in this study could help increase the daily intake of glucosinolates and carotenoids. These beverages can be a good strategy to revitalize broccoli and carrot by-products with high nutritional potential while maintaining a pleasant sensory perception for the final consumer.
Collapse
Affiliation(s)
- Pablo Pérez
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Laboratorio de Investigación en Tecnología de Alimentos, Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Facultad de Ingeniería, Departamento de Ingeniería Química, Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Universidad de Buenos Aires, C.A.B.A, Buenos Aires C1428EGA, Argentina
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Region of Murcia, Spain
| | - Perla A. Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| |
Collapse
|
10
|
Martínez-Zamora L, Cano-Lamadrid M, Artés-Hernández F, Castillejo N. Flavonoid Extracts from Lemon By-Products as a Functional Ingredient for New Foods: A Systematic Review. Foods 2023; 12:3687. [PMID: 37835340 PMCID: PMC10573073 DOI: 10.3390/foods12193687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
This systematic review seeks to highlight, from the published literature about the extraction and application of lemon by-products rich in flavonoids, which works use environmentally friendly technologies and solvents and which ones propose a potentially functional food application, according to the Sustainable Development Goals (SDGs). WoS and SCOPUS were used as scientific databases for searching the documents, which were evaluated through 10 quality questions according to their adherence to our purpose (5 questions evaluating papers devoted to lemon flavonoid extraction and 5 concerning the application of such by-products in new foods). Each question was evaluated as "Yes", "No", or "does Not refer", according to its adherence to our aim. The analysis reported 39 manuscripts related to lemon flavonoid extraction; 89% of them used green technologies and solvents. On the other hand, 18 manuscripts were related to the incorporation of lemon by-products into new foods, of which 41% adhered to our purpose and only 35% evaluated the functionality of such incorporation. Conclusively, although the bibliography is extensive, there are still some gaps for further investigation concerning the extraction and application of lemon by-products to reduce food losses in an environmentally friendly way and the possible development of new functional foods, which must be performed following the SDGs.
Collapse
Affiliation(s)
- Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (F.A.-H.)
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (F.A.-H.)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (F.A.-H.)
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (M.C.-L.); (F.A.-H.)
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| |
Collapse
|
11
|
Saarniit K, Lang H, Kuldjärv R, Laaksonen O, Rosenvald S. The Stability of Phenolic Compounds in Fruit, Berry, and Vegetable Purees Based on Accelerated Shelf-Life Testing Methodology. Foods 2023; 12:foods12091777. [PMID: 37174315 PMCID: PMC10178123 DOI: 10.3390/foods12091777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Evaluating the stability of polyphenols in fruit, berry, and vegetable purees helps to assess the quality of these products during storage. This study aimed to (1) monitor the stability of total phenolic content (TPC) in four-grain puree with banana and blueberry (FGBB), mango-carrot-sea buckthorn puree (MCB), and fruit and yogurt puree with biscuit (FYB); (2) study the effect of aluminum-layered vs. aluminum-free packaging on the changes in TPC; and (3) assess the suitability of accelerated shelf-life testing (ASLT) methodology to evaluate the stability of polyphenols. The samples were stored at 23 °C for 182, 274, 365, and 427 days. The corresponding time points during ASLT at 40 °C were 28, 42, 56, and 66 days, calculated using Q10 = 3. The TPC was determined with Folin-Ciocalteu method. The results revealed that the biggest decrease in TPC took place with high-pH FGBB, which contained fewer ingredients with bioactive compounds. Minor changes were seen in FYB and MCB, which had lower pH values, and contained a larger amount of ingredients that include polyphenols. In addition, the choice of packaging material did not affect the TPC decrease in each puree. Finally, it was concluded that the ASLT methodology is suitable for studying the TPC changes in such purees, but the corresponding Q10 factors may vary and should be determined based on the chemical profile and ingredient list of the product.
Collapse
Affiliation(s)
- Kärt Saarniit
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Hanna Lang
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| | - Rain Kuldjärv
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Sirli Rosenvald
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia
| |
Collapse
|
12
|
Ebrahimi P, Shokramraji Z, Tavakkoli S, Mihaylova D, Lante A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1533. [PMID: 37050159 PMCID: PMC10096697 DOI: 10.3390/plants12071533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chlorophylls are a group of naturally occurring pigments that are responsible for the green color in plants. This pigment group could have numerous health benefits due to its high antioxidant activity, including anti-inflammatory, anti-cancer, and anti-obesity properties. Many food by-products contain a high level of chlorophyll content. These by-products are discarded and considered environmental pollutants if not used as a source of bioactive compounds. The recovery of chlorophylls from food by-products is an interesting approach for increasing the sustainability of food production. This paper provides insight into the properties of chlorophylls and the effect of different treatments on their stability, and then reviews the latest research on the extraction of chlorophylls from a sustainable perspective.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Zahra Shokramraji
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Setareh Tavakkoli
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria;
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| |
Collapse
|
13
|
Abdulstar AR, Altemimi AB, Al-Hilphy AR. Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. Foods 2023; 12:foods12071459. [PMID: 37048278 PMCID: PMC10094072 DOI: 10.3390/foods12071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Thermosonication (TS) has been identified as a smart remedy for the shortcomings of heat treatment, which typically requires prolonged exposure to high temperatures. This technique combines moderate heat treatment with acoustic energy to eliminate harmful microorganisms and enzymes in food products. Unlike conventional heat treatment, thermosonication utilizes short holding times, allowing for the preservation of food products’ phytochemical compounds and sensory characteristics. The benefits and challenges of this emerging technology, such as equipment cost, limited availability of data, inconsistent results, high energy consumption, and scale-up challenges, have been assessed, and the design process for using ultrasound in combination with mild thermal treatment has been discussed. TS has proven to be a promising technique for eliminating microorganisms and enzymes without compromising the nutritional or sensory quality of food products. Utilizing natural antimicrobial agents such as ascorbic acid, Nisin, and ε-polylysine (ε-PL) in combination with thermosonication is a promising approach to enhancing the safety and shelf life of food products. Further research is required to enhance the utilization of natural antimicrobial agents and to acquire a more comprehensive comprehension of their impact on the safety and quality of food products.
Collapse
|
14
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
15
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
16
|
Cano-Lamadrid M, Artés-Hernández F. Thermal and Non-Thermal Treatments to Preserve and Encourage Bioactive Compounds in Fruit- and Vegetable-Based Products. Foods 2022; 11:3400. [PMID: 36360013 PMCID: PMC9656200 DOI: 10.3390/foods11213400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
Fruit- and vegetable-based products (F&Vs) have been conventionally processed using thermal techniques such as pasteurization, scalding, or/and drying, ensuring microbial safety and/or enzyme deactivation [...].
Collapse
Affiliation(s)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|