1
|
Eslami-Farsani R, Farhadian S, Shareghi B, Asgharzadeh S, Behjati Moghaddam M, Momeni L, Assaran-Darban R, Evini M. Evaluation of the structure and stability of myoglobin after interaction with ribose: spectroscopic and molecular simulation approach. J Biomol Struct Dyn 2025:1-12. [PMID: 40314693 DOI: 10.1080/07391102.2025.2499223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/24/2024] [Indexed: 05/03/2025]
Abstract
Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (Tm) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | | | - Lida Momeni
- Department of Biology, Faculty of Science, University of Payam Noor, Tehran, Iran
| | - Reza Assaran-Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Hamad A, Singh P. Boosting nutritional value: the role of iron fortification in meat and meat products. Biometals 2025; 38:337-355. [PMID: 39836316 PMCID: PMC11965238 DOI: 10.1007/s10534-024-00659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.
Collapse
Affiliation(s)
- Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Banha, 13736, Egypt.
| | - Pallavi Singh
- Faculty of Public Health, Poornima University, Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Zhang ZH, Chen J, Huang X, Aadil RM, Li B, Gao X. Natural pigments in the food industry: Enhancing stability, nutritional benefits, and gut microbiome health. Food Chem 2024; 460:140514. [PMID: 39047471 DOI: 10.1016/j.foodchem.2024.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jialin Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Anorue EC, Joshua PE. Evaluation of anti-sickling effects of two varieties of Cajanus cajan (L.) Huth on sickle cell beta thalassemia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118280. [PMID: 38714239 DOI: 10.1016/j.jep.2024.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Globally, the prevalence of sickle cell disease is on the rise, with developing countries experiencing particularly alarming mortality rate compared to developed nations. The World Health Organization (WHO) and United Nations (UN) have acknowledged sickle cell disease as a significant global public health concern. Unfortunately, a cure for this condition is yet to be discovered, and existing allopathic treatments, while offering relief, come with serious side effects. In recent times, there has been a growing interest in exploring the potential of medicinal plants for treating sickle cell disease due to their content of secondary metabolites that may impact the disease's mechanisms. Cajanus cajan, a crucial grain legume in rain-fed agriculture in semi-arid tropics, has been traditionally used in folk medicine to manage various illnesses and is suggested to possess anti-sickling properties. AIM OF THE STUDY The present study investigated two varieties of C. cajan for their effectiveness in treating sickle cell beta thalassemia, a variant of sickle cell disease. MATERIALS AND METHODS The study was divided into four groups consisting of the untreated group (group 1), group treated with standard drug (group 2), group treated with white C. cajan (group 3) and group treated with brown C. cajan (group 4). The effects of the two variety of C. cajan were measured by polymerization test, reversibility test, osmotic fragility test, deoxygenation and beta globin synthesis test. RESULT The results revealed that both varieties of C. cajan demonstrated a reduction in polymerization rates, reversed sickled red blood cells, increased the oxygen affinity of Hb-S/β, elevated the Fe2+/Fe3+ ratio, and maintained the membrane stability of red blood cells. Notably, the white variety exhibited superior anti-sickling properties compared to the brown variety. CONCLUSION This suggests that this significant leguminous crop could be utilized for the treatment and management of sickling disorders, particularly in low-income countries where conventional treatments may be financially inaccessible to patients.
Collapse
Affiliation(s)
- Eleazar Chukwuemeka Anorue
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria; Department of Chemistry, School of Sciences, Shalom Science and Technology Academy, Enugu State, Nigeria.
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| |
Collapse
|
5
|
Jiang C, Zou D, Jiang X, Han W, Chen K, Ma A, Wei X. Enhancement of Green Production of Heme by Deleting Odor-Related Genes from Bacillus amyloliquefaciens Based on CRISPR/Cas9n. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16412-16422. [PMID: 38982640 DOI: 10.1021/acs.jafc.4c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in Bacillus amyloliquefaciens to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively. Meanwhile, the hemA gene was confirmed to be the key gene for enhanced heme synthesis. Various hemA genes were compared to obtain the best gene dhemA, and the catalysis mechanism was explained by molecular docking simulation. After further expression of dhemA in HZC9nΔGPSU, the heme titer of HZC9nΔGPSU/pHY-dhemA reached 11.31 ± 0.51 mg/L, 1.70-fold higher than that of HZC9n/pHY-dhemA. The knockout of off-odor-related genes reduced the odor substances and enhanced the heme synthesis, which is promising for the green production of high-quality heme.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Xuedeng Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Kang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| |
Collapse
|
6
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Patil U, Nilsuwan K, Buamard N, Zhang B, Benjakul S. Characteristics and molecular properties of crude hemeproteins extracted from Asian seabass gills using an ultrasound-assisted process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2326-2335. [PMID: 37953475 DOI: 10.1002/jsfa.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The development of a safe and effective iron supplement is important for the treatment of iron-deficient anemia. Therefore, the crude hemeprotein extract (CHPE) from Asian seabass gills was extracted without (CON) and with ultrasound (US)-assisted process, followed by freeze-drying. The resulting freeze-dried crude hemeprotein extract (FDCHPE) powders were determined for trace mineral content, color, secondary structure, protein pattern, size distribution, volatile compounds, and amino acid composition. RESULTS The extraction yields of CON-FDCHPE and US-FDCHPE were 6.76% and 13.65%, respectively. Highest heme iron (0.485 mg/mL) and non-heme iron (0.023 mg/mL) contents were found when US at 70% amplitude for 10 min (US 70/10) was applied. Both CON-FDCHPE and US-FDCHPE had no heavy metals, but higher iron content (432.8 mg/kg) was found in US-FDCHPE (P < 0.05). Typical red color was observed in CON-FDCHPE and US-FDCHPE with a*-values of 9.72 and 10.60, respectively. Ultrasonication affected protein structure, in which β-sheet upsurged, whereas random coil, α-helix, and β-turn were reduced. Protein pattern confirmed that both samples had myoglobin as the major protein. US-FDCHPE also showed a higher abundance of volatile compounds, especially propanal, hexanal, heptanal, and so forth, compared to CON-FDCHPE. Amino acid composition of US-FDCHPE was comparable to Food and Agriculture Organization of the United Nations (FAO) values. CONCLUSION Overall, FDCHPE extracted using ultrasonication could be safe and effective for fortification in food products as an iron supplement to alleviate iron-deficient anemia. Additionally, gills as leftovers could be better exploited rather than being disposed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food and Pharmacy, Zhejiang Ocean University, Zhejiang, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI, Monopoli A. Matrix Selection Strategies for MALDI-TOF MS/MS Characterization of Cyclic Tetrapyrroles in Blood and Food Samples. Molecules 2024; 29:868. [PMID: 38398620 PMCID: PMC10891649 DOI: 10.3390/molecules29040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Cyclic tetrapyrrole derivatives such as porphyrins, chlorins, corrins (compounds with a corrin core), and phthalocyanines are a family of molecules containing four pyrrole rings usually coordinating a metal ion (Mg, Cu, Fe, Zn, etc.). Here, we report the characterization of some representative cyclic tetrapyrrole derivatives by MALDI-ToF/ToF MS analyses, including heme b and c, phthalocyanines, and protoporphyrins after proper matrix selection. Both neutral and acidic matrices were evaluated to assess potential demetallation, adduct formation, and fragmentation. While chlorophylls exhibited magnesium demetallation in acidic matrices, cyclic tetrapyrroles with Fe, Zn, Co, Cu, or Ni remained steadfast against demetallation across all conditions. Phthalocyanines and protoporphyrins were also detectable without a matrix using laser desorption ionization (LDI); however, the incorporation of matrices achieved the highest ionization yield, enhanced sensitivity, and negligible fragmentation. Three standard proteins, i.e., myoglobin, hemoglobin, and cytochrome c, were analyzed either intact or enzymatically digested, yielding heme b and heme c ions along with accompanying peptides. Furthermore, we successfully detected and characterized heme b in real samples, including blood, bovine and cod liver, and mussel. As a result, MALDI MS/MS emerged as a powerful tool for straightforward cyclic tetrapyrrole identification, even in highly complex samples. Our work paves the way for a more comprehensive understanding of cyclic tetrapyrroles in biological and industrial settings, including the geochemical field, as these compounds are a source of significant geological and geochemical information in sediments and crude oils.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
- Interdepartmental Research Center (SMART), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
- Interdepartmental Research Center (SMART), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
- Interdepartmental Research Center (SMART), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonio Monopoli
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.B.); (G.V.); (I.L.); (T.R.I.C.)
| |
Collapse
|
9
|
Bao H, Wang Y, Xiong H, Xia Y, Cui Z, Liu L. Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. Int J Mol Sci 2024; 25:727. [PMID: 38255801 PMCID: PMC10815743 DOI: 10.3390/ijms25020727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Iron is a vital trace element that plays an important role in humans and other organisms. It plays an active role in the growth, development, and reproduction of bacteria, such as Bifidobacteria. Iron deficiency or excess can negatively affect bacterial hosts. Studies have reported a major role of iron in the human intestine, which is necessary for maintaining body homeostasis and intestinal barrier function. Organisms can maintain their normal activities and regulate some cancer cells in the body by regulating iron excretion and iron-dependent ferroptosis. In addition, iron can modify the interaction between hosts and microorganisms by altering their growth and virulence or by affecting the immune system of the host. Lactic acid bacteria such as Lactobacillus acidophilus (L. acidophilus), Lactobacillus rhamnosus (L. rhamnosus), and Lactobacillus casei (L. casei) were reported to increase trace elements, protect the host intestinal barrier, mitigate intestinal inflammation, and regulate immune function. This review article focuses on the two aspects of the iron and gut and generally summarizes the mechanistic role of iron ions in intestinal immunity and the remodeling of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| |
Collapse
|
10
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
11
|
Zheng H, Zhao S, Lu Y, Zhang N, Soladoye OP, Zhang Y, Fu Y. Toward the high-efficient utilization of poultry blood: Insights into functionality, bioactivity and functional components. Crit Rev Food Sci Nutr 2023; 64:10069-10088. [PMID: 37366175 DOI: 10.1080/10408398.2023.2220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A large amount of poultry blood is annually generated, and currently underutilized or largely disposed of as waste, resulting in environmental pollution and waste of protein resources. As one of the main by-products during the poultry slaughter process, the produced poultry blood can serve as a promising food ingredient due to its excellent functional properties and abundant source of essential amino acids, bioactive peptides and functional components. This work provides a comprehensive summary of recent research progress in the composition, functional and bioactive properties, as well as the functional components of poultry blood. Furthermore, the main preparation methods of poultry blood-derived peptides and their bioactivities were reviewed. In addition, their potential applications in the food industry were discussed. Overall, poultry blood is characterized by excellent functionalities, including solubility, gelation, foaming, and emulsifying properties. The major preparation methods for poultry blood-derived peptides include enzymatic hydrolysis, ultrasound-assisted enzymatic methods, macroporous adsorbent resins, and subcritical water hydrolysis. Poultry blood-derived peptides exhibit diverse bioactivities. Their metallic off-flavors and bitterness can be improved by exopeptidase treatment, Maillard reaction, and plastein reaction. In addition, poultry blood is also abundant in functional components such as hemoglobin, superoxide dismutase, immunoglobulin, and thrombin.
Collapse
Affiliation(s)
- Hanyuan Zheng
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Shulei Zhao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|