1
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
2
|
Derrar S, Lo Turco V, Albergamo A, Sgrò B, Ayad MA, Litrenta F, Saim MS, Potortì AG, Aggad H, Rando R, Di Bella G. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024; 13:1413. [PMID: 38731784 PMCID: PMC11083514 DOI: 10.3390/foods13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Honey is a natural product extensively consumed in the world for its nutritional and healthy properties. However, residues of pesticides and environmental contaminants can compromise its quality. For this reason, the physicochemical parameters, and the organic contamination of monofloral and multifloral honey from three regions of Algeria (Tiaret, Laghouat, and Tindouf) were monitored to evaluate the quality of the honey and its safety for consumers. In general, the results obtained from the physicochemical analyses were in line with the EU standards. In terms of contamination, pesticides authorised and used in Algerian agriculture (metalaxyl-M and cyromazine), as well as a banned pesticide (carbaryl), were found in almost all the samples. However, only the concentration of cyromazine was higher than the relative EU maximum residue levels. PCB 180, PCB 189, anthracene, fluorene, and phenanthrene were mainly detected. All the honey shows traces of DiBP, DBP, DEHP, and DEHT, but no traces of bisphenols were found. Moreover, according to the dietary exposure assessment, a small amount of Algerian honey can be safely consumed. Overall, the data from this study should motivate the Algerian government to enhance their monitoring activities in beekeeping and to find solutions for implementing more sustainable agricultural practices harmonising with international legislation.
Collapse
Affiliation(s)
- Sofiane Derrar
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Benedetta Sgrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Mohamed Amine Ayad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Federica Litrenta
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Mohamed Said Saim
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Hebib Aggad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| |
Collapse
|
3
|
Ghahremani MH, Ghazi-Khansari M, Farsi Z, Yazdanfar N, Jahanbakhsh M, Sadighara P. Bisphenol A in dairy products, amount, potential risks, and the various analytical methods, a systematic review. Food Chem X 2024; 21:101142. [PMID: 38304050 PMCID: PMC10831155 DOI: 10.1016/j.fochx.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
This systematic study deals with the amount of bisphenol A (BPA) in milk and dairy products, its analytical methods, and risk assessment. Milk is one of the drinks that has a high consumption. Bisphenol A can be present both in raw milk and its amount undergoes changes during the pasteurization process. This review was conducted by searching for the keywords Bisphenol A, BPA milk, dairy product, cheese, cream, butter, yogurt, measurement, detection, and analysis in different databases. The search was done in three databases, Scopus, PubMed and Science Direct. The largest number of studies on the determination of bisphenol A belonged to Asian and European countries. The amount of bisphenol A in milks was observed in the range from ND to 640 ng/mL. Furthermore, the amount of BPA in the tested cheese samples was observed in the ND range up to 6.1 ng/g and in the yogurt samples in the ND range up to 4.4 ng/g. The most used analytical method was based on liquid chromatography. The most used solvent for extraction was methanol or acetonitrile. HQ (Hazard Quotient) was also calculated in some studies. There was no risk in terms of milk consumption due to BPA contamination in extracted data.
Collapse
Affiliation(s)
- Mohammad-Hossein Ghahremani
- Department of Toxicology & Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Farsi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Yazdanfar
- Iranian Institute of R&D in Chemical Industries (IRDCI) (ACECR), Tehran, Iran
| | - Mahadi Jahanbakhsh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Potortì AG, Lopreiato V, Nava V, Litrenta F, Lo Turco V, Santini A, Liotta L, Di Bella G. The use of olive cake in the diet of dairy cows improves the mineral elements of Provola cheese. Food Chem 2024; 436:137713. [PMID: 37857194 DOI: 10.1016/j.foodchem.2023.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Mineral elements (Ca, Na, K, Mg, Zn, Ti, Sr, Fe, Ni, Ba, Cr, Mn, Cu, Se, Cd, Mo, B, V, As, Pb and Hg) in Provola cheeses obtained from dairy cows fed with two different integrated diets (Biotrak) and without olive cake (Control) were determined to discriminate between the two different cheeses. The results showed that cheeses from the Biotrak group presented higher values of essential elements. Selenium (Se) was found to be the most interesting: in Biotrak cheeses the content of Se was in the range of 0.112 to 0.281 mg/kg, about twice the content of Se in cheeses from the Control group. Among the toxic elements, only Cd was found in the samples, but at low levels (in average lower than 0.11 mg/kg). Therefore, the use of olive cake in animal feed is a good strategy to improve the mineral profile of the product obtained.
Collapse
Affiliation(s)
- Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy; Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy.
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80049 Napoli, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
5
|
Đokić M, Nekić T, Varenina I, Varga I, Solomun Kolanović B, Sedak M, Čalopek B, Kmetič I, Murati T, Vratarić D, Bilandžić N. Distribution of Pesticides and Polychlorinated Biphenyls in Food of Animal Origin in Croatia. Foods 2024; 13:528. [PMID: 38397505 PMCID: PMC10887917 DOI: 10.3390/foods13040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Pesticides and polychlorinated biphenyls (PCBs) are persistent environmental pollutants. When entering the food chain, they can represent a public health problem due to their negative effects on health. In this study, concentrations of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), pyrethroids, carbamates, and PCBs-a total 73 compounds-were determined in a total of 2268 samples of fat tissues (beef, pork, sheep, goat, poultry, game, horse, rabbit) and processed fat, meat, and processed meat products collected in Croatia during an 8-year period. In fatty tissues, 787 results exceeded the limits of quantification (LOQ): 16 OCPs, eight OPPs, six pyrethroids, one carbamate, and seven PCBs. The most positive results in fat samples were found for OCPs, with a frequency of quantification in the range of 57.5-87.5%. Hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (DDE) were quantified in the highest percentages, in the ranges of 5.5-66.7% and 5.4-55.8%. Concentrations above the MRL values were determined for chlorpyrifos in pork fat and for resmethrin in six fat samples and one pâté. In 984 samples of meat and meat products, only 62 results exceeded the LOQ values. The highest frequency of quantification was determined for OCPs (25 samples), of which 40% were DDT isomers (60% DDE). Frequency quantifications of PCBs in fat samples were between 7.23 and 36.7%. An evaluation of the health risk assessment showed that the consumption of fat, meat, and meat products does not pose a threat to consumer health, since all EDI values were well below the respective toxicological reference values.
Collapse
Affiliation(s)
- Maja Đokić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Tamara Nekić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ivana Varenina
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ines Varga
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Božica Solomun Kolanović
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Marija Sedak
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Bruno Čalopek
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 8, 10000 Zagreb, Croatia; (I.K.); (T.M.)
| | - Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 8, 10000 Zagreb, Croatia; (I.K.); (T.M.)
| | - Darija Vratarić
- Veterinary and Food Safety Directorate, Ministry of Agriculture of Republic of Croatia, Planinska 2a, 10000 Zagreb, Croatia;
| | - Nina Bilandžić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| |
Collapse
|
6
|
Massous A, Ouchbani T, Lo Turco V, Litrenta F, Nava V, Albergamo A, Potortì AG, Di Bella G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 2023; 12:969. [PMID: 36900486 PMCID: PMC10000722 DOI: 10.3390/foods12050969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra region (i.e., Khénifra, Beni Méllal, Azlal and Fquih Ben Salah provinces). Moroccan honeys were in line with the physicochemical standards set by the European Union. However, a critical contamination pattern has been outlined. In fact, jujube, sweet orange, and PGI Euphorbia honeys contained pesticides, such as acephate, dimethoate, diazinon, alachlor, carbofuran and fenthion sulfoxide, higher than the relative EU Maximum Residue Levels. The banned 2,3',4,4',5-pentachlorobiphenyl (PCB118) and 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180) were detected in all samples and quantified in jujube, sweet orange and PGI Euphorbia honeys; while polycyclic aromatic hydrocarbons (PAHs), such as chrysene and fluorene, stood out for their higher contents in jujube and sweet orange honeys. Considering plasticizers, all honeys showed an excessive amount of dibutyl phthalate (DBP), when (improperly) considering the relative EU Specific Migration Limit. Furthermore, sweet orange, PGI Euphorbia and G. alypum honeys were characterized by Pb exceeding the EU Maximum Level. Overall, data from this study may encourage Moroccan governmental bodies to strengthen their monitoring activity in beekeeping and to find suitable solutions for implementing more sustainable agricultural practices.
Collapse
Affiliation(s)
- Abir Massous
- Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco
| | - Tarik Ouchbani
- Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy
| |
Collapse
|