1
|
Abdelmenem AM, Mersal EA, Morsi AA, Abdel All MO, Hussein G, Ibrahim KE, Salim MS. Melamine-induced adrenal structural and functional alterations and the contribution of morin to the adrenal repair in Wistar rats. Tissue Cell 2025; 95:102826. [PMID: 40056657 DOI: 10.1016/j.tice.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Melamine is a prevalent environmental toxicant associated with well-established toxicity on several organs. The adrenal gland is a highly dynamic organ that makes it susceptible to chemicals' toxicity. The current work investigated the adrenal histo-biochemical alterations caused by melamine exposure in rats and explored whether morin has protective potential against such adrenal toxicity. The experiment utilized 32 adult male Wistar rats randomly divided into control, morin, melamine, and melamine/morin groups. Adrenal toxicity was induced by melamine (126 mg/kg/d). Morin was used in a dose of 50 mg/kg/d. All treatments were given via oral gavage for 4 weeks. The adrenal oxidative stress markers, serum corticosterone (CORT), adrenocorticotrophic hormone (ACTH), and the mRNA expression of the steroidogenic genes; StAR (Steroidogenic acute regulatory protein), P450scc (Cholesterol side-chain cleavage enzyme), and11β-HSD1 (11β-Hydroxysteroid dehydrogenase type 1) were evaluated. Also, histological and immunohistochemical examinations of the paraffin-processed adrenal sections were performed. Melamine decreased adrenal tissue superoxide dismutase (SOD) and catalase (CAT) activities, increased adrenal malondialdehyde (MDA) levels, decreased serum CORT and increased ACTH levels, and suppressed the adrenal cortical expression of genes involved in steroidogenesis. Moreover, the inducible nitric oxide synthase (iNOS) and cysteine-aspartic acid protease-3 (caspase-3) expression were upregulated as indicated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Besides, melamine caused remarkable adrenal histopathological changes. However, morin administration greatly repaired the adrenal injury and restored the adrenal function. Morin maintained the adrenal histoarchitecture and protected against melamine-provoked adrenal toxicity by downregulating the inflammation and the adrenal apoptotic processes and relieving the oxidative stress burden.
Collapse
Affiliation(s)
- Alshaymaa M Abdelmenem
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A Mersal
- Biochemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Marwa Omar Abdel All
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghaiath Hussein
- Department of Medical Education, School of Medicine, Trinity College, Dublin, Ireland
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
2
|
Lu Y, Zhai R, Chu Z, Zhu M, Li J, Jiang Y, Ye Z. LC-MS/MS-based quantitative method and metrological traceability technology for measuring components of animal origin in beef and lamb and their products. Food Chem 2025; 464:141600. [PMID: 39423539 DOI: 10.1016/j.foodchem.2024.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Establishing a quantitative detection method for adulterated meat products is crucial for ensuring food safety. However, due to the lack of metrological traceability in current quantitative methods, poor reliability and comparability always occur when measuring adulterated meat. Therefore, this study established an accurate quantitative method with metrological traceability for the quantitative analysis of pork and duck meat added to beef, lamb, and their products. We took the amino acid certified reference materials (CRMs) as the source of traceability, and traced the quantitative peptide concentrations of adulterated beef, lamb and their products to SI. Finally, the quantitative method has high accuracy and high repeatability and we utilized it to achieve accurate quantification of adulterated meat products, with an uncertainty range of 10.7 %-18.5 %, k = 2.
Collapse
Affiliation(s)
- Yuxuan Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 100029 Beijing, China; Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, 310018 Hangzhou, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 100029 Beijing, China.
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 100029 Beijing, China
| | - Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 100029 Beijing, China
| | - Jingjing Li
- Beijing Institute of Metrology, 100029 Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 100029 Beijing, China
| | - Zihong Ye
- Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, 310018 Hangzhou, China
| |
Collapse
|
3
|
Khalil MA, Yong WH, Batool T, Hoque A, Chiong LY, Goh HH, Kurniawan TA, Soliman MS, Islam MT. Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils. Sci Rep 2025; 15:2283. [PMID: 39825064 PMCID: PMC11748652 DOI: 10.1038/s41598-025-85800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm2 and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly. The measured results demonstrate that the proposed SRR sensor is superior in terms of sensitivity and quality factor compared to studies in the literature. The proposed sensor shows superior performance in sensitivity and quality factor (Q-factor) compared to existing sensors in the literature. It exhibits a remarkable sensitivity of 0.92 with a frequency shift of 760 MHz for adulteration detection, which is higher than sensors with shifts ranging from 140 to 600 MHz reported in previous studies. Additionally, the design has a high Q-factor of 149, indicating its efficiency in determining adulteration in edible oils. Additionally, the error rate in detecting adulteration is minimal at 3.1%, a significant improvement over prior sensors, which have error rates as high as 8%. These enhancements highlight the sensor's potential in applications requiring precise, efficient, and cost-effective detection of edible oil adulteration, thus offering a significant advancement in both performance and practical utility over traditional methods.
Collapse
Affiliation(s)
- Muhammad Amir Khalil
- Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia.
| | - Wong Hin Yong
- Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia.
| | - Tehseen Batool
- Department of Physics, Government College University Faisalabad (GCUF), Punjab, Pakistan
| | - Ahasanul Hoque
- Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Malaysia
| | - Lo Yew Chiong
- Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia
| | - Hui Hwang Goh
- School of Engineering, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia
| | - Mohammad Tariqul Islam
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Wang A, Shu W, Wang Y, Liu K, Yu S, Zhang Y, Wang K, Li D, Sun Z, Sun X, Xiao H. A near-infrared fluorescent molecular rotor for viscosity detection in biosystem and fluid beverages. Food Chem 2025; 463:141458. [PMID: 39362090 DOI: 10.1016/j.foodchem.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Viscosity is closely associated with physiological and pathological processes, as well as food quality. Herein, a novel fluorescent molecular rotor, BMCY-V, was presented and applied for detection of viscosity. BMCY-V contained a benzoindole unit as electron donor and a malononitrile group as acceptor. In low-viscous solvents, the rotor can freely rotate, leading to dissipation of excited-state energy. In high-viscous media, however, the free rotation of the rotor is severely restricted, thus reducing non-radiative transition and resulting in significantly enhanced fluorescence intensity. BMCY-V is extremely sensitive to viscosity, showing about 3968 times increase of fluorescence intensity at 728 nm from water to 95 % glycerol. Due to the excellent photophysical property such as near-infrared emission, BMCY-V was successfully used to visualize viscosity in live cells and in liver tissues. In addition, BMCY-V can also evaluate the thickening effect of various thickeners and visualize the changes of viscosity during deterioration of fluid drinks.
Collapse
Affiliation(s)
- Anyang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Wang
- Zibo Qisu Environmental Technology Co., Ltd., Zibo 255400, PR China
| | - Kaile Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Sinian Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zifei Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
5
|
Begum A, Jain BP. Adulteration in edible oil (mustard oil) and ghee; detection and their effects on human health. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:141-148. [PMID: 39850590 PMCID: PMC11751471 DOI: 10.62347/vvci2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/02/2024] [Indexed: 01/25/2025]
Abstract
Edible oils and ghee are vital parts of our daily culinary practices. In recent years, owing to heightened demand in the domestic and global markets, consistent reports regarding the adulteration of edible oils and ghee with substandard ingredients have been reported. Adulteration in edible oils is widespread, with distinctive contaminants, including cottonseed, mineral, and lower-cost oils like palm olein. In the case of ghee, it is repeatedly combined with animal fats, synthetic materials, or vanaspati. The consumption of contaminated oils and trans-fats within the human diet has resulted in adverse health effects, including cardiovascular diseases, digestive disorders, and even cancer. The review aims to summarize various adulterants found in edible oil (mustard oil) and ghee, their detection techniques, and harmful effects. This review provides an overview of the contemplation linked to the adulteration of edible oils and ghee, the compliance with relevant regulations, and the technological approaches available for detection. The detection technologies for identifying adulteration in edible oils are chromatography and spectroscopy biochemical methods and the use of high-precision analytical instruments. The presence of adulterants in edible oil and ghee undermines our societal integrity and our ethical standards. Awareness among consumers is essential for effectively combating these adulterations.
Collapse
Affiliation(s)
- Afrin Begum
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari 845401, Bihar, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari 845401, Bihar, India
| |
Collapse
|
6
|
Zhao Z, Wang R, Yang X, Jia J, Zhang Q, Ye S, Man S, Ma L. Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing. ACS NANO 2024; 18:33505-33519. [PMID: 39620398 DOI: 10.1021/acsnano.4c10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The development of novel detection technology for meat species authenticity is imperative. Here, we developed a machine learning-supported, dual-channel biosensor-in-microdroplet platform for meat species authenticity detection named CC-drop (CRISPR/Cas12a digital single-molecule microdroplet biosensor). This strategy allowed us to quickly identify and analyze animal-derived components in foods. This biosensor was enabled by CRISPR/Cas12a-based fluorescence lighting-up detection, and the nucleic acid signals can be recognized by a Cas12a-crRNA binary complex to trigger the trans-cleavage of any by-stander reporter single-stranded (ss) DNA, in which nucleic acid signals can be converted and amplified to fluorescent readouts. The ultralocalized microdroplet reactor was constructed by reducing the reaction volume from up to picoliter to accommodate the aforementioned reaction to further enhance the sensitivity to even render an amplification-free nucleic acid detection. Moreover, we established a smartphone App coupled with a random forest machine learning model based on parameters such as area, fluorescent intensity, and counting number to ensure the accuracy of image recording and processing. The sample-to-result time was within 80 min. Importantly, the proposed biosensor was able to accurately detect the ND1 (pork-specific) and IL-2 (duck-specific) genes in deep processed meat-derived foods that usually had truncated DNA, and the results were more robust and practical than conventional real-time polymerase chain reaction after a side-by-side comparison. All in all, the proposed biosensor can be expected to be used for rapid food authenticity and other nucleic acid detections in the future.
Collapse
Affiliation(s)
- Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Roumeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinqi Yang
- College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin 300142, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Kanwal N, Musharraf SG. Analytical approaches for the determination of adulterated animal fats and vegetable oils in food and non-food samples. Food Chem 2024; 460:140786. [PMID: 39142208 DOI: 10.1016/j.foodchem.2024.140786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Edible oils and fats are crucial components of everyday cooking and the production of food products, but their purity has been a major issue for a long time. High-quality edible oils are contaminated with low- and cheap-quality edible oils to increase profits. The adulteration of edible oils and fats also produces many health risks. Detection of main and minor components can identify adulterations using various techniques, such as GC, HPLC, TLC, FTIR, NIR, NMR, direct mass spectrometry, PCR, E-Nose, and DSC. Each detection technique has its advantages and disadvantages. For example, chromatography offers high precision but requires extensive sample preparation, while spectroscopy is rapid and non-destructive but may lack resolution. Direct mass spectrometry is faster and simpler than chromatography-based MS, eliminating complex preparation steps. DNA-based oil authentication is effective but hindered by laborious extraction processes. E-Nose only distinguishes odours, and DSC directly studies lipid thermal properties without derivatization or solvents. Mass spectrometry-based techniques, particularly GC-MS is found to be highly effective for detecting adulteration of oils and fats in food and non-food samples. This review summarizes the benefits and drawbacks of these analytical approaches and their use in conjunction with chemometric tools to detect the adulteration of animal fats and vegetable oils. This combination provides a powerful technique with enormous chemotaxonomic potential that includes the detection of adulterations, quality assurance, assessment of geographical origin, assessment of the process, and classification of the product in complex matrices from food and non-food samples.
Collapse
Affiliation(s)
- Nayab Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan..
| |
Collapse
|
8
|
Tahmouzi S, Nasab SS, Alizadeh-Salmani B, Zare L, Mollakhalili-Meybodi N, Nematollahi A. Coffee substitutes: A review of the technology, characteristics, application, and future perspective. Compr Rev Food Sci Food Saf 2024; 23:e70041. [PMID: 39385342 DOI: 10.1111/1541-4337.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Despite being one of the most frequently consumed beverages worldwide, there are concerns that excessive consumption of coffee can have adverse effects, especially concerning the addictive and stimulating effects of the alkaloid caffeine, which contributes to coffee's popularity. It is known to increase the risk of hypertension and heart rate among predisposed individuals, adversely affecting the nervous system. Even though they differ in nature from those found in coffee, coffee substitutes can be considered economically and health-wise as a favorable alternative to natural coffee brews. This review summarizes the state-of-the-art varieties of plants used as coffee substitutes and discusses their production technology, chemical composition, nutritional properties, health benefits, economic challenges, and rationale for choosing the plant as a substitute for coffee. Various instant products and coffee substitute blends are also available on the market especially based on different kinds of plants and herbs like ginger, rye, date pits, quinoa, lupine, chicory, barley, rye, oak, and so on. These coffee substitutes have several advantages especially having no caffeine and containing different beneficial phytochemicals, although the results of the difference between the levels of harmful compounds in coffee and coffee substitutes were contradictory. Therefore, it is no wonder that the development of coffee substitutes, which are beverages that are able to mimic the taste and aroma of coffee, is on the rise at present.
Collapse
Affiliation(s)
- Sima Tahmouzi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sanaei Nasab
- Student Research Committee, Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behnam Alizadeh-Salmani
- Student Research Committee, Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Zare
- Student Research Committee, Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Bose D, Padmavati M. Honey Authentication: A review of the issues and challenges associated with honey adulteration. FOOD BIOSCI 2024; 61:105004. [DOI: 10.1016/j.fbio.2024.105004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Dey S, Nagpal I, Sow P, Dey R, Chakrovorty A, Bhattacharjee B, Saha S, Majumder A, Bera M, Subbarao N, Nandi S, Hossen Molla S, Guptaroy P, Abraham SK, Khuda-Bukhsh AR, Samadder A. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J Biomol Struct Dyn 2024; 42:8541-8558. [PMID: 37587909 DOI: 10.1080/07391102.2023.2246585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Dum Dum Motijheel College, Kolkata, India
| | - Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Saikat Saha
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | | | - Suresh K Abraham
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
11
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Boakye A, Avor DD, Amponsah IK, Appaw WO, Owusu-Ansah L, Adjei S, Baah MK, Addotey JN. Quality Assessment of Tomato Paste Products on the Ghanaian Market: An Insight Into Their Possible Adulteration. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8285434. [PMID: 39285917 PMCID: PMC11405106 DOI: 10.1155/2024/8285434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 08/10/2024] [Indexed: 09/19/2024]
Abstract
Tomato paste is the most consumed tomato product on the Ghanaian market, the majority of which are imported into the country. This food product is easily adulterated, and thus, routine quality checks are necessary. Therefore, the current study is aimed at assessing the quality of eight tomato paste products on the Ghanaian market and checking for the presence of starch and artificial colourant erythrosine as possible adulterants. Routine quality metrics such as the pH, titratable acidity, total solids, and total soluble solids were assessed using standard methods. An HPLC method was employed to detect the presence of the colourant erythrosine, whereas starch content was determined by an enzymatic method using α-amylase and then amyloglucosidase. Fifty percent of the products did not qualify to be called tomato paste based on total solid estimation. All the sampled products contained some amount of starch, with three having more than 10 g/100 g of this thickener. Additionally, the banned colourant erythrosine was detected in two of the products. All other parameters were consistent with regulatory standards. The present study has shown that some tomato paste products on the Ghanaian market contain additives that are not permitted under any circumstance and fall short of regulatory standards.
Collapse
Affiliation(s)
- Abena Boakye
- Department of Food Science and Technology College of Science Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Doreen D Avor
- Department of Pharmacognosy Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Isaac K Amponsah
- Department of Pharmacognosy Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Herbal Medicine Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - William O Appaw
- Mycotoxin and Food analysis Laboratories Department of Food Science and Technology College of Science KNUST, Kumasi, Ghana
| | | | - Silas Adjei
- Department of Herbal Medicine Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael K Baah
- Department of Herbal Medicine Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John N Addotey
- Department of Pharmaceutical Chemistry Faculty of Pharmacy and Pharmaceutical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Abitayeva G, Abeev A. Development of a real-time PCR protocol for the detection of chicken DNA in meat products. Prep Biochem Biotechnol 2024; 54:1068-1078. [PMID: 38469867 DOI: 10.1080/10826068.2024.2317289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Food falsification is a pressing issue in today's food industry, with fraudulent substitution of costly ingredients with cheaper alternatives occurring globally. Consequently, developing straightforward and efficient diagnostic systems to detect such fraud is a top priority in scientific research. The aim of the work was to develop a test system and protocol for polymerase chain reaction (PCR) to detect in food products of animal origin the substitution of expensive meat raw materials for by-products of poultry processing. For this, real-time polymerase chain reaction (RT-PCR) was used, which allows determining the qualitative and quantitative substitution in raw and technologically prepared products. Other methods for detecting falsification - enzyme immunoassay (ELISA/ELISA) or express methods in the form of a lateral flow immunoassay are less informative. The extraction of nucleic acids for real-time polymerase chain reaction depends on the source matrix, with higher concentrations obtained from germ cells and parenchymal organs. Extraction from muscle and plant tissues is more challenging, but thorough grinding of these samples improves nucleic acid concentration by 1.5 times using DNA extraction kits. The selection of primers and fluorescent probes through GenBank and PCR Primer Design/DNASTAR software enables efficient amplification and identification of target chicken DNA fragments in various matrices.
Collapse
Affiliation(s)
- Gulyaim Abitayeva
- Laboratory of Biotechnology, LLP "Republican Collection of Microorganisms", Astana, Republic of Kazakhstan
| | - Arman Abeev
- LLP "ABIOTECH", Astana, Republic of Kazakhstan
| |
Collapse
|
14
|
Elbarbary NK, Darwish WS, Fotouh A, Dandrawy MK. Unveiling the mix-up: investigating species and unauthorized tissues in beef-based meat products. BMC Vet Res 2024; 20:380. [PMID: 39182072 PMCID: PMC11344315 DOI: 10.1186/s12917-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Customers are very concerned about high-quality products whose provenance is healthy. The identification of meat authenticity is a subject of growing concern for a variety of reasons, including religious, economic, legal, and public health. Between March and April of 2023, 150 distinct marketable beef product samples from various retailers in El-Fayoum, Egypt, were gathered. There were 30 samples of each of the following: luncheon, kofta, sausage, burger, and minced meat. Every sample underwent a histological investigation as well as subjected to a standard polymerase chain reaction (PCR) analysis to identify meat types that had not been stated by Egyptian regulations. According to the obtained data, the meat products under scrutiny contained a variety of unauthorized tissues which do not match Egyptian regulations. Furthermore, the PCR results indicated that the chicken, camels, donkeys, and pigs derivatives were detected in 60%, 30%, 16%, and 8% of examined samples, respectively. In conclusion, besides displaying a variety of illegal tissues, the majority of the meat items under examination were tainted with flesh from many species. As a result, it is crucial to regularly inspect these products before they are put on the market to ensure that they comply with the law and don't mislead customers Furthermore, it is advisable for authorities to implement rigorous oversight of food manufacturing facilities to ensure the production of safe and wholesome meat.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Wageh S Darwish
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Fotouh
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, New Valley University, Kharga, Egypt
| | - Mohamed K Dandrawy
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83522, Egypt
| |
Collapse
|
15
|
Mahanti NK, Shivashankar S, Chhetri KB, Kumar A, Rao BB, Aravind J, Swami D. Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions. Trends Food Sci Technol 2024; 150:104574. [DOI: 10.1016/j.tifs.2024.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
17
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|
18
|
Alotaibi RF, AlTilasi HH, Al-Mutairi AM, Alharbi HS. Chromatographic and spectroscopic methods for the detection of cocoa butter in cocoa and its derivatives: A review. Heliyon 2024; 10:e31467. [PMID: 38882372 PMCID: PMC11176802 DOI: 10.1016/j.heliyon.2024.e31467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Currently, there is fierce competition in the cocoa industry to develop products that possess distinctive sensory characteristics and flavours. This is because cocoa and its derivatives provide numerous health and functional advantages, which is essential to their economics. The fatty acid and triglyceride composition of cocoa determines its quality. This review emphasises the necessity of developing precise, adaptable analytical techniques to identify and quantify cocoa butter in cocoa and its derived products, from cocoa beans to chocolate bars. Key chromatographic and spectroscopic techniques play crucial roles in understanding the fundamental principles underlying the production of cocoa with desirable flavours. This significantly impacts the sustainability, traceability, and authenticity of cocoa products while also supporting the battle against adulteration.
Collapse
Affiliation(s)
- Razan F Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hissah H AlTilasi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adibah M Al-Mutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hibah S Alharbi
- Saudi Food and Drug Authority, Riyadh, 0112038222, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Double lateral flow immunosensing of undeclared pork and chicken components of meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1148-1156. [PMID: 38562594 PMCID: PMC10981650 DOI: 10.1007/s13197-024-05944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Adulteration of meat products is a serious problem in the modern society. Consumption of falsified meat products can be hazardous to health and/or lead to violating religious dietary principles. To identify such products, rapid and simple test systems for point-of-need detection are in demand along with complex laboratory methods. This study presents the first double lateral flow (immunochromatographic) test system, which allows simultaneous revealing two prevalent types of falsifications-undeclared addition of pork and chicken components to meat products. In the proposed test system, porcine myoglobin (MG) and chicken immunoglobulin Y (IgY) were used as specific biomarkers recognizable by antibodies. Within the optimization of the analysis, the concentrations of the immune reagents and regimes of their application on the working membrane were selected, which provided minimal limits of detection (LODs) for both analytes. The developed test system enables the detection of MG and IgY with the LODs of 10 and 12 ng/mL, respectively, which accords to addition of 0.1% of the undeclared meat compounds. The applicability of the test system to control the composition of raw meat mixtures and cooked food products was confirmed. The developed approach can be considered as a promising tool for monitoring composition of meat products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05944-y.
Collapse
Affiliation(s)
- Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| |
Collapse
|
20
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
21
|
Vega-Castellote M, Sánchez MT, Torres-Rodríguez I, Entrenas JA, Pérez-Marín D. NIR Sensing Technologies for the Detection of Fraud in Nuts and Nut Products: A Review. Foods 2024; 13:1612. [PMID: 38890841 PMCID: PMC11172355 DOI: 10.3390/foods13111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Food fraud is a major threat to the integrity of the nut supply chain. Strategies using a wide range of analytical techniques have been developed over the past few years to detect fraud and to assure the quality, safety, and authenticity of nut products. However, most of these techniques present the limitations of being slow and destructive and entailing a high cost per analysis. Nevertheless, near-infrared (NIR) spectroscopy and NIR imaging techniques represent a suitable non-destructive alternative to prevent fraud in the nut industry with the advantages of a high throughput and low cost per analysis. This review collects and includes all major findings of all of the published studies focused on the application of NIR spectroscopy and NIR imaging technologies to detect fraud in the nut supply chain from 2018 onwards. The results suggest that NIR spectroscopy and NIR imaging are suitable technologies to detect the main types of fraud in nuts.
Collapse
Affiliation(s)
- Miguel Vega-Castellote
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - María-Teresa Sánchez
- Department of Bromatology and Food Technology, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain;
| | - Irina Torres-Rodríguez
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - José-Antonio Entrenas
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| | - Dolores Pérez-Marín
- Department of Animal Production, University of Cordoba, Rabanales Campus, 14071 Córdoba, Spain; (I.T.-R.); (J.-A.E.)
| |
Collapse
|
22
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Damto T, Zewdu A, Birhanu T. Impact of Different Adulterants on Honey Quality Properties and Evaluating Different Analytical Approaches for Adulteration Detection. J Food Prot 2024; 87:100241. [PMID: 38360408 DOI: 10.1016/j.jfp.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The study was carried out keeping in view the recently emerging concern of adulteration of natural honey on the honey markets. This study intended to investigate honey adulteration detection using physical and chemical composition to achieve a foreign component (a marker) that is present in the honey that confirms either the adulteration or authenticity of the honey. The technique was evaluated on honey samples that were 5-50% adulterated with various common adulterants in Ethiopia. Preliminary quick tests and characterization of physicochemical and antioxidant properties were tested as alternative analytical approaches for honey adulteration detection. Preliminary quick test methods were used to detect adulterated honey, but these methods were found specific to adulterant materials. The proline and pH levels decreased as molasses, sugar, and banana adulterants increased, while increased as melted candy and shebeb adulterants increased. Moisture content decreased as sugar, melted candy, and shebeb adulterants were increased, while decreased as molasses and banana adulterants increased. HMF content increased as molasses, melted candy, and shebeb adulterants were increased. The sugar compositions are key differential criteria to detect the adulteration of honey with sugar. Based on their physical characteristics, PCA demonstrated a considerable difference between samples of pure and contaminated honey. In conclusion, it was observed that honey adulteration was detected based on significant deviations of physicochemical and biochemical components from expected values in the concentration of naturally occurring components. This study successfully demonstrated a method to rapidly and accurately classify and authenticate honey. Accordingly, it is recommended that frequent training for stakeholders on adulteration detection methods should be carried out to avoid adulteration of honey from the markets.
Collapse
Affiliation(s)
- Teferi Damto
- Holeta Bee Research Center, Oromia Agriculture Research Institute, Ethiopia.
| | - Ashagrie Zewdu
- Center of Food Science and Nutrition, College of Natural Science, Addis Ababa University, Ethiopia
| | | |
Collapse
|
24
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024; 65:2214-2235. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
25
|
El-Sheikh SH, Whab RMA, ElDaly RA, Raslan MT, Fahmy HA, El-Demerdash AS. Bacteriological evaluation and advanced SYBR-green multiplex real-time PCR assay for detection of minced meat adulteration. Open Vet J 2024; 14:389-397. [PMID: 38633161 PMCID: PMC11018440 DOI: 10.5455/ovj.2024.v14.i1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Minced meat is a valuable source of nutrients, but it is vulnerable to contamination by microorganisms commonly present in the environment. In addition, there is a risk of adulteration with cheaper meat sources, which can be harmful to consumers. Aim It is crucial to identify meat adulteration with distinct microbiological analysis for legal, economic, religious, and public health purposes. Methods A total of 100 minced meat samples were collected from several markets in Sharkia Governorate, Egypt. These samples were then subjected to bacteriological testing and an advanced multiplex PCR method. This method enables the detection of bovine, equine, porcine, and dog species in meat samples with just one step. Results The adulterated samples had a higher total bacterial count and pH values compared to pure bovine meat. These differences in bacterial count and pH values were statistically significant, with p-values of 0.843 (log10) and 0.233, respectively. The frequency of Escherichia coli occurrence was 13%, and the O111 serotype was predominant in the adulterated samples. Listeria monocytogenes and Staphylococcus aureus were isolated with prevalence rates of 3% and 29%, respectively. Besides, the SYBR-green multiplex real-time PCR assay used in this study detected adulteration with dog, equine, and porcine meats in the examined samples at rates of 9%, 5%, and 4%, respectively. Conclusion This method provides a sensitive and specific approach to detect issues related to well-being and safety.
Collapse
Affiliation(s)
- Soad H. El-Sheikh
- Department of Food Hygiene, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Reham M. Abdel Whab
- Department of Food Hygiene, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rania A. ElDaly
- Department of Botany and Microbiology, Faculty of Science, Arish University, Al-Arish, Egypt
| | - Mona T. Raslan
- Department of Food Hygiene, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Hanan A. Fahmy
- Department of Biotechnology, Agricultural Research Centre, Animal Health Research Institute, Giza, Egypt
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| |
Collapse
|
26
|
Wang H, Meng X, Yao L, Wu Q, Yao B, Chen Z, Xu J, Chen W. Accurate molecular identification of different meat adulterations without carryover contaminations on a microarray chip PCR-directed microfluidic lateral flow strip device. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100180. [PMID: 37664158 PMCID: PMC10471925 DOI: 10.1016/j.fochms.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (TC line, TD line, TP line, or TB line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.
Collapse
Affiliation(s)
- Hanling Wang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xianzhuo Meng
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Zhaoran Chen
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
27
|
Haji A, Desalegn K, Hassen H. Selected food items adulteration, their impacts on public health, and detection methods: A review. Food Sci Nutr 2023; 11:7534-7545. [PMID: 38107123 PMCID: PMC10724644 DOI: 10.1002/fsn3.3732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023] Open
Abstract
Every living thing requires food to survive. Clean, fresh, and healthy foods are important to human health. Today, food is affected by various counterfeits. Adulteration of food is the intentional deterioration of the quality of food offered for sale by either the addition or substitution of an inferior substance or by the omission of a valuable ingredient. Economically motivated adulteration is the intentional adulteration of food for financial gain, and has enormous public health implications, making it an important issue in food science. Almost every food, including milk and dairy products, fats and oils, fruits and vegetables, grain foods, coffee, tea, honey, etc., is susceptible to adulteration. It is difficult to find food that is free from adulteration. Consumption of adulterated food contributes to numerous diseases in society, ranging from mild to life threatening. Therefore, detection of adulteration in food is essential to ensure the safety of the food we consume. To provide consumers with food that is free of adulterants, various detection methods such as physical, chemical, biochemical, and molecular techniques are used to identify adulterants in food. This review aims to provide up-to-date information on food adulteration, its impact on health, and the analytical techniques used to detect adulteration in food.
Collapse
Affiliation(s)
- Abdulmajid Haji
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Kasahun Desalegn
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Hayat Hassen
- Department of Post‐Harvest ManagementCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| |
Collapse
|
28
|
Szyłak A, Kostrzewa W, Bania J, Tabiś A. Do You Know What You Eat? Kebab Adulteration in Poland. Foods 2023; 12:3380. [PMID: 37761089 PMCID: PMC10530059 DOI: 10.3390/foods12183380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, consumer interest in meat authenticity has increased. Fraudulent claims are most likely to be regarding meat origin, meat substitution, meat processing treatment, and non-meat ingredient additions. This study focuses on the substitution of meat species in processed kebab-like food sales in Poland. The growing popularity of kebab-like foods and the limited number of official inspections of this type of food make this topic interesting. In this study, the results reveal that 60% of the foods analyzed contain an undeclared ingredient or the substitution of an expensive ingredient with a cheaper option.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (A.S.); (W.K.); (J.B.)
| |
Collapse
|
29
|
Konuspayeva G, Al-Gedan MM, Alzuraiq F, Faye B. Some Variation Factors of Freezing Point in Camel Milk. Animals (Basel) 2023; 13:ani13101657. [PMID: 37238087 DOI: 10.3390/ani13101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The freezing point degree of milk (FPD) is a classical indicator of cow milk quality. In camel milk, few references are available in the literature regarding the main factors of variation. In the present paper, two methods of FPD determination were used: the Reference method (RM) (using Cryostar) and the Express method (EM), using a milk analyzer (Milkoscan-FT1). The RM was used to determine FPD in 680 bulk raw or pasteurized camel milk samples. Regarding EM, 736 individual milk samples, 1323 bulk samples, 635 samples of pasteurized milk and 812 samples of raw milk used for cheese making were available. The variability of FPD was investigated according to month, lactation stage, milk composition, milk production and microbiological status. Correlations between methods were explored. FPD was highly correlated with most of the milk components and tended to decrease in cases of high contamination by coliforms or high total flora count. However, the weak significant correlations between the two methods indicated the necessity to specifically calibrate an automatic milk analyzer for camel milk.
Collapse
Affiliation(s)
- Gaukhar Konuspayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Avenue Al-Farabi, Almaty 050040, Kazakhstan
| | - Mubarak M Al-Gedan
- Conservation and Genetic Improvement Center, Camel Project UTF/SAU/044/SAU, P.O. Box 761, Al-Kharj 11942, Saudi Arabia
| | - Fuad Alzuraiq
- Conservation and Genetic Improvement Center, Camel Project UTF/SAU/044/SAU, P.O. Box 761, Al-Kharj 11942, Saudi Arabia
| | - Bernard Faye
- UMR-SELMET, CIRAD-ES, Campus International de Baillarguet, CEDEX 5, 34938 Montpellier, France
| |
Collapse
|
30
|
Novel Detection Techniques for Shrimp Powder Adulteration Using Near Infrared Spectroscopy in Tandem Chemometric Tools and Multiple Spectral Preprocessing. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|