1
|
Khan J, Gul P, Li Q, Liu K. Drying kinetics and thermodynamic analysis; enhancing quinoa (Chenopodium quinoa Willd.) quality profile via pre-treatments assisted germination and processing. ULTRASONICS SONOCHEMISTRY 2025; 117:107337. [PMID: 40245638 PMCID: PMC12020910 DOI: 10.1016/j.ultsonch.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
Pre-treatments assisted germination is an efficient technique to enhance the nutritional profile of Quinoa (Chenopodium quinoa Willd.). The present study investigated the impact of pre-treatments assisted germination of quinoa nutritional, anti-nutritional, and structural properties. Quinoa grains JQ-778 were subjected to various pre-treatments including soaking, ultrasound at 28 kHz &40 kHz (US 28 kHz, US 40 kHz) for 30 min followed by germination over 96-hour at 25 °C in a Biochemical-Incubator, 12/12 h dark and light dried at temperatures 50 °C, 60 °C, 70 °C, and combined temperatures (70 °C, 60 °C, 50 °C). Among evaluated models, page and logarithmic showed the best fit, presenting the highest, R2 ≥ 0.9991, X2 ≤ 0.0013, RMSE ≤ 0.0022, and RSS ≤ 0.0201. Moisture diffusion varied from 3.74 × 10-9 to 8.36 × 10-9, with R2 0.9272 to 0.9837, and energy activation from 18.25 to 28.41 kJ/mol with R2 0.9533-0.9896. US 40 kHz significantly lowered drying time without affecting germinated quinoa grains bioactive components or other qualitative factors. Ultrasonic pre-treatment at 40 kHz and drying at 60 °C yielded the highest antioxidant potency composite index of 98.78 %. The contentof phytic acid and tannin dropped by 66.66 to 82.99 % and 31.48 to 41.60 %, respectively (p < 0.05). Each treatment significantly altered quinoa's quality attributes. Principal Component Analysis revealed significant correlations between analyses, explaining 80.37 % variability. The intensity of functional groups decreased in the infrared spectra, although the transmission of signals was greater in pretreated samples than in control. Scanning electron microscopy analysis showed extensive fragmentation and surface erosion of quinoa grains after ultrasound treatment. Our data suggests that ultrasound-treated quinoa grains may enhance their nutritional value, making them a suggested source of high-protein grains, bioactive components, with distinct structural properties.
Collapse
Affiliation(s)
- Jabir Khan
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Palwasha Gul
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Qingyun Li
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China; Henan University of Technology, College of Food and Strategic Reserves, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Ramos-Pacheco BS, Ligarda-Samanez CA, Choque-Quispe D, Choque-Quispe Y, Solano-Reynoso AM, Choque-Quispe K, Palomino-Rincón H, Taipe-Pardo F, Peralta-Guevara DE, Moscoso-Moscoso E, Diaz-Barrera Y, Agreda-Cerna HW. Study of the Physical-Chemical, Thermal, Structural, and Rheological Properties of Four High Andean Varieties of Germinated Chenopodium quinoa. Polymers (Basel) 2025; 17:312. [PMID: 39940514 PMCID: PMC11819805 DOI: 10.3390/polym17030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Chenopodium quinoa, a high Andean grain with excellent nutritional value and complex molecular structure, presents significant challenges in the bioavailability of nutrients and the functionality of its components. Germination as a biotechnological strategy generated significant modifications in four varieties of quinoa. The ungerminated and germinated samples' physical-chemical, thermal, structural, and rheological properties were determined. Results showed increases in protein bioavailability (14.13% in Black Collana Quinoa (BCQ) and 12.79% in Red Pasankalla Quinoa (RPQ)), phenolic compounds (30.81 mg Gallic Acid Equivalent/100 g in RPQ), flavonoids (108.53 mg Quercetin Equivalent/100 g in Yellow Marangani Quinoa (YMQ)), and antioxidant capacity (up to 241.43 μmol Trolox Equivalent/g in BCQ). Thermal analysis showed increases in gelatinization temperature (57.53 °C to 59.45 °C in RPQ) and a reduction in enthalpy (1.38 J/g to 0.67 J/g). Structural analysis showed similar functional groups, but variation in spectra intensity was related to starches and proteins. Rheological properties exhibited pseudoplastic behavior at 80 °C. Principal component analysis showed a clear difference between germinated and non-germinated samples. The germination process significantly modified quinoa, improving its nutritional and functional properties and generating new opportunities for its application in the development of biodegradable materials and functional foods.
Collapse
Affiliation(s)
- Betsy S. Ramos-Pacheco
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Aydeé M. Solano-Reynoso
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Katia Choque-Quispe
- Department of Accounting and Finance, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yasmine Diaz-Barrera
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | |
Collapse
|
3
|
Li H, Zhu F, Li G. Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties. Compr Rev Food Sci Food Saf 2025; 24:e70081. [PMID: 39731715 DOI: 10.1111/1541-4337.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products. The fermentation process enhances their nutritional value, bioavailability, and sensory attributes, while also reducing antinutritional factors like phytates and saponins. Moreover, these beverages exhibit promising health benefits, including antioxidant, hypoglycemic, antidiabetic, and antihypertensive effects. This review provides a comprehensive evaluation of pseudocereal-based beverages from regulatory considerations to production processes, highlighting the potential of these ancient grains in reshaping the beverage industry while addressing modern nutritional needs. Future research directions on pseudocereal-based beverages are also suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Manzanilla-Valdez ML, Boesch C, Orfila C, Montaño S, Hernández-Álvarez AJ. Unveiling the nutritional spectrum: A comprehensive analysis of protein quality and antinutritional factors in three varieties of quinoa ( Chenopodium quinoa Wild). Food Chem X 2024; 24:101814. [PMID: 39310886 PMCID: PMC11415592 DOI: 10.1016/j.fochx.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is renowned for its high protein content and balanced amino acid profile. Despite promising protein characteristics, plant-based sources usually possess antinutritional factors (ANFs). This study aimed to analyze the nutritional and ANFs composition of three quinoa varieties (Black, Yellow, and Red), and assessed the protein quality. Among these varieties, Black quinoa showed the highest protein content (20.90 g/100 g) and total dietary fiber (TDF) (22.97 g/100 g). In contrast, Red quinoa exhibited the highest concentration of phenolic compounds (338.9 mg/100 g). The predominant ANFs identified included oxalates (ranging from 396.9 to 715.2 mg/100 g), saponins (83.27-96.82 g/100 g), and trypsin inhibitors (0.35-0.46 TUI/100 g). All three varieties showed similar in vitro protein digestibility (IVPD) (> 76.9 %), while Black quinoa exhibited the highest protein quality. In conclusion to ensure reduction of ANFs, processing methods are necessary in order to fully benefit from the high protein and nutritional value of quinoa.
Collapse
Affiliation(s)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa CP 80030, Mexico
| | | |
Collapse
|
5
|
Vento M, Della Croce CM, Bellani L, Tassi EL, Echeverria MC, Giorgetti L. Effect of Sprouting, Fermentation and Cooking on Antioxidant Content and Total Antioxidant Activity in Quinoa and Amaranth. Int J Mol Sci 2024; 25:10972. [PMID: 39456755 PMCID: PMC11507448 DOI: 10.3390/ijms252010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. Alegrìa were compared for the content of antioxidant molecules, total antioxidant capacity and mineral elements. Fermentation was induced spontaneously, with the yeast Saccharomyces cerevisiae, with the bacterium Lactobacillus plantarum and with both microorganisms, for 24 and 48 h. The increase in antioxidant molecules and antioxidant activity was induced by germination, by 24 h of spontaneous fermentation (polyphenols and flavonoids) and by 24 h of L. plantarum fermentation (total antioxidant activity) for both species. Germinated seeds of the two plants showed higher values in respect to seeds of macroelements and microelements. No genotoxic but rather protective effects were determined for seed and germinated seed extracts using the D7 strain of S. cerevisiae, a good tool for the evaluation of protection from oxidative damage induced by radical oxygen species (ROS) in cells and tissues. Therefore, the two varieties could be very suitable for their use in human diet and in supplements, especially as germinated seeds or as fermented foods.
Collapse
Affiliation(s)
- Martina Vento
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Clara Maria Della Croce
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy;
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador;
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| |
Collapse
|
6
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Jiménez MD, Salinas Alcón CE, Lobo MO, Sammán N. Andean Crops Germination: Changes in the Nutritional Profile, Physical and Sensory Characteristics. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:551-562. [PMID: 38976203 DOI: 10.1007/s11130-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.
Collapse
Affiliation(s)
- M D Jiménez
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - C E Salinas Alcón
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - M O Lobo
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - N Sammán
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina.
| |
Collapse
|
8
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
9
|
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants (Basel) 2024; 13:829. [PMID: 39061898 PMCID: PMC11273950 DOI: 10.3390/antiox13070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Quinoa, a globally cultivated "golden grain" belonging to Chenopodium in the Amaranthaceae family, is recognized for being gluten-free, with a balanced amino acid profile and multiple bioactive components, including peptides, polysaccharides, polyphenols, and saponins. The bioactive compounds extracted from quinoa offer multifaceted health benefits, including antioxidative, anti-inflammatory, antimicrobial, cardiovascular disease (CVD) improvement, gut microbiota regulation, and anti-cancer effects. This review aims to intricately outline quinoa's nutritional value, functional components, and physiological benefits. Importantly, we comprehensively provide conclusions on the effects and mechanisms of these quinoa-derived bioactive components on multiple cancer types, revealing the potential of quinoa seeds as promising and effective anti-cancer agents. Furthermore, the health-promoting role of quinoa in modulating gut microbiota, maintaining gut homeostasis, and protecting intestinal integrity was specifically emphasized. Finally, we provided a forward-looking description of the opportunities and challenges for the future exploration of quinoa. However, in-depth studies of molecular targets and clinical trials are warranted to fully understand the bioavailability and therapeutic application of quinoa-derived compounds, especially in cancer treatment and gut microbiota regulation. This review sheds light on the prospect of developing dietary quinoa into functional foods or drugs to prevent and manage human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (G.F.); (H.X.); (S.P.); (W.H.)
| |
Collapse
|
10
|
Schoofs H, Schmit J, Rink L. Zinc Toxicity: Understanding the Limits. Molecules 2024; 29:3130. [PMID: 38999082 PMCID: PMC11243279 DOI: 10.3390/molecules29133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Zinc, a vital trace element, holds significant importance in numerous physiological processes within the body. It participates in over 300 enzymatic reactions, metabolic functions, regulation of gene expression, apoptosis and immune modulation, thereby demonstrating its essential role in maintaining overall health and well-being. While zinc deficiency is associated with significant health risks, an excess of this trace element can also lead to harmful effects. According to the World Health Organization (WHO), 6.7 to 15 mg per day are referred to be the dietary reference value. An excess of the recommended daily intake may result in symptoms such as anemia, neutropenia and zinc-induced copper deficiency. The European Food Safety Authority (EFSA) defines the tolerable upper intake level (UL) as 25 mg per day, whereas the Food and Drug Administration (FDA) allows 40 mg per day. This review will summarize the current knowledge regarding the calculation of UL and other health risks associated with zinc. For example, zinc intake is not limited to oral consumption; other routes, such as inhalation or topical application, may also pose risks of zinc intoxication.
Collapse
Affiliation(s)
- Hannah Schoofs
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Joyce Schmit
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
11
|
Ramos-Pacheco BS, Choque-Quispe D, Ligarda-Samanez CA, Solano-Reynoso AM, Palomino-Rincón H, Choque-Quispe Y, Peralta-Guevara DE, Moscoso-Moscoso E, Aiquipa-Pillaca ÁS. Effect of Germination on the Physicochemical Properties, Functional Groups, Content of Bioactive Compounds, and Antioxidant Capacity of Different Varieties of Quinoa ( Chenopodium quinoa Willd.) Grown in the High Andean Zone of Peru. Foods 2024; 13:417. [PMID: 38338552 PMCID: PMC10855556 DOI: 10.3390/foods13030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Germination is an effective strategy to improve the nutritional and functional quality of Andean grains such as quinoa (Chenopodium quinoa Willd.); it helps reduce anti-nutritional components and enhance the digestibility and sensory aspects of the germinated. This work aimed to evaluate the effect of germination (0, 24, 48, and 72 h) on the physicochemical properties, content of bioactive compounds, and antioxidant capacity of three varieties of quinoa: white, red, and black high Andean from Peru. Color, nutritional composition, mineral content, phenolic compounds, flavonoids, and antioxidant activity were analyzed. Additionally, infrared spectra were obtained to elucidate structural changes during germination. The results showed color variations and significant increases (p < 0.05) in proteins, fiber, minerals, phenolic compounds, flavonoids, and antioxidant capacity after 72 h of germination, attributed to the activation of enzymatic pathways. In contrast, the infrared spectra showed a decrease in the intensity of functional groups -CH-, -CH2-, C-OH, -OH, and C-N. Correlation analysis showed that flavonoids mainly contributed to antioxidant activity (r = 0.612). Germination represents a promising alternative to develop functional ingredients from germinated quinoa flour with improved nutritional and functional attributes.
Collapse
Affiliation(s)
- Betsy S. Ramos-Pacheco
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Food Science and Technology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - David Choque-Quispe
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henry Palomino-Rincón
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - Yudith Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - Ángel S. Aiquipa-Pillaca
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| |
Collapse
|
12
|
Barakat H, Al-Qabba MM, Algonaiman R, Radhi KS, Almutairi AS, Al Zhrani MM, Mohamed A. Impact of Sprouting Process on the Protein Quality of Yellow and Red Quinoa ( Chenopodium quinoa). Molecules 2024; 29:404. [PMID: 38257317 PMCID: PMC10821386 DOI: 10.3390/molecules29020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Maryam M. Al-Qabba
- Maternity and Children Hospital, Qassim Health Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia;
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khadija S. Radhi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, College of Applied, Bishah University, Bishah 67714, Saudi Arabia;
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| |
Collapse
|
13
|
Almaguer C, Kollmannsberger H, Gastl M, Becker T. Daily assessment of malting-induced changes in the volatile composition of barley (Hordeum vulgare L.), rye (Secale cereale L.), and quinoa (Chenopodium quinoa Willd.). J Food Sci 2023; 88:3773-3785. [PMID: 37530626 DOI: 10.1111/1750-3841.16717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Barley (Hordeum vulgare L.) is the traditional malting cereal and is primarily used for beverages, whereas rye (Secale cereale L.) is mainly used in baked goods. Conversely, quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins, and can be used in a similar manner to cereals. The sharp bitterness of unprocessed rye and the earthy aroma of native quinoa interfere with the acceptance and development of food products. Malting of barley is known to improve its processing properties and enhance its sensory quality. Therefore, the effect of germination and kilning on malt quality (e.g., viscosity) as well as the volatile composition of barley, rye, and quinoa were monitored. Moreover, temporal changes on the volatile patterns of rye and quinoa at the different stages of malting were compared to barley. In total, 34 volatile compounds were quantified in the three (pseudo)cereals; the alcohol group dominated in all unprocessed samples, in particular, compounds contributing grassy notes (e.g., hexan-1-ol). These grassy compounds remained abundant during germination, whereas kilning promoted the formation of Maillard reaction volatiles associated with malty and roasted notes. The volatile profiles of kilned barley and quinoa were characterized by high concentrations of the malty Strecker aldehyde, 3-methylbutanal. In contrast, green, floral notes imparted by phenylacetaldehyde remained dominant in rye malt. Hierarchical cluster analysis of the volatile data discriminated the samples into the different stages of malting, confirmed the similarities in the volatile patterns of barley and rye, and indicated clear differences to the quinoa samples. PRACTICAL APPLICATION: In this study, the effect of germination and kilning on the chemical and volatile composition of barley, rye, and quinoa was examined. Temporal changes on the volatile patterns of rye and quinoa at different stages of malting were compared to barley. Understanding the differences among the (pseudo)cereals as well as the influence of processing on malt quality and aroma development can help find new food applications.
Collapse
Affiliation(s)
- Cynthia Almaguer
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Hubert Kollmannsberger
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Martina Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Thomas Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| |
Collapse
|
14
|
Agarwal A, Rizwana, Tripathi AD, Kumar T, Sharma KP, Patel SKS. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants (Basel) 2023; 12:1413. [PMID: 37507952 PMCID: PMC10376479 DOI: 10.3390/antiox12071413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.
Collapse
Affiliation(s)
- Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Rizwana
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Sector-2, Dwarka, New Delhi 110075, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Tarika Kumar
- Department of Environmental Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India
| | | |
Collapse
|
15
|
Jan N, Hussain SZ, Naseer B, Bhat TA. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chem X 2023; 18:100687. [PMID: 37397203 PMCID: PMC10314148 DOI: 10.1016/j.fochx.2023.100687] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 07/04/2023] Open
Abstract
Amaranth and quinoa are small-seeded grains with high nutritional and phytochemical profiles that promote numerous health benefits and offer protection against various chronic ailments including hypertension, diabetes, cancer, and cardiovascular disorders. They are classified as pseudocereals and possess significant nutritional benefits due to their abundance of proteins, lipids, fiber, vitamins, and minerals. Moreover, they exhibit an exceptional balance of essential amino acids. Despite having several health benefits, these grains have lost their popularity due to their coarse nature and are neglected in developed countries. Research and development activities are growing to explore these underutilized crops, characterizing and valorizing them for food applications. In this context, this review highlights the latest advancements in use of amaranth and quinoa as nutraceutical and functional foods, covering their bioactive substances, anti-nutritional factors, processing techniques, health benefits, and applications. This information will be valuable for planning novel research for efficient use of these neglected grains.
Collapse
|