1
|
Aradwad P, Raut S, Abdelfattah A, Rauh C, Sturm B. Brewer's spent grain: Unveiling innovative applications in the food and packaging industry. Compr Rev Food Sci Food Saf 2025; 24:e70150. [PMID: 40172248 PMCID: PMC11963836 DOI: 10.1111/1541-4337.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
Brewer's spent grain, a byproduct of beer brewing, is often discarded as waste, leading to environmental concerns. However, the growing interest in sustainability and the circular bioeconomy has prompted research into its use in food and packaging industries. The objective of this review paper is to explore recent advancements in food applications, focusing on various aspects such as processing innovations, food properties, sensory acceptability, and safety considerations. The paper highlights the role of functional bioactive compounds of BSG in food and evaluates their pharmacological activities. Additionally, it investigates the development of sustainable food-packaging materials derived from BSG, discussing their applications, challenges, and potential for eco-friendly packaging solutions. The inclusion of BSG significantly impacts the food matrix during processing, which can negatively affect the physical, rheological, and textural properties and sensory acceptability. To enhance BSGs desirability as a food ingredient, various approaches have been employed, including drying, fermentation, extrusion, and modifications using enzyme treatments, dough enhancers, and texture modifiers. BSG-derived biodegradable films and coatings demonstrate a promising potential for food-packaging applications, offering desirable properties such as sustainability and effective performance. Key challenges for adopting BSG-based solutions in food and packaging industries include limited consumer awareness, commercialization strategies, and the need for life cycle assessment and life cycle costing for successful integration and widespread adoption.
Collapse
Affiliation(s)
- Pramod Aradwad
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Indian Council of Agricultural Research, Krishi Bhavan, Dr Rajendra Prasad RdNew DelhiIndia
| | - Sharvari Raut
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- NETZSCH Grinding & Dispersing GmbH, Sedanstraße 70SelbGermany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
| | - Cornelia Rauh
- Institute of Food Biotechnology and Food Process EngineeringTechnische Universität, Straße des 17BerlinGermany
| | - Barbara Sturm
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max‐Eyth Allee 100PotsdamGermany
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural SciencesHumboldt‐Universität zu Berlin, Hinter der Reinhardtstr. 6–8BerlinGermany
| |
Collapse
|
2
|
Baiano A, Fiore A, Rutigliano M, Gatta BL. Application of a multivariate approach to the study of chemometric and sensory profiles of cookies fortified with brewers' spent grain. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:738-750. [PMID: 40109678 PMCID: PMC11914526 DOI: 10.1007/s13197-024-06064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 03/22/2025]
Abstract
This work was aimed to investigate the effects of three factors on cookie quality: brewers' spent grain (BSG) composition [65% malted barley and 35% of unmalted durum (DA) or soft (RI), or emmer (EM) wheats]; geographical origin of the cereals used in brewing (Daunia or Salento); and percentages of BSG in cookie formulation (30 or 40%). A control made of 100% Manitoba flour was produced. Statistical analyses were performed to evaluate the effects of those factors (Analysis of Variance), the possibility to distinguish the various types of cookies (Principal Component Analysis), and the relationships among variables (Pearson Correlation Analysis).The single and interactive effects of the three factors were significant for almost all variables. Cookies with 40% EM spent grains showed the highest ash, dietary fibre, and total phenolic contents but cookies with 30% DA or RI spent grains received the highest overall quality scores due to the higher intensity of their fresh baked flavour and their lower hardness and fibrousness. Based on the nutritional and sensory characteristics, cookies fortified with RI and DA were the best to consume. Although few physicochemical differences can be attributed to geographical origin, a slightly higher overall sensory score was assigned to those produced with Salento cereals. Principal Component Analysis showed a clear separation between the control made of 100% Manitoba flour and the group of fortified cookies. Among the latter, the cookies produced with RI and DA spent grains were indistinguishable from each other due to their similar quality characteristics. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06064-3.
Collapse
Affiliation(s)
- Antonietta Baiano
- Dipartimento di Scienze Agrarie, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli, 25, Alimenti, Foggia, 71122 Italy
| | - Anna Fiore
- Dipartimento di Scienze Agrarie, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli, 25, Alimenti, Foggia, 71122 Italy
| | - Mariacinzia Rutigliano
- Dipartimento di Scienze Agrarie, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli, 25, Alimenti, Foggia, 71122 Italy
| | - Barbara la Gatta
- Dipartimento di Scienze Agrarie, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli, 25, Alimenti, Foggia, 71122 Italy
| |
Collapse
|
3
|
Belardi I, De Francesco G, Alfeo V, Bravi E, Sileoni V, Marconi O, Marrocchi A. Advances in the valorization of brewing by-products. Food Chem 2025; 465:141882. [PMID: 39541688 DOI: 10.1016/j.foodchem.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Beer is the most consumed alcoholic beverage worldwide, and its production involves the generation of a huge volume of by-products (i.e., spent grain, spent hop, and spent yeast). This review aims to highlight the main properties of these by-products as a valuable source of biomolecules (i.e., proteins, cellulose, hemicellulose, lignin, phenolic compounds, and lipids) and the biorefining methods used in the last decade for their valorization. The pros and cons of the technologies employed will be shown, highlighting which of them could be more ready for the transition to an industrial scale, and which applications (e.g., food and feed, bioenergy, biochemicals, and biomaterials) are the most feasible.
Collapse
Affiliation(s)
- Ilary Belardi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Giovanni De Francesco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Bravi
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Valeria Sileoni
- Universitas Mercatorum, Piazza Mattei, 10, 00186 Rome, Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy.
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
4
|
Nicolai M, Palma ML, Reis R, Amaro R, Fernandes J, Gonçalves EM, Silva M, Lageiro M, Charmier A, Maurício E, Branco P, Palma C, Silva J, Nunes MC, Fernandes PCB, Pereira P. Assessing the Potential of Brewer's Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles. Foods 2025; 14:95. [PMID: 39796385 PMCID: PMC11719959 DOI: 10.3390/foods14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Brewers' spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties. The dietary fiber, lipid, and protein content of cookies improved considerably with the highest incorporation of BSG, increasing from 6.37% to 15.54%, 9.95% to 13.06%, and 9.59% to 12.29%, respectively. Conversely, moisture and water activity decreased from 11.03% to 3.37% and 0.742 to 0.506, respectively, forecasting a lower risk of microbial contamination and increased shelf-life. The incorporation of BSG in cookies resulted in decreased brightness and increased hardness, from 40 N to 97 N. Moreover, colorimetric shifts among the control cookies and the two BSG-rich formulations could be easily identified by an untrained observer. Sensory evaluation showed that cookies with 50% BSG retained acceptable sensory characteristics, suggesting potential for further development. Overall, BSG enhances the nutritional profile of cookies with no excessive detrimental impact on sensory features.
Collapse
Affiliation(s)
- Marisa Nicolai
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
| | - Maria Lídia Palma
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
| | - Ricardo Reis
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
| | - Rúben Amaro
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
| | - Jaime Fernandes
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
| | - Manuela Lageiro
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (J.F.); (E.M.G.); (M.L.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Adília Charmier
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Elisabete Maurício
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Patrícia Branco
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Carla Palma
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal;
| | - Joaquim Silva
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Pedro C. B. Fernandes
- BioRG—Bioengineering and Sustainability Research Group, Faculty of Engineering, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.C.); (P.B.); (J.S.); (P.C.B.F.)
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paula Pereira
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.L.P.); (E.M.); (P.P.)
- EPCV, School of Psycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.R.)
- CERENA Center for Natural Resources and Environment, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Păcală ML, Sîrbu A, Șipoș A. Non-Conventional Brewers' Spent Grains, an Alternative Raw Material in Bread-Making. Foods 2024; 13:3442. [PMID: 39517227 PMCID: PMC11544834 DOI: 10.3390/foods13213442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The main objective of this experiment was to investigate the technological potential of upcycling unsparged non-conventional brewers' spent grains (BSGs) in bread-making and assess the comparative quality of bread enriched with non-fermented and lactic acid-fermented BSGs obtained from mashes brewed with starch adjuncts of buckwheat and oats. After the runoff of the first wort, unsparged non-conventional BSGs with approximately 75% moisture, acidic pH, and yield in the soluble extract above 56.6% (w/w d.m.) were used in substituting wheat flour with 5 and 15% (w/w d.m.) in bread-making recipes. The highest loaf volume value (318.68 cm3/100 g) was observed for 5% fermented buckwheat-BSG addition. Except for the samples with 5% fermented BSGs, specific volumes decreased. Crumb moisture was reduced by up to 22% for all samples, with this parameter related to bread weight. Bread porosity, elasticity, acidity, and overall sensory acceptability were better for fermented than non-fermented BSGs. The results proved that non-conventional BSGs with buckwheat and oats addition have the potential to be valorized in new bread assortments, and lactic acid fermentation applied to the BSGs is beneficial, even for overall sensory acceptability and quality of baked end-products. Technological, buckwheat-BSG was more convenient than oats-BSG. Further research continues to optimize and upscale Technology Readiness Levels.
Collapse
Affiliation(s)
- Mariana-Liliana Păcală
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Alexandrina Sîrbu
- FMMAE Ramnicu Valcea, “Constantin Brancoveanu” University of Pitesti, 240210 Ramnicu Valcea, Romania
- Doctoral School-Plant and Animal Resources Engineering, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timișoara, Romania
| | - Anca Șipoș
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
6
|
Ruíz Suarez CB, Schalchli Sáez HL, Melo PS, Moreira CDS, Sartori AGDO, de Alencar SM, Scheuermann Salinas ES. Effect of Physical Separation with Ultrasound Application on Brewers' Spent Grain to Obtain Powders for Potential Application in Foodstuffs. Foods 2024; 13:3000. [PMID: 39335928 PMCID: PMC11431214 DOI: 10.3390/foods13183000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Brewers' spent grain (BSG) is the primary by-product of beer production, and its potential use in food products is largely dependent on its processing, given its moisture content of up to 80%. This study aimed to evaluate the effects of physical separation with ultrasound application on the color, total phenolic content (TPC), antioxidant activity, proximate composition, total dietary fibers, and particle size distribution of BSG powders. Wet BSG (W) was subjected to two processes: one without ultrasound (A) and one with ultrasound (B). Both processes included pressing, convective air-drying, sieving, fraction separation (A1 and B1 as coarse with particles ≥ 2.36 mm; A2 and B2 as fine with particles < 2.36 mm), and milling. The total color difference compared to W increased through both processes, ranging from 1.1 (B1 vs. A1) to 5.7 (B1 vs. A2). There was no significant difference in TPC, but process B powders, particularly B2, showed lower antioxidant activity against ABTS•+, likely due to the release of antioxidant compounds into the liquid fraction during pressing after ultrasound treatment. Nonetheless, process B powders exhibited a higher content of soluble dietary fibers. In conclusion, ultrasound application shows potential for further extraction of soluble fibers. However, process A might be more practical for industrial and craft brewers. Further studies on the use of the resulting BSG powders as food ingredients are recommended.
Collapse
Affiliation(s)
- Camila Belén Ruíz Suarez
- Undergraduate Program Chemical Civil Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Heidi Laura Schalchli Sáez
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
| | - Priscilla Siqueira Melo
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Carolina de Souza Moreira
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Alan Giovanini de Oliveira Sartori
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Severino Matias de Alencar
- Department of Food Science and Technology, Escola Superior de Agricultura Luiz Queiroz (ESALQ), Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil; (P.S.M.); (C.d.S.M.); (A.G.d.O.S.)
| | - Erick Sigisfredo Scheuermann Salinas
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile;
- Chemical Engineering Department, Universidad de La Frontera, Temuco CP 4780000, Chile
- Center of Food Biotechnology and Bioseparations (BIOREN), Universidad de La Frontera, Temuco CP 4780000, Chile
| |
Collapse
|
7
|
Roselli V, Pugliese G, Leuci R, Brunetti L, Gambacorta L, Tufarelli V, Piemontese L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024; 29:2682. [PMID: 38893556 PMCID: PMC11173532 DOI: 10.3390/molecules29112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.
Collapse
Affiliation(s)
- Vincenzo Roselli
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Lucia Gambacorta
- Institute of Science of Food Production (ISPA), Research National Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
8
|
Cheng J, Zheng L, Zhao J, Yu M, Cao R, Wang D, Li J, Zhou L. Study on the Effect of Microwaved Brewer's Spent Grains on the Quality and Flavor Characteristics of Bread. Foods 2024; 13:461. [PMID: 38338596 PMCID: PMC10855328 DOI: 10.3390/foods13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
To enable a wider utilization of co-products from beer processing and minimize the negative effect of added grain on bread quality, flavor, and other attributes, brewer's spent grains (BSG) are processed through microwave pretreatment, and then the microwave-treated BSG (MW-BSG) is added to bread. So far, there has been no investigation on the effect of microwave-pretreated BSG on bread quality and flavor. In this study, we examined the effects of diverse microwave treatment variables on the physicochemical structure of BSG and explored the consequences of MW-BSG on the quality and flavor of bread. The results showed that soluble dietary fiber and water-soluble protein levels in MW-BSG increased significantly (144.88% and 23.35%) at a 540 W microwave power, 3 min processing time, and 1:5 material-liquid ratio of BSG to water. The proper addition of MW-BSG positively affected the bread texture properties and color, but excessive amounts led to an irregular size and distribution of the bread crumbs. The result of electronic nose and HS-SPME-GC-MS analyses showed that the addition of MW-BSG modified the odor profile of the bread. A sensory evaluation showed mean scores ranging from 6.81 to 4.41 for bread containing 0-10% MW-BSG. Consumers found a maximum level of 6% MW-BSG acceptable. This study endeavors to decrease environmental contamination caused by brewing waste by broadening the methods by which beer co-products can be utilized through an innovative approach.
Collapse
Affiliation(s)
- Jieyi Cheng
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jinling Zhao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Meihong Yu
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Rui Cao
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Dan Wang
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Jian Li
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| | - Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing 100048, China; (J.C.); (J.Z.); (M.Y.); (R.C.); (D.W.); (J.L.)
| |
Collapse
|
9
|
Ficco DBM, Borrelli GM. Nutritional Components of Wheat Based Food: Composition, Properties, and Uses. Foods 2023; 12:4010. [PMID: 37959129 PMCID: PMC10648836 DOI: 10.3390/foods12214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Wheats (bread and durum wheats) and their main end-use products (particularly bread and pasta) have an important role in the Mediterranean diet as they substantially contribute to nutrient intake [...].
Collapse
Affiliation(s)
- Donatella Bianca Maria Ficco
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Cerealicoltura e Colture Industriali, 71122 Foggia, Italy
| | - Grazia Maria Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Cerealicoltura e Colture Industriali, 71122 Foggia, Italy
| |
Collapse
|
10
|
Ramu Ganesan A, Hoellrigl P, Mayr H, Martini Loesch D, Tocci N, Venir E, Conterno L. The Rheology and Textural Properties of Bakery Products Upcycling Brewers' Spent Grain. Foods 2023; 12:3524. [PMID: 37835177 PMCID: PMC10572393 DOI: 10.3390/foods12193524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to evaluate the rheological properties of doughs with 50% brewers' spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G' > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G', G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway;
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Philipp Hoellrigl
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Hannah Mayr
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Demian Martini Loesch
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Noemi Tocci
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Elena Venir
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Lorenza Conterno
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| |
Collapse
|
11
|
Chetrariu A, Dabija A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023; 12:foods12071533. [PMID: 37048354 PMCID: PMC10094003 DOI: 10.3390/foods12071533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Spent grain is the solid fraction remaining after wort removal. It is nutritionally rich, composed of fibers—mainly hemicellulose, cellulose, and lignin—proteins, lipids, vitamins, and minerals, and must be managed properly. Spent grain is a by-product with high moisture, high protein and high fiber content and is susceptible to microbial contamination; thus, a suitable, cost-effective, and environmentally friendly valorization method of processing it is required. This by-product is used as a raw material in the production of many other food products—bakery products, pasta, cookies, muffins, wafers, snacks, yogurt or plant-based yogurt alternatives, Frankfurter sausages or fruit beverages—due to its nutritional values. The circular economy is built on waste reduction and the reuse of by-products, which find opportunities in the regeneration and recycling of waste materials and energy that become inputs in other processes and food products. Waste disposal in the food industry has become a major issue in recent years when attempting to maintain hygiene standards and avoid soil, air and water contamination. Fortifying food products with spent grain follows the precepts of the circular bio-economy and industrial symbiosis of strengthening sustainable development. The purpose of this review is to update information on the addition of spent grain to various foods and the influence of spent grain on these foods.
Collapse
Affiliation(s)
- Ancuța Chetrariu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|