1
|
Hachfi Soussi R, Ben Messaoud G, Rousseau F, Hamon P, Famelart MH, Bouhallab S. Viscoelastic and flow behaviour of β-lactoglobulin/lactoferrin coacervates: Influence of temperature and ionic strength. Int J Biol Macromol 2025; 292:139121. [PMID: 39719241 DOI: 10.1016/j.ijbiomac.2024.139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Heteroprotein complex coacervation has potential for a wide range of applications. However, the sensitivity of coacervates to slight changes in physico-chemical conditions may constitute a technological barrier for their development and deserves to be better understood. In this study, the rheological properties of β-lactoglobulin/lactoferrin (βLG/LF) heteroprotein complex coacervates were investigated with respect to narrow changes of temperature (5-40 °C) and ionic strength (0 to 10 mM added NaCl). The apparent viscosity of βLG/LF coacervates prepared at 20 °C showed a high sensitivity to temperature, decreasing progressively at elevated temperatures. Frequency sweep experiments demonstrated that coacervates behave as a viscoelastic liquid throughout the investigated frequency range at T>10°C. Time-temperature superposition principle revealed that the interaction involved in the coacervation process were temperature-independent. The calculated activation energy was approximately 85 kJ/mol. The addition of NaCl (up to 10mM) prior to coacervation, resulted in an increase of the viscosity but did not show a clear trend in the evolution of viscoelastic moduli. These new insights allow a better understanding of the interactions involved in concentrated protein coacervates enabling better control over their potential uses.
Collapse
Affiliation(s)
- Rima Hachfi Soussi
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Ghazi Ben Messaoud
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France.
| | - Florence Rousseau
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Pascaline Hamon
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | | | - Saïd Bouhallab
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| |
Collapse
|
2
|
Vinterbladh I, Soussi RH, Forsman J, Bouhallab S, Lund M. Strong electrostatic attraction drives milk heteroprotein complex coacervation. Int J Biol Macromol 2025; 286:137790. [PMID: 39603294 DOI: 10.1016/j.ijbiomac.2024.137790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Coacervates of oppositely charged milk proteins are used in functional food development, mainly to encapsulate bioactives. To uncover the driving forces behind coacervates formation, we study the association of lactoferrin and β-lactoglobulin at amino-acid level detail, using molecular simulations. Our findings show that inter-protein electrostatic interactions dominate and are, surprisingly, equally divided between an isotropic part, due to monopole-monopole attraction of the oppositely charged proteins, and an anisotropic part due to uneven surface charge distributions. In good agreement with recent experimental association constants, the calculated protein-protein interaction free energy is strongly dependent on pH and salt concentration. In addition to thermodynamics, we also investigate amino acid contacts in microstates of trimeric and pentameric protein complexes, and identify interaction hot-spots that drive heteroprotein complex coacervation process.
Collapse
Affiliation(s)
- Isabel Vinterbladh
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden.
| | - Rima Hachfi Soussi
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, 35042 Rennes, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Jan Forsman
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden
| | - Said Bouhallab
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, 35042 Rennes, France
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden; LINXS - Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 SE-Lund, Sweden.
| |
Collapse
|
3
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
4
|
Chen R, Ding J, Li Y, Zhang Y, Yang R. Lactoferrin-Based Heteroprotein Systems, From Their Formation Mechanism, Properties, To Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21986-22000. [PMID: 39316720 DOI: 10.1021/acs.jafc.4c05298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Lactoferrin (LF) is an important iron-binding glycoprotein found in milk and mucosal secretions. The alkaline lactoferrin can interact with some acidic proteins to form heteroprotein systems with multifunctional properties and a wide range of applications. Lactoferrin can interact with animal and plant proteins mainly through the electrostatic forces, dipolar attraction, and hydrophobic interactions. In this review, the types of heteroprotein complexes formed by the complex coacervation of lactoferrin with other proteins are introduced, including the preparation, structure, and applications. The factors affecting the formation of heteroprotein complexes are described, such as pH, ionic strength, mixing ratio, total protein concentration, and temperature. The issues and challenges in the formation of heteroprotein complexes are also discussed.
Collapse
Affiliation(s)
- Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jiaqi Ding
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, P. R. China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
5
|
Ghelichi S, Sørensen ADM, Náthia-Neves G, Jacobsen C. pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach. Mar Drugs 2024; 22:413. [PMID: 39330294 PMCID: PMC11433066 DOI: 10.3390/md22090413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
This study employed a diverse approach to extract antioxidant peptides from red seaweed Palmaria palmata, recognized for its comparatively high protein content. Initially, an aqueous extraction of the entire seaweed was performed, followed by enzymatic hydrolysis of the solid residues prepared from the first step. The effects of three different pH levels (3, 6, and 9) during the aqueous extraction were also examined. Results indicated that the solid fraction from the sequential extraction process contained significantly higher levels of proteins and amino acids than other fractions (p < 0.05). Furthermore, the solid fractions (IC50 ranging from 2.29 to 8.15 mg.mL-1) demonstrated significantly greater free radical scavengers than the liquid fractions (IC50 ranging from 9.03 to 10.41 mg.mL-1 or not obtained at the highest concentration tested) at both stages of extraction (p < 0.05). Among the solid fractions, those produced fractions under alkaline conditions were less effective in radical scavenging than the produced fractions under acidic or neutral conditions. The fractions with most effective metal ion chelating activity were the solid fractions from the enzymatic stage, particularly at pH 3 (IC50 = 0.63 ± 0.04 mg.mL-1) and pH 6 (IC50 = 0.89 ± 0.07 mg.mL-1), which were significantly more effective than those from the initial extraction stage (p < 0.05). Despite no significant difference in the total phenolic content between these solid fractions and their corresponding liquid fractions (3.79 ± 0.05 vs. 3.48 ± 0.02 mg.mL-1 at pH 3 and 2.43 ± 0.22 vs. 2.51 ± 0.00 mg.mL-1 at pH 6) (p > 0.05), the observed antioxidant properties may be attributed to bioactive amino acids such as histidine, glutamic acid, aspartic acid, tyrosine, and methionine, either as free amino acids or within proteins and peptides.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|