1
|
Alvanoudi P, Kalogeropoulou A, Nenadis N, Stathopoulos P, Skaltsounis AL, Mantzouridou FT. Comparative study of Spanish-style and natural cv. Chalkidiki green olives throughout industrial-scale spontaneous fermentation and 12-month storage: safety, nutritional and quality aspects. Food Res Int 2024; 191:114710. [PMID: 39059960 DOI: 10.1016/j.foodres.2024.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Table olives are among the most popular fermented foods and cv. Chalkidiki green table olives are particularly popular in both Greek and international markets. This work aimed at comparatively investigating the effect of processing method on the production of Spanish-style and natural cv. Chalkidiki green olives during fermentation and 12-month storage in brines with different chloride salts composition (NaCl, KCl, CaCl2) at industrial scale. All delivered products were safe with satisfactory color and texture characteristics. Employment of UPLC-HRMS revealed differences in metabolites' profile of polar extracts from olives and brines between the processing methods. Τhe application of alkali treatment drastically decreased the content of hydroxytyrosol and tyrosol in drupes, still an essential amount (1037-2012 and 385-885 mg/kg dry flesh, respectively) of these health-promoting phenolic compounds was retained in all products, even after storage. Noteworthy, fermentation of natural olives in brine (5 % NaCl) yielded in products with significantly lower Na levels in olive flesh (1.7 g/100 g), followed by Spanish-style olives fermented in low (4 %) and high (8 %) NaCl brines (2.7 and 5.2 g Na/100 g, respectively), supporting the efforts toward the establishment of table olives as functional food. Moreover, maslinic and oleanolic acids content was 1.5-2-fold higher in the natural table olives compared to the Spanish-style ones owing to the detrimental effect of alkali treatments. The processing method did not exert a differential effect on α-tocopherol content of olives. Sensory analysis indicated that all the final products were acceptable by consumers, with a slight preference for Spanish-style green olives fermented in brines with 50 % lower NaCl content. Present findings could be beneficial to the ongoing endeavor directed for the establishment of table olives as a source of bioactive compounds that concerns both industrial and scientific communities.
Collapse
Affiliation(s)
- Panagiota Alvanoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Aggeliki Kalogeropoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Stathopoulos
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Cappato LP, Dias-Martins AM, Meireles IMDF, Ferreira EHDR, Lemos Junior WJF, Rosenthal A. Modeling the Thermal Inactivation of Monascus ruber Ascospores Isolated from Green Olive ( Arauco Cultivar) Storage Brine: An Alternative Strategy to Reduce Antifungal Chemical Agents. Foods 2024; 13:1881. [PMID: 38928822 PMCID: PMC11202498 DOI: 10.3390/foods13121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Monascus ruber is an important fungus that causes spoilage in table olives, resulting in the darkening of the brine, the softening of the fruit, increased pH, and apparent mycelial growth. This study aimed to evaluate this resistance, providing a model to determine the optimal processing conditions for mitigating fungal contamination and prolonging shelf life without antifungal agents while optimizing pasteurization to reduce energy consumption. The resistance in brine (3.5% NaCl; pH 3.5) from Arauco cultivar green olives imported from Argentina was assessed. Four predictive models (log linear, log linear + shoulder, log linear + tail, log linear + shoulder + tail) estimated kinetic parameters for each survival curve. Log linear + shoulder + tail provided the best fit for 70 °C and 75 °C, with low RMSE (0.171 and 0.112) and high R2 values (0.98 and 0.99), respectively, while the log linear model was used for 80 °C. Decimal reduction times at 70, 75, and 80 °C were 24.8, 5.4, and 1.6 min, respectively, with a z-value of 8.2 °C. The current regulatory processes are insufficient to eliminate M. ruber at requisite levels, considering reduced antifungal agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Amauri Rosenthal
- Embrapa Food Technology, Av. das Américas, Rio de Janeiro 23020-470, Brazil
| |
Collapse
|
3
|
Alfonzo A, Alongi D, Prestianni R, Pirrone A, Naselli V, Viola E, De Pasquale C, La Croce F, Gaglio R, Settanni L, Francesca N, Moschetti G. Enhancing the quality and safety of Nocellara del Belice green table olives produced using the Castelvetrano method. Food Microbiol 2024; 120:104477. [PMID: 38431323 DOI: 10.1016/j.fm.2024.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
The Castelvetrano method is the most widely used among the various table olive processing styles in Sicily. After debittering, the product is stored at low temperatures to prevent the growth of undesirable microorganisms. In an effort to enhance the production process, yeast isolates underwent genotypic characterization and technological screening. The screening process identified two yeast strains Candida norvegica OC10 and Candida boidinii LC1, which can grow at low temperatures and tolerate high pH values (up to 10) and salinity [10% (w/v)]. During the monitoring period, the inoculated trials showed limited presence of spoilage/pathogenic microorganisms. Additionally, the yeasts limited oxidative phenomena and softening of the drupes. The organic compounds detected were higher in the inoculated trials than in the control, and cold storage induced aromatic decay, which was less pronounced in the trial inoculated with C. norvegica. Sensory analysis revealed that the inoculated trials scored higher in sweetness, hardness and crispness.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Davide Alongi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Claudio De Pasquale
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Francesco La Croce
- Geolive Belice S.r.l., S.S. 115 Km Dir, Marinella, Castelvetrano, 91022, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy.
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale Delle Scienze Bldg. 5, Ent. C, 90128, Palermo, Italy
| |
Collapse
|
4
|
Ucak S. Determination of Bacterial Community Structure of Table Olive via Metagenomic Approach in Şarköy. Chem Biodivers 2024; 21:e202302120. [PMID: 38613509 DOI: 10.1002/cbdv.202302120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
One of the most popular pickled foods created worldwide is table olives. The aim was to identify the bacterial microbiota of table olive samples collected from Şarköy, Tekirdağ-Türkiye using next generation sequencing and 16S metagenomic analysis. Samples were studied as non-pre-enriched (n : 10) and after pre-enrichment (n : 10) to compare the effects of the enrichment process on the bacterial diversity. In non-pre-enriched, the most common genus found was Sphingomonas, followed by Altererythrobacter and Lysobacter. The most common phylum found was Proteobacteria, followed by Bacteroidota and Actinobacteria. In pre-enriched, Bacillus was the most commonly detected genus, followed by Pantoea and Staphylococcus. The most frequently found phylum was Firmicutes, followed by Proteobacteria and Cyanobacteria. This study is the first study for Şarköy, which is the only table olive production place in the Tekirdağ region due to its microclimate feature. Further studies are needed in more table olive samples from different geographical areas to confirm and develop current findings.
Collapse
Affiliation(s)
- Samet Ucak
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydın University, Istanbul, 34295, Türkiye
| |
Collapse
|
5
|
Benítez-Cabello A, Delgado AM, Quintas C. Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods 2023; 12:3712. [PMID: 37835365 PMCID: PMC10572816 DOI: 10.3390/foods12193712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Climate change is a global emergency that is affecting agriculture in Mediterranean countries, notably the production and the characteristics of the final products. This is the case of olive cultivars, a source of olive oil and table olives. Table olives are the most important fermented vegetables in the Mediterranean area, whose world production exceeds 3 million tons/year. Lactic acid bacteria and yeast are the main microorganisms responsible for the fermentation of this product. The microbial diversity and population dynamics during the fermentation process are influenced by several factors, such as the content of sugars and phenols, all of which together influence the quality and safety of the table olives. The composition of fruits is in turn influenced by environmental conditions, such as rainfall, temperature, radiation, and the concentration of minerals in the soil, among others. In this review, we discuss the effect of climate change on the microbial diversity of table olives, with special emphasis on Spanish and Portuguese cultivars. The alterations expected to occur in climate change scenario(s) include changes in the microbial populations, their succession, diversity, and growth kinetics, which may impact the safety and quality of the table olives. Mitigation and adaptation measures are proposed to safeguard the authenticity and sensorial features of this valuable fermented food while ensuring food safety requirements.
Collapse
Affiliation(s)
- Antonio Benítez-Cabello
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra, Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Célia Quintas
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| |
Collapse
|