1
|
Ding W, Liu Y, Liu Y, Wang G, Liu X, Peng X, Li H, Li Z. Research Progress in Nutritional Components, Biological Activity, and Processing and Utilization of Chenopodium quinoa Willd. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:411-427. [DOI: 10.1021/acsfoodscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Wei Ding
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yue Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yingqi Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Guizhen Wang
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xianjun Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xinli Peng
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Hao Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Zhandong Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| |
Collapse
|
2
|
Zhang X, Zheng C, Ge W, Li X, Wang X, Sun Y, Wu X. Preparation and analysis of quinoa active protein (QAP) and its mechanism of inhibiting Candida albicans from a transcriptome perspective. PeerJ 2025; 13:e18961. [PMID: 39963196 PMCID: PMC11831975 DOI: 10.7717/peerj.18961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
The globe cultivation and industrial production of quinoa have been steadily increasing. Nevertheless, the full potential of quinoa's nutritional and economic benefits remains underexploited. This study investigates the isolation and purification of quinoa active protein (QAP) through the precipitation method using ammonium sulfate from a phosphate extraction solution. The purification process involved gel filtration chromatography with Sephadex G-75 and Sephadex G-50 columns to obtain QAP fractions exhibiting inhibitory effects against Candida albicans (C. albicans). A comprehensive series of experiments was undertaken to examine the antifungal properties of these fractions. Proteomic analysis was employed to elucidate the composition of the active proteins. Furthermore, the activities of succinate dehydrogenase, Ca2+-Mg2+-ATPase, and catalase in C. albicans following treatment with QAP were quantified using an enzyme-linked immunosorbent assay. The effects of QAP on the cell morphology of C. albicans cultured on Spider agar medium was further investigated using scanning electron microscopy (SEM). Furthermore, RNA-seq analysis was conducted to investigate the alterations in gene expression in C. albicans cells subjected to QAP treatment. To elucidate the functional significance of these expression changes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. Quantitative real-time polymerase chain reaction was subsequently employed to validate the observed changes in gene expression. Our findings demonstrate that QAP exhibits inhibitory effects against C. albicans, with a minimum inhibitory concentration of 182 µg/mL. Through proteomic analysis, a definitive set of 18 active quinoa proteins was identified. At the molecular level, genes associated with hyphal development, cell wall and membrane integrity, cellular respiration, and energy metabolism were found to be enriched. Protein-protein interaction (PPI) analysis revealed that these QAP inhibit the growth of C. albicans hyphae, compromise cell wall and membrane integrity, and suppress oxidative phosphorylation. These disruptions collectively impair normal cellular metabolic activities, thereby exerting an inhibitory effect on C. albicans.
Collapse
Affiliation(s)
- Xufei Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Chunmei Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Wenxuan Ge
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xueying Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xiuzhang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Bai H, Wu Y, Ma Y, Xuan D, Du W, Liu F, Zhao X. Discrete element model construction and dehulling simulation verification based on harvested quinoa grains. J Food Sci 2024; 89:9336-9353. [PMID: 39654438 DOI: 10.1111/1750-3841.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/12/2024] [Accepted: 10/13/2024] [Indexed: 12/28/2024]
Abstract
The dry dehulling process of quinoa grains faces challenges such as poor visibility and unclear dynamic response characteristics, leading to irrational settings of the shelling process and high losses of the final processed product. Simulation methods provide an effective solution to this issue, with the accuracy of the simulation model being crucial. In this study, using the Experts in Discrete Element Modeling (EDEM) simulation software, based on the biological characteristics and mechanical properties of the grains, a method was proposed to construct a discrete-element simulation model for the double-layer bonding of the quinoa grain using the three-axis spatial coordinates method. The Plackett-Burman method, the steepest rise method and the Box-Behnken method were used to simulate the compression test. The bonding parameters of the quinoa grain were calibrated. The parameters were further validated by constructing a mechanical shear test. Finally, the process of the dehulling quinoa grain was simulated in a dry dehulling equipment. The results showed that the relative error between the simulated and actual maximum compression force of the quinoa grains was 0.32%. The breaking shear force in the simulation had a relative error of no more than 5% compared to the actual measurements. In the simulation, the dehulling rate and broken rice rate were 78.54% and 1.38%, respectively, which exceeded the bench test values (75.32% for dehulling rate and 1.24% for broken rice rate) by 3.22% and 0.14%, respectively. The error was within the acceptable range. The calibration of the discrete element model parameters for quinoa grains was accurate, reflecting the mechanical properties differences between the rice and the pericarp effectively, providing a reliable basis for optimizing the design of dry dehulling mechanisms.
Collapse
Affiliation(s)
- Hongbin Bai
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingsi Wu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yiming Ma
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Dezheng Xuan
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenliang Du
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Fei Liu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuan Zhao
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Pietrysiak E, Zak A, Ikuse M, Nalbandian E, Kloepfer I, Hoang L, Vincent M, Jeganathan B, Ganjyal GM. Impact of genotypic variation and cultivation conditions on the techno-functional characteristics and chemical composition of 25 new Canadian quinoa cultivars. Food Res Int 2024; 195:114903. [PMID: 39277215 DOI: 10.1016/j.foodres.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
The utilization of quinoa in food production requires comprehensive information on its processing characteristics. Twenty-five new quinoa cultivars developed by the Northern Quinoa Breeding Program, grown in three Canadian locations over two seasons, were characterized for their proximate composition, pasting properties, thermal properties, water absorption index, water solubility index, foaming capacity, foaming stability, oil holding capacity, and emulsion activity crucial for potential food applications. Results showed significant variations in the proximate composition among the cultivars, which was also influenced by the growing location and harvest year. Significant differences (p < 0.05) were also observed in the pasting properties, thermal stability, hydration properties, foaming properties, oil holding capacity, and emulsion activity. The hierarchical cluster and principal component analyses were associated with five distinct clusters of quinoa cultivars, each with unique techno-functional attributes, suggesting their potential for different food applications. These findings emphasize the need for further research to explore the performance of quinoa flours in specific food products and their impact on end-product quality.
Collapse
Affiliation(s)
| | - Angelika Zak
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marina Ikuse
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | | | - Ivy Kloepfer
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Luuvan Hoang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marc Vincent
- Northern Quinoa Production Corporation, Saskatoon, SK S7P 0E6, Canada
| | - Brasathe Jeganathan
- School of Food Science, Washington State University, Pullman, WA 99164, USA; Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
5
|
Huo J, Feng T, Shang H, Guo C, Wu T, Chu M, Zhao H, Wu E, Li H, Wang S, Wei D. Non-targeted metabolomics reveals the characteristics of the unique bitterness substances in quinoa. Heliyon 2024; 10:e37133. [PMID: 39296137 PMCID: PMC11409112 DOI: 10.1016/j.heliyon.2024.e37133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Bitterness is a key factor that affects the consumption of quinoa products, even if they are nutritious. In this study, a non-targeted metabolomics approach based on UHPLC-Orbitrap-MS was applied to comprehensively profile the characteristic metabolites of twenty-two quinoas. A total of twenty key metabolites were identified correlated with bitterness, among which, fifteen were triterpenoid saponins. In addition, these metabolites bind to the active site of the human bitter taste receptor and are the main compounds that produce the bitter taste of quinoa. Our results contribute to a deeper understanding of the origin of quinoa bitterness and provide directions for optimizing its flavor to improve market acceptance.
Collapse
Affiliation(s)
- Junqi Huo
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Tingting Feng
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Heting Shang
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Chen Guo
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Tianyu Wu
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Mingjuan Chu
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Huixin Zhao
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Erbin Wu
- Zhangjiakou Animal Health Supervision Institute, Zhangjiakou, 075000, China
| | - Hui Li
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
- Hebei North University Zhangjiakou City Key Laboratory of Quality and Safety of Special Agricultural Products, Zhangjiakou, 075000, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, 300350, China
| | - Dong Wei
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| |
Collapse
|
6
|
Galindo-Luján R, Pont L, Quispe F, Sanz-Nebot V, Benavente F. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Combined with Chemometrics for Protein Profiling and Classification of Boiled and Extruded Quinoa from Conventional and Organic Crops. Foods 2024; 13:1906. [PMID: 38928847 PMCID: PMC11203106 DOI: 10.3390/foods13121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry.
Collapse
Affiliation(s)
- Rocío Galindo-Luján
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
- Serra Húnter Program, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Fredy Quispe
- National Institute of Agricultural Innovation (INIA), Lima 15024, Peru;
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain; (R.G.-L.); (L.P.); (V.S.-N.)
| |
Collapse
|
7
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
8
|
Niu H, Zhao F, Ji W, Ma L, Lu B, Yuan Y, Yue T. Structural, physicochemical properties and noodle-making potential of quinoa starch and type 3, type 4, and type 5 quinoa resistant starch. Int J Biol Macromol 2024; 258:128772. [PMID: 38103670 DOI: 10.1016/j.ijbiomac.2023.128772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
This study prepared type 3, type 4, and type 5 quinoa resistant starch (QRS3, QRS4, and QRS5) from quinoa starch (QS), compared their structural and physicochemical properties and evaluated their noodle-making potential. The results showed that the molecular weight of QRS3 decreased, the number of short-chain molecules increased, and its crystal type changed to B-type after gelatinization, enzymatic hydrolysis, and retrogradation. QRS4 is a phosphorylated cross-linked starch, with a surface morphology, particle size range, and crystal type similar to QS, but displaying modified thermodynamic properties. QRS5 is a complex of amylose and palmitic acid. It displays typical V-type crystals, mainly composed of long chain molecules and primarily exhibits a block morphology. The noodles prepared by replacing 20 % wheat flour with QS, QRS3 and QRS5 have higher hardness and are suitable for people who like elasticity and chewiness. QRS4 noodles are softer and suitable for people like elderly and infants who prefer soft foods. In conclusion, significant differences were evident between the fine structures, crystal types, physicochemical properties and potential applications of QS and the three QRSs. The results may expand the application of QS and QRS in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Wenxin Ji
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Langtian Ma
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Bozhi Lu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
9
|
Abdel-Aal ESM. Legumes and Cereals: Physicochemical Characterization, Technical Innovation and Nutritional Challenges. Foods 2023; 13:5. [PMID: 38201033 PMCID: PMC10778197 DOI: 10.3390/foods13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Legume dry seeds (pulses) and cereal kernels or caryopses (grains) are staple foods worldwide and the primary supply of energy, protein, and fiber in our diet [...].
Collapse
Affiliation(s)
- El-Sayed M Abdel-Aal
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
10
|
Afzal I, Haq MZU, Ahmed S, Hirich A, Bazile D. Challenges and Perspectives for Integrating Quinoa into the Agri-Food System. PLANTS (BASEL, SWITZERLAND) 2023; 12:3361. [PMID: 37836099 PMCID: PMC10574050 DOI: 10.3390/plants12193361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Quinoa is a highly nutritious and abiotic stress-tolerant crop that can be used to ensure food security for the rapidly growing world population under changing climate conditions. Various experiments, based on morphology, phenology, physiology, and yield-related attributes, are being conducted across the globe to check its adoptability under stressful environmental conditions. High weed infestation, early stand establishment, photoperiod sensitivity, loss of seed viability after harvest, and heat stress during its reproductive stage are major constraints to its cultivation. The presence of saponin on its outer surface is also a significant restriction to its local consumption. Scientists are using modern breeding programs, such as participatory approaches, to understand and define breeding goals to promote quinoa adaptation under marginalized conditions. Despite its rich nutritional value, there is still a need to create awareness among people and industries about its nutritional profile and potential for revenue generation. In the future, the breeding of the sweet and larger-grain quinoa varietals will be an option for avoiding the cleaning of saponins, but with the risk of having more pests in the field. There is also a need to focus on mechanized farming systems for the cultivation, harvesting, and processing of quinoa to facilitate and expand its cultivation and consumption across the globe, considering its high genetic diversity.
Collapse
Affiliation(s)
- Irfan Afzal
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Shahbaz Ahmed
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune 70000, Morocco;
| | - Didier Bazile
- CIRAD, SENS, F-34398 Montpellier, France
- SENS, CIRAD, IRD, University Paul Valery Montpellier 3, University Montpellier, 34090 Montpellier, France
| |
Collapse
|
11
|
Agarwal A, Rizwana, Tripathi AD, Kumar T, Sharma KP, Patel SKS. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants (Basel) 2023; 12:1413. [PMID: 37507952 PMCID: PMC10376479 DOI: 10.3390/antiox12071413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.
Collapse
Affiliation(s)
- Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Rizwana
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Sector-2, Dwarka, New Delhi 110075, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Tarika Kumar
- Department of Environmental Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, India
| | | |
Collapse
|