1
|
Gouda M, Alqahtani NK, Abou Taleb MF, Alali I, Abd El-Lateef HM. Development and characterization of sustainable chitosan film enriched with ashwagandha extract as an alternative packaging material for enhancing shelf life of fresh-cut fruits. RSC Adv 2025; 15:12472-12493. [PMID: 40248239 PMCID: PMC12005079 DOI: 10.1039/d5ra01102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
The current study aimed to develop biodegradable chitosan (Cs) films enriched with Ashwagandha (ASH) extract as an active packaging material to extend the shelf life of fresh-cut strawberries. The ASH extract, obtained through methanolic extraction, demonstrated significant antimicrobial and antioxidant activities, as confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), which identified 12 bioactive compounds, including n-hexadecanoic acid (30.42%) and cis-13-octadecenoic acid (31.68%). The ASH loaded Cs films, prepared at varying concentrations of ASH extract, were characterized for surface morphology, water vapor transmission rate (WVTR), oxygen permeability (OP), and water contact angle (WCA). The films' hydrophilicity was improved with increasing ASH concentration, reducing the WCA from 112.4° (Cs) to 77.3° (ASH6/Cs). Antibacterial evaluation of the ASH3/Cs film revealed potent inhibition against Salmonella typhi (35.49 mm), Pseudomonas aeruginosa (34.85 mm), Bacillus subtilis (31.64 mm), Listeria monocytogenes (31.71 mm), and Candida albicans (29.25 mm). When tested over a 9-day storage period, the ASH3/Cs film effectively preserved fresh-cut strawberries, reducing microbial growth, weight loss, and decay compared to polyethylene (PE) packaging. These results highlight the potential of ASH3/Cs film as a sustainable and efficient alternative for food packaging, offering enhanced preservation and safety for perishable fruits.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Nashi K Alqahtani
- Date Palm Research Center of Excellence, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| |
Collapse
|
2
|
Chen H, Zhou Z, Zheng B, Yang H, Chen Y, Huang Y, Zhang N, Zhang X, Xiao M, Ye J, Yang Y. Development and characterization of biodegradable water- and oil-resistant coatings based on derivatized cellulose, sodium alginate, and shellac for paper-based packaging. Int J Biol Macromol 2025; 303:140490. [PMID: 39894111 DOI: 10.1016/j.ijbiomac.2025.140490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
As environmental awareness grows, developing non-toxic, environmentally friendly, and biodegradable water- and oil-resistant coating layers using bio-based materials for paper-based packaging has become a key field of research. In this work, sodium alginate (SA) and sodium carboxymethyl cellulose (CMC) were used as the oil-resistant coating layer, while shellac (LAC) and ethyl cellulose (EC) formed the water-resistant coating layer, to produce a water- and oil-resistant coated paper. The effect of the mass ratio of these materials on performance was analyzed, demonstrating that the interaction between SA and CMC enhances the compactness of coating, thereby improving oil resistance. Similarly, the addition of LAC to EC increases coating compactness, which improves water resistance. The resulting coated paper has excellent water resistance (Cobb value: 3.42 g/m2) and oil resistance (Kit rating: 12/12) and shows no leakage after holding hot water and hot oil for 30 min, indicating good resistance to both. Additionally, the coated paper demonstrates good mechanical properties, thermal stability, biodegradability and recyclability. The materials used are widely available and low-cost, and the preparation method is straightforward, making this research highly valuable for advancing paper-based packaging materials.
Collapse
Affiliation(s)
- Haixin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Ziyun Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Bingde Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Hongjie Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yi Chen
- Greenfresh (Fujian) Foodstuff Co., Ltd., Zhangzhou, Fujian 363199, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
3
|
Genet MB, Zhuang X, Tan X, Zhang Q, Miao C, Zhang Z, Jembere AL. Cellulose nanocrystal-based synthetic biodegradable biopolymeric composites: A comprehensive review on recent progress. Int J Biol Macromol 2025; 299:140098. [PMID: 39848381 DOI: 10.1016/j.ijbiomac.2025.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
With the worldwide transformation to a circular and low-carbon economy, the demand for sustainable materials has skyrocketed in recent years. Of various methods, sustainable and biodegradable biopolymers derived from renewable bioresources have received significant interest. Synthetic biodegradable biopolymers offer tremendous advantages over natural biodegradable biopolymers due to their stability, flexibility, and a wide range of achievable properties to fit several applications. However, the widespread adoption of synthetic biodegradable polymers in high-performance applications is limited by shortcomings in their functional properties. Researchers are actively working to enhance the properties of these materials. A potential solution to improve the performance of biopolymers is to reinforce them with cellulose nanocrystals (CNCs). This review delves into the inclusion of CNCs into synthetic biodegradable biopolymer blends, examining their impact on the mechanical, thermal, morphological, rheological, and barrier properties. Surface modification of CNCs promotes a uniform distribution and strong bonding with the polymer matrix which is pivotal to unlocking their outstanding properties. Moreover, this review highlights the promising potential of CNCs to enhance the performance of synthetic biodegradable composites for a more sustainable future, particularly in packaging applications.
Collapse
Affiliation(s)
- Melkamu Birlie Genet
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia.
| | - Xinshu Zhuang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Xuesong Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Quan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Changlin Miao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Addis Lemessa Jembere
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia; Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
4
|
Teixeira SC, de Oliveira TV, de Fátima Ferreira Soares N, Raymundo-Pereira PA. Sustainable and biodegradable polymer packaging: Perspectives, challenges, and opportunities. Food Chem 2025; 470:142652. [PMID: 39787764 DOI: 10.1016/j.foodchem.2024.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
The escalating environmental impact of non-biodegradable plastic waste has intensified global efforts to seek sustainable alternatives, with biodegradable polymers from renewable sources emerging as a promising solution. This manuscript provides the current perspectives, challenges, and opportunities within the field of sustainable and biodegradable packaging. Despite a significant market presence of conventional non-biodegradable petrochemical-based plastics, there is a growing trend towards the adoption of bio-based polymers from renewable resources driven by environmental sustainability and regulatory measures. However, the transition to biodegradable packaging is fraught with challenges, including scalability, cost-effectiveness, technological limitations, comprehensive waste management systems, and infrastructural needs. The manuscript highlights the intrinsic technological challenges and the need for advancements in material science to enhance the performance and adoption of biodegradable packaging. This paper also supply insights into the development and implementation of biodegradable packaging, offering a comprehensive overview of its role in achieving global sustainability goals.
Collapse
Affiliation(s)
- Samiris Côcco Teixeira
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Taíla Veloso de Oliveira
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Nilda de Fátima Ferreira Soares
- Food Technology Department, Universidade Federal de Viçosa, Avenida PH Holfs s/n, Campus Universitário, 36570-000 Viçosa, Minas Gerais, Brazil.
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, CEP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Amoah C, Skene WG. Survey of Sustainable Wearable Strain Sensors Enabled by Biopolymers and Conductive Organic Polymers. Gels 2025; 11:235. [PMID: 40277671 DOI: 10.3390/gels11040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
The field of wearable sensors has evolved with operating devices capable of measuring biomechanics and biometrics, and detecting speech. The transduction, being the conversion of the biosignal to a measurable and quantifiable electrical signal, is governed by a conductive organic polymer. Meanwhile, the conformality of skin to the substrate is quintessential. Both the substrate and the conductive polymer must work in concert to reversibly deform with the user's movements for motion tracking. While polydimethylsiloxane shows mechanical compliance as a sensor substrate, it is of environmental interest to replace it with sustainable and degradable alternatives. As both the bulk of the weight and area of the sensor consist of the substrate, using renewable and biodegradable materials for its preparation would be an important step toward improving the lifecycle of wearable sensors. This review highlights wearable resistive sensors that are prepared from naturally occurring polymers that are both sustainable and biodegradable. Conductive polythiophenes are also presented, as well as how they are integrated into the biopolymer for sensors showing mechanical compliance with skin. This polymer is highlighted because of its structural conformality, conductivity, and processability, ensuring it fulfils the requirements for its use in sensors without adversely affecting the overall sustainability and biodegradability of resistive sensors. Different sustainable resistive sensors are also presented, and their performance is compared to conventional sensors to illustrate the successful integration of the biosourced polymers into sensors without comprising the desired elasticity and sensitivity to movement. The current state-of-the-art in sustainable resistive sensors is presented, along with knowledge of how biopolymers from different fields can be leveraged in the rational design of the next generation of sustainable sensors that can potentially be composted after their use.
Collapse
Affiliation(s)
- Cephas Amoah
- Département de Chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - W G Skene
- Département de Chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
- Institut Courtois, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
6
|
Al-Hammood O, Oladzadabbasabadi N, Mohammed AH, Al-Musawi MH, PourvatanDoust S, Ghorbani M. Electrospun-modified xanthan gum nanofibers enhanced with nisin for food packaging applications. Int J Biol Macromol 2025; 307:141961. [PMID: 40074136 DOI: 10.1016/j.ijbiomac.2025.141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker. Conversely, nisin reduced MC to 25.13 ± 0.93 %, WS to 43.45 ± 4.32 %, and increased porosity to 61.5 ± 4.25 % and WVP to 1.75 ± 0.08 × 103 g/h·m2·Pa. Tensile strength significantly improved with higher nisin concentrations, rising from 10.8 ± 2.35 MPa to 20.31 ± 2.94 MPa, attributed to Schiff base crosslinking. Additionally, nisin-containing nanofibers exhibited enhanced antioxidant properties, increasing radical scavenging activity by 65 %. These findings highlight the potential of PVA/OXG/nisin-based nanofibers to address gaps in food packaging by offering robust mechanical strength, superior barrier properties, and bioactive functionality, paving the way for next-generation packaging solutions that extend shelf life and reduce environmental impact.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - Asmaa Hadi Mohammed
- Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Mastafa H Al-Musawi
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sepideh PourvatanDoust
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad. University, Tehran, Iran
| | - Marjan Ghorbani
- Iran Petrochemical Institute, P.O. Box: 1496/15, Tehran, Iran.
| |
Collapse
|
7
|
Daget TM, Kassie BB, Tassew DF. A shift from synthetic to bio-based polymer for functionalization of textile materials: A review. Int J Biol Macromol 2025; 306:141637. [PMID: 40037460 DOI: 10.1016/j.ijbiomac.2025.141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Textiles are used in various wearable and technical applications, requiring diverse properties. Functionalization refers to processes that impart new properties, such as flame retardancy, anti-microbial effects, UV protection, and hydrophobicity. The textile industry is shifting from synthetic polymers to eco-friendly biopolymers, which offer biodegradability and sustainability, reducing environmental impact. Biopolymer-based finishes improve performance while being safer and greener, supporting global sustainability goals. This review focuses on biopolymers used for textile functionalization and their potential in advanced medical applications like drug delivery and tissue engineering. Common biopolymer sources include renewable resources such as plants, microorganisms, and animals. Notable biopolymers, like bacterial and plant-based nanocellulose, lignin, chitosan, alginate, gelatin, collagen, keratin, and polylactic acid (PLA), are used for functions like anti-microbial, flame retardant, UV protective, and antioxidant properties. These biopolymers are also applied in tissue engineering, drug delivery, wound healing, and cosmetics as eco-friendly, biodegradable alternatives to petroleum-based materials.
Collapse
Affiliation(s)
- Tekalgn Mamay Daget
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Bantamlak Birlie Kassie
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Dehenenet Flatie Tassew
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
8
|
Maddirala S, Tadepalli SP, Lakshiakanthan E, Ganesan JJ, Issac R, Basavegowda N, Baek KH, Haldar D. Biodegradable composite films of barley fibers for food packaging applications: A review. Int J Biol Macromol 2025; 295:139611. [PMID: 39788235 DOI: 10.1016/j.ijbiomac.2025.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors. Hence, this review focuses on barley lignocellulose fibers incorporated into different film matrix phases, showing promising enhanced mechanical, and functional properties. Barley biocomposites provide the necessary protective functions to replace traditional plastic for food packaging applications and that could reduce the negative effects on the environment. In addition, we highlighted various recently developed barley lignocellulose-based biocomposite films for a variety of food packaging applications. Furthermore, an overview of the environmental impact of plastic pollution and its effects on ecological niches has been emphasized. Additionally, aspects of different sustainable goals (SDGs 9, 12, 13) are discussed. Based on the existing research gaps, this article is concluded with the challenges and discussed further perspectives of biocomposites enriched with barley lignocellulose fibers.
Collapse
Affiliation(s)
- Samuel Maddirala
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Sai Prabhat Tadepalli
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Emisha Lakshiakanthan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Janet Joshiba Ganesan
- Railway Technical Centre, Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First campus), No 1, Daxue road, Yanchao District, Kaohsiung City 82445, Taiwan
| | - Reya Issac
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
9
|
Tammina SK, Priyadarshi R, Khan A, Manzoor A, Rahman RSHA, Banat F. Recent developments in alginate-based nanocomposite coatings and films for biodegradable food packaging applications. Int J Biol Macromol 2025; 295:139480. [PMID: 39765301 DOI: 10.1016/j.ijbiomac.2025.139480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable. This article explores the potential use of nanocomposite coatings and films made from alginate as an alternative to petroleum-based polymers in the food industry. Alginate is desirable for food packaging due to its low cost, high nutritional value, renewability, low oxygen permeability, biodegradability, and biocompatibility. This article delves into alginate's history and extraction processes and covers techniques for modifying its physical and chemical properties using blended polymers and additives. Alginate-based coatings and films have been found to improve the mechanical properties and sensory characteristics of various food items and prolong the shelf life of perishable items by regulating oxygen and moisture levels and as a barrier against microbial growth. Further investigation is necessary to maximize the performance of alginate-based polymers in various food industry applications. Future prospects call on advancements in their physicochemical and functional characteristics to increase the acceptability of alginate-based nanocomposite coatings and films for biodegradable food packaging applications.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Arshied Manzoor
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Raghad Shehadeh Hussain Abdel Rahman
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Palanisamy S, Kumar BKS, Senthilkumar D, Ajith SJ, Sreedharan S, Pathrose JM, Pitchumani GL, Ganesan N, Venkatachalam S, Saravanan B, Lee J, Bharathi D. Enhancing tomato shelf life using isolated cellulose fibers from Asian Palmyra palm coated with garlic oil. Food Chem 2025; 466:142163. [PMID: 39612835 DOI: 10.1016/j.foodchem.2024.142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
In this study, garlic-oil-combined cellulose fibers were prepared by using Borassus flabellifer (Asian Palmyra palm) to enhance the post-harvest shelf life of tomatoes. The physicochemical properties of the prepared cellulose fibers were characterized by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The B. flabellifer cellulose fibers combined with garlic oil (BCF/GO) coatings exhibited significant antifungal properties against Aspergillus flavus. In addition, the BCF/GO coating resulted in a notable extension in the shelf life of tomatoes regarding parameters such as weight loss, firmness, pH, ascorbic acid content, lycopene level, moisture content, and titratable acidity after 25 days of storage at 25-29 °C with 85 % relative humidity. The synergistic combination of BCF and GO presents a natural and sustainable solution for extending the shelf life of tomatoes with the potential to significantly reduce post-harvest losses in the food industry.
Collapse
Affiliation(s)
- Senthilkumar Palanisamy
- School of Biotechnology, Dr. G R Damodaran College of Science, Coimbatore 641014, Tamil Nadu, India.
| | | | - Deepanjali Senthilkumar
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Shamitha Joseph Ajith
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Sreevarshini Sreedharan
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Jennifer Mariya Pathrose
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | | | - Nitheeshwaran Ganesan
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Shanmugam Venkatachalam
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Boomika Saravanan
- Department of Biotechnology, Sri Krishna Arts and Science College, Coimbatore 641008, Tamil Nadu, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
11
|
Nguyen TD, Lee JS. Dynamic Bonds in Biopolymers: Enhancing Performance and Properties. Polymers (Basel) 2025; 17:457. [PMID: 40006119 PMCID: PMC11860009 DOI: 10.3390/polym17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
As the demand for polymer materials increases, conventional petroleum-based synthetic polymers face several significant challenges, including raw material depletion, environmental issues, and the potential for biotoxicity in biological applications. In response, bio-based polymers derived from natural sources, such as cellulose, alginate, chitosan, and gelatin, have garnered attention due to their advantages of biocompatibility and biodegradability. However, these polymers often suffer from poor physical stability due to the high density of hydrogen bonds and the large structure of pyranose rings. This review explores the potential of incorporating dynamic covalent bonds into biopolymers to overcome these limitations. The chemical structures of biopolymers contain numerous functional groups that can serve as anchoring sites for dynamic bonds, thereby enhancing the mechanical properties and overall stability of the polymer network. The review discusses the performance improvements achievable through dynamic covalent bonds and examines the future potential of this technology to enhance the physical properties of biopolymers and expand their applicability in biological fields.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
12
|
Galaburri G, Infantes-Molina A, Melian Queirolo CM, Mebert A, Tuttolomondo MV, Rodríguez-Castellón E, Lázaro-Martínez JM. Composite Films Based on Linear Polyethyleneimine Polymer and Starch or Polysaccharides from DDGS: Synthesis, Characterization, and Antimicrobial Studies. Polymers (Basel) 2025; 17:458. [PMID: 40006120 PMCID: PMC11858853 DOI: 10.3390/polym17040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Different films were synthesized from starch or polysaccharides extracted from distillers dried grains with soluble (DDGS) in combination with different percentages of linear polyethyleneimine (PEI) hydrochloride polymer to assess the mechanical and antimicrobial properties of the resulting composites. Moreover, a simple method for the extraction of the polysaccharide content from DDGS is reported. The materials obtained were characterized by ATR-FTIR, NMR, and XPS spectroscopy, swelling capacity, and by organic elemental analysis. In particular, the stability of the film prepared with only DDGS in copper ion solutions was improved by the incorporation of PEI. 13C HRMAS NMR studies evidenced the incorporation of the PEI polymer in the new films. Moreover, the release of PEI molecules from the films was studied by 1H NMR experiments in D2O to explain the antimicrobial properties of the PEI-based films against Staphylococcus aureus, with the DDGS-10% PEI films being the most active surface. Furthermore, the incorporation of copper ions into the different films enhanced their antimicrobial activity. Additionally, the starch-10% PEI film exhibited good swelling capacity in deionized water (~1500%), which decreased with the addition of salts (~250%). Instead, the DDGS-10% PEI film showed low swelling capacity in deionized water (~80%), with this capacity increasing with the addition of salts (~250%). The mechanical properties of the films improved considerably when 3% PEI was used.
Collapse
Affiliation(s)
- Gonzalo Galaburri
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina; (G.G.); (C.M.M.Q.); (A.M.); (M.V.T.)
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), CONICET—Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Instituto Interuniversitario en Biorrefinerías I3B, Universidad de Málaga, 29010 Málaga, Spain;
| | - Cynthia M. Melian Queirolo
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina; (G.G.); (C.M.M.Q.); (A.M.); (M.V.T.)
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), CONICET—Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Andrea Mebert
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina; (G.G.); (C.M.M.Q.); (A.M.); (M.V.T.)
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), CONICET—Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - María V. Tuttolomondo
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina; (G.G.); (C.M.M.Q.); (A.M.); (M.V.T.)
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), CONICET—Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Instituto Interuniversitario en Biorrefinerías I3B, Universidad de Málaga, 29010 Málaga, Spain;
| | - Juan M. Lázaro-Martínez
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina; (G.G.); (C.M.M.Q.); (A.M.); (M.V.T.)
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), CONICET—Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
13
|
Koirala P, Sagar NA, Thuanthong A, Al-Asmari F, Jagtap S, Nirmal N. Revolutionizing seafood packaging: Advancements in biopolymer smart nano-packaging for extended shelf-life and quality assurance. Food Res Int 2025; 203:115826. [PMID: 40022350 DOI: 10.1016/j.foodres.2025.115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/03/2025]
Abstract
Food packaging is one of the most important strategies to prevent food damage or spoilage during storage and the supply chain. Among various food types, seafood, a high-value product, is particularly vulnerable to post-harvest quality loss and microbial contamination during storage. Although current plastic-based packaging materials are durable, they pose a serious threat to the environment. Therefore, research on natural biopolymers for packaging is a top priority for scientists, industries, and government bodies. Additionally, nanoengineering concepts enhance the physicochemical and functional properties of biopolymers, thereby revolutionizing the packaging industry. This review provides a comprehensive discussion on smart nano-packaging for seafood products. It focuses on advancements in biopolymer smart nano-packaging as a transformative solution for extending the shelf life and ensuring the quality of seafood products. Existing knowledge highlights the functionality of biopolymers and nanotechnology, but gaps remain in addressing practical applications, such as scalability, cost-efficiency, and consumer safety. This review bridges these gaps by providing a detailed analysis of biopolymer-based active and intelligent packaging systems, which integrate antioxidant, antimicrobial, and freshness-indicating properties. It emphasizes the unique contributions of nanoengineering to enhance biopolymer properties, offering innovative solutions to the seafood packaging industry while promoting environmental sustainability.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Narashans Alok Sagar
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413 Punjab, India
| | - Arthittaya Thuanthong
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Al-Hofuf, Saudi Arabia
| | - Sandeep Jagtap
- Division of Engineering Logistics, Department of Mechanical Engineering Sciences, Faculty of Engineering, Lund University, Lund 22363, Sweden; Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK.
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
14
|
Ponnusamy A, Khan A, Prodpran T, Kim JT, Benjakul S, Rhim JW. Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: Properties and shelf life extension of minced pork. Int J Biol Macromol 2025; 288:138692. [PMID: 39672429 DOI: 10.1016/j.ijbiomac.2024.138692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm2) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.
Collapse
Affiliation(s)
- Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
15
|
Castro MCR, Rodrigues PV, Cruz V, Machado AV. A New Approach in PLS/TPS Compatibilization Using Garlic Oil: Effect on Morphological and Antioxidant Properties. Antioxidants (Basel) 2024; 13:1589. [PMID: 39765916 PMCID: PMC11672901 DOI: 10.3390/antiox13121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The packaging industry has made efforts to reduce food waste and improve the resilience of food systems worldwide. Active food packaging, which incorporates active agents, represents a dynamic area where industry and academia have developed new strategies to produce innovative and sustainable packaging solutions that are more compatible with conventional options. Due to health and environmental concerns, industries have sought alternatives to petroleum-based materials and have found biopolymers to be a viable option because of their biodegradable and safe nature. The combination of PLA/TPS has emerged as an effective system for packaging film; however, they are thermodynamically immiscible. This work highlights the development of a starch-based compatibilizer to connect the PLA and TPS phases by functionalizing maize starch with glycidyl methacrylate, glycerol, or garlic oil. Garlic oil was chosen for its plasticizing ability and antioxidant properties. The films produced exhibited excellent compatibility, with enhanced interfacial adhesion between PLA and TPS components. The introduction of compatibilizers also increased the systems' crystallinity and improved their mechanical properties. The wettability of the films significantly increased with higher garlic oil content, along with enhanced antioxidant properties. These advancements will enable the production of a compatible PLA/TPS system with improved properties for application in the packaging industry.
Collapse
Affiliation(s)
- Maria Cidália R. Castro
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal; (P.V.R.); (V.C.); (A.V.M.)
| | | | | | | |
Collapse
|
16
|
Hromiš N, Ostojić S, Pezo L, Popović S, Šumić Z, Milić A, Kocić-Tanackov S, Šuput D. New Composite Packaging Material from Edible Oil By-Product Coated with Paraffin Wax for Dry Apricot Slice Packing Under a Modified Atmosphere. Polymers (Basel) 2024; 16:3583. [PMID: 39771434 PMCID: PMC11679990 DOI: 10.3390/polym16243583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging. In this paper, a new packaging material derived from an edible oil industry byproduct (pumpkin oil cake) coated with a thin layer of paraffin wax was obtained. Compared to the film without wax coating, the new material showed reduced water sensitivity and significantly reduced water vapor transmission rate (56.98 ± 7.42 g/m2 24 h). The new material was tested for packing dry apricot slices under a modified atmosphere (100% N2). Gas composition in PuOC/wax pouches' headspace was minimally changed during 105 days of storage. The low moisture content (6.76-10.60%) of dried apricot slices was preserved throughout the storage period (p > 0.05), as well as high rehydration power (65-75%). Changes in sensorial properties during storage were minimal. Total phenol content was minimally reduced during storage, followed by antioxidant activity (FRAP and ABTS trial). The microbial profile of dried apricot slices showed that a safe product was obtained throughout the storage. Considering the results, the functionality of new material for packing dry apricots under a modified atmosphere was proven.
Collapse
Affiliation(s)
- Nevena Hromiš
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| | - Sanja Ostojić
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12, 11000 Belgrade, Serbia; (S.O.); (L.P.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12, 11000 Belgrade, Serbia; (S.O.); (L.P.)
| | - Senka Popović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| | - Zdravko Šumić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| | - Anita Milić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| | - Sunčica Kocić-Tanackov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| | - Danijela Šuput
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (N.H.); (S.P.); (Z.Š.); (A.M.); (S.K.-T.)
| |
Collapse
|
17
|
Latour-Paczka K, Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review. Int J Mol Sci 2024; 25:13628. [PMID: 39769390 PMCID: PMC11676134 DOI: 10.3390/ijms252413628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging. This paper discusses the main groups of artificial biopolymers. It emphasizes the potential of using genetically modified plants for its production, describing the primary plant species involved in these processes and the most common genetic modifications. Additionally, the paper explores the potential applications of biobased polymers, highlighting their key advantages and disadvantages in specific context.
Collapse
Affiliation(s)
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
18
|
Rodriguez OT, Valero MF, Gómez-Tejedor JA, Diaz L. Performance of Biodegradable Active Packaging in the Preservation of Fresh-Cut Fruits: A Systematic Review. Polymers (Basel) 2024; 16:3518. [PMID: 39771371 PMCID: PMC11679589 DOI: 10.3390/polym16243518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and materials used in biodegradable active packaging for fresh-cut fruits. Sixteen studies were included from a search performed in July 2024 on Scopus and Web of Science databases. Only research articles in English on biodegradable active films tested on cut fruits were selected. Polysaccharides were the most employed polymer in film matrices (87.5%). Antioxidant and anti-browning activities were the active film properties that were most developed (62.5%), while plant extracts and essential oils were the most employed active agents (56.3%), and fresh-cut apples were the most commonly tested fruit (56.3%). Appropriate antioxidant, antibacterial, and barrier properties for fresh-cut fruit packaging were determined. Furthermore, there is a wide range of experimental designs to evaluate shelf-life improvements. In each case, shelf life was successfully extended. The findings show that different storage conditions, fruits, and material configurations can lead to different shelf-life extension performances. Thus, biodegradable active packaging for fresh-cut fruits has a strong potential for growth in innovative, sustainable, and functional ways.
Collapse
Affiliation(s)
- Oscar T. Rodriguez
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - Manuel F. Valero
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - José A. Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Luis Diaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia
| |
Collapse
|
19
|
Cabrera-Villamizar L, Campano C, López-Rubio A, Fabra MJ, Prieto MA. Tailoring the structural and physicochemical properties of rice straw cellulose-based cryogels by cell-mediated polyhydroxyalkanoate deposition. Carbohydr Polym 2024; 346:122604. [PMID: 39245490 DOI: 10.1016/j.carbpol.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
This study presents a novel biotechnological approach for creating water vapor-resistant cryogels with improved integrity. Rice straw cellulose was transformed into nanofibrils through TEMPO-mediated oxidation and high-pressure homogenization. The resulting cryogels remained firm even when immersed in aqueous media, whose pores were used by live cell to deposit polyhydroxyalkanoate (PHA) particles inside them. This novel method allowed the compatibilization of PHA within the cellulosic fibers. As a consequence, the water sorption capacity was decreased by up to 6 times having just 4 % of PHA compared to untreated cryogels, preserving the cryogel density and elasticity. Additionally, this technique can be adapted to various bacterial strains and PHA types, allowing for further optimization. It was demonstrated that the amount and type of PHA (medium chain length and small chain length-PHA) used affects the properties for the cryogels, especially the water vapor sorption behavior and the compressive strength. Compared to traditional coating methods, this cell-mediated approach not only allows to distribute PHA on the surface of the cryogel, but also ensures polymer penetration throughout the cryogel due to bacterial self-movement. This study opens doors for creating cryogels with tunable water vapor sorption and other additional functionalities through the use of specialized PHA variants.
Collapse
Affiliation(s)
- Laura Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain.
| | - Cristina Campano
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - M Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Mora-Maldonado LE, Estrada-Monje A, Zitzumbo-Guzmán R, Rodríguez-Sánchez I, Baldenegro-Pérez L, Piñón-Balderrama CI, Rodríguez-Llamazares S, Zaragoza-Contreras EA. Recycling of Bovine Hair Waste Through the Design of a Compatibilizing Agent for Sustainable Thermoplastic Starch-Untreated Bovine Hair Composites. Polymers (Basel) 2024; 16:3432. [PMID: 39684177 DOI: 10.3390/polym16233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Bovine hair waste was chemically modified to obtain a coupling agent (CA) for the compatibilization of thermoplastic starch (TPS)-unmodified bovine hair waste (UH) composites. The composites processed with CA presented improved tensile strength (3.5 MPa) compared to TPS-UH composites without CA (1.25 MPa). An interaction mechanism to describe the improvement in mechanical properties and thermal stability was postulated based on Fourier-transform infrared spectroscopy (FTIR) and density functional theory (DFT). In addition, optical and electron microscopy showed that CA favored the adhesion of UH to TPS. Global results suggested the formation of a CA-UH network that interacts with the TPS matrix. Obtaining composites from waste from the tanning industry can contribute to the development of a more responsible and sustainable industry and represents an opportunity to reduce the environmental impact of one of the most important industries globally. It is worth mentioning that this research is aligned with the sustainable development goals (SDGs) proposed by the United Nations, which promotes sustainable industrialization and the promotion of innovation.
Collapse
Affiliation(s)
| | | | | | - Isis Rodríguez-Sánchez
- Departamento de Formación Básica Disciplinaria, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, UPIIG-IPN, Silao de la Victoria 36275, Mexico
| | | | - Claudia Ivone Piñón-Balderrama
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Avenida Collao 1202, Concepción 4051381, Chile
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
21
|
Li C, Yang Y, Zhang R, Wang J, Zhong S, Cui X. Chitosan-gelatin composite hydrogel antibacterial film for food packaging. Int J Biol Macromol 2024; 285:138330. [PMID: 39631233 DOI: 10.1016/j.ijbiomac.2024.138330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Antibacterial hydrogel film can serve as food packaging materials to prevent bacteria growth and spread, thereby extending shelf life and improve food safety. In this study, an efficient antibacterial hydrogel film (CLG) was prepared with chitosan, lysine, and gelatin. The light transmission of the CLG hydrogel film was over 80 % in the visible region, facilitating the observation of chicken breast storage conditions. Additionally, the swelling ratios of the hydrogel films decreased with increasing gelatin concentration, from 145.7 g/g (CLG1) to 92.6 g/g (CLG2) and 81.5 g/g (CLG3). This reduction was attributed to the denser network structure formed by the interaction between gelatin and the CL polymer. The Scanning Electron Microscopy (SEM) showed that the water-absorbed CLG hydrogel had a unique sponge shape. Moreover, the CLG hydrogel film exhibits high antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In a practical storage experiment, the CLG hydrogel film extended the shelf life of chicken breast by up to 4 days compared to untreated samples, while effectively reducing total volatile basic nitrogen (TVB-N) levels. This hydrogel film is expected to become a promising food packaging material.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
22
|
Luo G, Li J, Qin X, Wang Q, Zhong J. Improved moisture barrier and mechanical properties of rice protein/sodium alginate films for banana and oil preservation: Effect of the type and addition form of fatty acid. Food Chem 2024; 460:140764. [PMID: 39121763 DOI: 10.1016/j.foodchem.2024.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Attenuating the moisture sensitivity of hydrophilic protein/polysaccharide-based films without impairing other properties remains a challenge. Fatty acid dispersed in Pickering emulsion was proposed to overcome such issue. An increase in fatty acid chain length slightly reduced the water vapor permeability (WVP) of emulsion films. As the number of fatty acid double bonds increased from 0 to 1, the WVP of emulsion films was significantly decreased by 14.02% while mechanical properties were significantly enhanced. More hydrogen bonds and stronger electrostatic interactions in the presence of fatty acids were observed by molecular dynamics simulation. The weight loss of bananas coated with oleic acid-incorporated film-forming emulsion was 6.81% lower than that of uncoated group after 4 days, and the corresponding film was more effective to delay oil oxidation than the commercial polypropylene film, indicating that the film is a promising alternative to food coating and packaging material.
Collapse
Affiliation(s)
- Guoliu Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinsong Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
23
|
Pattnaik R, Panda SK, Biswas S, De S, Satahrada S, Kumar S. Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review. DISCOVER NANO 2024; 19:178. [PMID: 39532764 PMCID: PMC11557778 DOI: 10.1186/s11671-024-04142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Nanomaterials play a pivotal role in food preservation and its safety, offering ingenious solutions for sustainable food packaging. Nanomaterials enable the creation of packaging materials having unique functional properties. It not only extends the shelf life of the foods by releasing preservatives but also enhances food safety by preventing microbial contamination or food spoilage. In this review, we aim to provide an overview of the various applications of nanotechnology in food packaging, highlighting its key advantages. We also delve into the safety considerations and regulatory issues involved in developing nanotechnology-based food packaging materials. Additionally, advancements in the field of nanotechnology-based packaging have the potential to create safer, more sustainable, and high-quality packaging with greater functionality that delivers essential benefits to manufacturers and consumers.
Collapse
Affiliation(s)
- Ritesh Pattnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Soumyadeep Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Sayanti De
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subhra Satahrada
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subrat Kumar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
24
|
Abd-El-Haleem DAM, Elkatory MR, Abu-Elreesh GM. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production. Sci Rep 2024; 14:27162. [PMID: 39511267 PMCID: PMC11544117 DOI: 10.1038/s41598-024-77382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification. Subsequent investigation into DMG-2's PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs. Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate. GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications.
Collapse
Affiliation(s)
- Desouky A M Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gadallah M Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt
| |
Collapse
|
25
|
Somsesta N, Jinnapat A, Fakpiam S, Suksanguan C, Wongsan V, Ouneam W, Wattanaeabpun S, Hongrattanavichit I. Antimicrobial and biodegradable hydrogel based on nanocellulose/alginate incorporated with silver nanoparticles as active packaging for poultry products. Sci Rep 2024; 14:27135. [PMID: 39511333 PMCID: PMC11544123 DOI: 10.1038/s41598-024-78677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
In this research, active packaging which was made of all-natural component hydrogels from nanocellulose composited with silver nanoparticles at various concentrations (AgH) was studied. The concentration of silver nanoparticles ranged from 0.0078 to 0.0624 phr. AgH was characterized in terms of basic properties, functional properties, and packaging applications. Biocompatibility testing with the Caco-2 cell line showed that higher concentrations of silver (higher than 0.0312 phr) provided a lower cell viability rate (lower than 70% cell viability). Here, 0.0156 phr of silver nanoparticle concentration was the maximum loading that is safe for the target cell (82% cell viability) and was thus selected for use as active packaging. The antimicrobial activity showed that AgH at all concentrations inhibited both Gram bacteria up to 99.99%. Total volatile basic nitrogen compound testing showed that chicken meat preserved by AgH had the lowest values, indicating that AgH can prolong the shelf life in freshness level 1 (15% TVB-N) for 6.2 days compared to 3.9 and 4.1 days of blank and neat cellulose hydrogel. In addition, all AgH were gradually degraded over time and eventually disappeared within 15-30 days in organic soil.
Collapse
Affiliation(s)
- Noppon Somsesta
- Military and Aerospace Materials Department, Academic Faculty, Navaminda Kasatriyadhiraj Royal Air Force Academy, Saraburi, Thailand
| | - Apichart Jinnapat
- Military and Aerospace Materials Department, Academic Faculty, Navaminda Kasatriyadhiraj Royal Air Force Academy, Saraburi, Thailand
| | - Supachai Fakpiam
- Military and Aerospace Materials Department, Academic Faculty, Navaminda Kasatriyadhiraj Royal Air Force Academy, Saraburi, Thailand
| | - Chanchai Suksanguan
- Military and Aerospace Materials Department, Academic Faculty, Navaminda Kasatriyadhiraj Royal Air Force Academy, Saraburi, Thailand
| | - Varan Wongsan
- Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wassikah Ouneam
- Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supisara Wattanaeabpun
- Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Intatch Hongrattanavichit
- Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
26
|
Mishra B, Panda J, Mishra AK, Nath PC, Nayak PK, Mahapatra U, Sharma M, Chopra H, Mohanta YK, Sridhar K. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int J Biol Macromol 2024; 279:135583. [PMID: 39270899 DOI: 10.1016/j.ijbiomac.2024.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India
| | | | - Pinku Chandra Nath
- Department of Food Technology, Uttaranchal University, School of Applied and Life Sciences, Dehradun, Uttarakhand 248007, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Hitesh Chopra
- Department of Biosciences, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
27
|
Bahlol HS, Li J, Deng J, Foda MF, Han H. Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1750. [PMID: 39513830 PMCID: PMC11547707 DOI: 10.3390/nano14211750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Food safety has recently become a widespread concern among consumers. Surface-enhanced Raman scattering (SERS) is a rapidly developing novel spectroscopic analysis technique with high sensitivity, an ability to provide molecular fingerprint spectra, and resistance to photobleaching, offering broad application prospects in rapid trace detection. With the interdisciplinary development of nanomaterials and biotechnology, the detection performance of SERS biosensors has improved significantly. This review describes the advantages of nanomaterial-based SERS detection technology and SERS's latest applications in the detection of biological and chemical contaminants, the identification of foodborne pathogens, the authentication and quality control of food, and the safety assessment of food packaging materials. Finally, the challenges and prospects of constructing and applying nanomaterial-based SERS sensing platforms in the field of food safety detection are discussed with the aim of early detection and ultimate control of foodborne diseases.
Collapse
Affiliation(s)
- Hagar S. Bahlol
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Jiawen Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Jiamin Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Mohamed F. Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| |
Collapse
|
28
|
Figueroa-Lopez KJ, Villabona-Ortíz Á, Ortega-Toro R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers (Basel) 2024; 16:2913. [PMID: 39458740 PMCID: PMC11511533 DOI: 10.3390/polym16202913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biodegradable films are sustainable alternatives to conventional plastics, particularly in food preservation, where the barrier and mechanical properties are crucial for maintaining the physicochemical, microbiological, and sensory qualities of the product. This study evaluated films made from starches of corn, potato, cassava, yam, and wheat to determine their effectiveness in preserving cherry tomatoes. Amylose content, a key factor influencing the crystallinity and properties of the films, varied among the sources, with wheat starch having the highest (28.2%) and cassava the lowest (18.3%). The wheat starch film emerged as the best formulation, exhibiting the highest tensile strength and the lowest water vapor permeability (4.1 ± 0.3 g∙mm∙m-2∙h-1∙KPa-1), contributing to superior barrier performance. When applied to cherry tomatoes, the films based on wheat and corn starch showed the least moisture loss over fifteen days, highlighting their potential in fresh food preservation. These results suggest that starch-based films, specifically those rich in amylose, have significant potential as biodegradable packaging materials for food product conservation.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
- Ethnopharmacology, Natural Products, and Food Research Group (GIEPRONAL), School of Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Ángel Villabona-Ortíz
- Chemical Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
29
|
Scarpelli F, Crispini A, Aiello I, Godbert N, Marchetti F, Xhafa S, De Filpo G, Baratta M, Berardi R, Alfano P, Giorno E. Bioactive Ag(I) coordination complexes as dopants for castor oil plasticized ethylcellulose films. Dalton Trans 2024; 53:15992-16004. [PMID: 39283606 DOI: 10.1039/d4dt02201g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The effects exerted by new bioactive acylpyrazolonate Ag(I) derivatives of the general formula [Ag(QPy,CF3)(R-Im)] containing different substituents on the imidazole (R-Im) ancillary ligands and the natural plasticizer castor oil when both are added to the ethylcellulose (EC) biopolymer in the preparation of thin films as potential active food packaging materials are presented. The Ag(I) complexes [Ag(QPy,CF3)(Bn-Im)] and [Ag(QPy,CF3)(Bu-Im)], having benzyl and butyl substituents, whose single crystal molecular structures are reported, have proved to be highly compatible for efficient incorporation between the EC polymer and the hydrophobic plasticizer chains, giving rise, even at low concentrations, to homogeneous, robust and elastic films. The concomitant presence of these Ag(I) complexes and castor oil in the polymer EC matrix gives rise to thin films with improved antibacterial activity against Escherichia coli (E. coli) as a model of Gram-negative bacterial strains when compared to the non-plasticized ones, with very low Ag(I) migration in the three food simulants used (distilled water, ethanol 10% v/v and acetic acid 3% v/v) under two assay conditions (70 °C for 2 h and 40 °C for 10 days).
Collapse
Affiliation(s)
- Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Iolinda Aiello
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Nicolas Godbert
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Sonila Xhafa
- School of Science and Technology, Chemistry Section, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| | - Giovanni De Filpo
- NOPTEA, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Mariafrancesca Baratta
- NOPTEA, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Riccardo Berardi
- TiFQLab - Centro di sperimentazione ricerca e analisi applicate alle tecnologie alimentari e dell'acqua potabile - Department DIMES, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Alfano
- TiFQLab - Centro di sperimentazione ricerca e analisi applicate alle tecnologie alimentari e dell'acqua potabile - Department DIMES, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Eugenia Giorno
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
30
|
Akinsemolu AA, Idowu AM, Onyeaka HN. Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers (Basel) 2024; 16:2770. [PMID: 39408479 PMCID: PMC11478719 DOI: 10.3390/polym16192770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Plastic pollution is a major driver of climate change that is associated with biodiversity loss, greenhouse gas emissions, and negative soil, plant, animal, and human health. One of the solutions that has been proposed and is currently reducing the adverse effects of plastic on the planet is the replacement of synthetic plastics with biopolymers. The biodegradable polymers have been adapted for most of the applications of synthetic plastic. However, their use and disposal present some sustainability challenges. Recycling emerges as an effective way of promoting the sustainability of biopolymer use. In this article, we review recycling as a viable solution to improve the sustainability of biopolymers, emphasizing the current types and technologies employed in biopolymer recycling and the challenges faced in their adoption. Our exploration of the future directions in the conversion of biopolymers into new polymers for reuse establishes a connection between established continuous technological innovation, integration into circular economy models, and the establishment and strengthening of collaborations among key stakeholders in relevant industries as necessary steps for the adoption, full utilization, and improvement of recycling technologies for biopolymers. By connecting these factors, this study lays a foundation for the establishment of a roadmap for improved biopolymer recycling technologies and processes that promote the sustainability of synthetic plastic alternatives.
Collapse
Affiliation(s)
- Adenike A. Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- The Green Institute, Ondo 351101, Nigeria
| | - Adetola M. Idowu
- Faculty of Life Sciences, Rhein-Waal University of Applied Science, 47533 Kleve, Germany;
| | - Helen N. Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
32
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
33
|
Ergün ME, Kurt R, Can A, Özlüsoylu İ, Ersoy Kalyoncu E. Optimized Eco-Friendly Foam Materials: A Study on the Effects of Sodium Alginate, Cellulose, and Activated Carbon. Polymers (Basel) 2024; 16:2511. [PMID: 39274143 PMCID: PMC11398183 DOI: 10.3390/polym16172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This study focuses on optimizing the physical and mechanical properties of foam materials produced with the addition of sodium alginate as the matrix, and cellulose and activated carbon as fillers. Foam materials, valued for their lightweight and insulation properties, are typically produced from synthetic polymers that pose environmental risks. To mitigate these concerns, this study investigates the potential of natural, biodegradable polymers. Various foam formulations were tested to evaluate their density, compression modulus, and thermal conductivity. The results indicated that an increase in activated carbon content enhanced thermal stability, as indicated by higher Ti% and Tmax% values. Additionally, a higher concentration of sodium alginate and activated carbon resulted in higher foam density and compressive modulus, while cellulose exhibited a more intricate role in the material's behavior. In the optimal formula, where the sum of the component percentages totals 7.6%, the percentages (e.g., 0.5% sodium alginate, 5% cellulose, and 2.1% activated carbon) are calculated based on the weight/volume (w/v) ratio of each component in the water used to prepare the foam mixture. These results indicate that natural and biodegradable polymers can be used to develop high-performance, eco-friendly foam materials.
Collapse
Affiliation(s)
- Mehmet Emin Ergün
- Akseki Vocational School, Alanya Alaaddin Keykubat University, Antalya 07630, Turkey
| | - Rıfat Kurt
- Faculty of Forestry, Bartin University, Bartin 74100, Turkey
| | - Ahmet Can
- Faculty of Forestry, Bartin University, Bartin 74100, Turkey
| | | | | |
Collapse
|
34
|
Giacondino C, De Bruno A, Puntorieri D, Pizzimenti M, Piscopo A. Impact of Antioxidant-Enriched Edible Gel Coatings and Bio-Based Packaging on Cherry Tomato Preservation. Gels 2024; 10:549. [PMID: 39330151 PMCID: PMC11431231 DOI: 10.3390/gels10090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
This research investigates the effects of using edible gel coatings and bio-based packaging materials on extending the shelf life of cherry tomatoes. Two edible gel coatings (guar gum and guar gum +5% of a lemon (Citrus limon (L.) Osbeck pomace extract obtained in the research laboratory) were applied on cherry tomatoes, then they were packaged in bio-based materials (cellulose tray + PLA lid). Guar gum, glycerol, sorbitol, extra virgin olive oil, and tween 20 were used in coating formulation. Uncoated tomatoes packed in bio-based materials and conventional plastic (PET trays + lid) were tested as a control. Samples were stored for 45 days at 20 °C and their quality parameters were evaluated. Coated tomatoes maintained firmness and weight, and the enriched coated samples showed a significant increase in phenol content, derived from the antioxidant extract. Samples packed in PET showed a sensory unacceptability (<4.5) after 45 days correlated with a greater decline in firmness (from 10.51 to 5.96 N) and weight loss (from 7.06 to 11.02%). Therefore, edible gel coating and bio-based packaging proved to be effective in maintaining the overall quality of cherry tomatoes for 45 days, offering a promising approach to reduce plastic polymer use and food waste.
Collapse
Affiliation(s)
- Corinne Giacondino
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Alessandra De Bruno
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, 00166 Rome, Italy
| | - Davide Puntorieri
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Martina Pizzimenti
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Amalia Piscopo
- Department AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| |
Collapse
|
35
|
Todorova D, Yavorov N, Vrabič-Brodnjak U. Impact of Silver Nanoparticle Treatment and Chitosan on Packaging Paper's Barrier Effectiveness. Polymers (Basel) 2024; 16:2127. [PMID: 39125152 PMCID: PMC11314103 DOI: 10.3390/polym16152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, a comparative analysis of silver nanoparticles treatment and chitosan coating on packaging paper barrier properties was carried out. In order to examine the water, grease, and antibacterial barrier properties of silver nanoparticle-treated and chitosan-coated laboratory-obtained paper samples, a mixture of bleached softwood and hardwood celluloses was used. In order to conduct the comparative analysis SEM, water contact angle, Cobb60, and Kit tests were carried out on a cellulose sample, and four paper samples (three of them treated with silver nanoparticles-1, 2, and 3 mL/20 cm2 or chitosan coated-0.5, 1, and 2 g/m2) together with the inhibition activity against nine Gram-positive and Gram-negative bacteria, yeast, and fungal strains. The study found out that increasing the silver nanoparticle treatment and chitosan coating led to improved water resistance, while grease resistance was improved only for chitosan coated paper samples. Additionally, paper treated with 3 mL/20 cm2 of silver nanoparticles had the highest antibacterial protection (81.6%) against the Gram-positive bacterium Staphylococcus aureus, followed by Gram-negative Escherichia coli (75.8%). For the rest of the studied microorganisms, the average efficiency of the treated paper was 40.79%. The treatment of the paper with 1 and 2 mL/20 cm2 of silver nanoparticles was less effective-27.13 and 39.83%, respectively. The antibacterial protection of 2 g/m2 chitosan-coated paper samples was the most effective (average 79%) against the tested bacterial, yeast, and fungal strains. At 1 and 0.5 g/m2 chitosan coatings, the efficiency was 72.38% and 54.67%, respectively. Gram-positive bacteria, yeasts, and fungal strains were more sensitive to chitosan supplementation.
Collapse
Affiliation(s)
- Dimitrina Todorova
- Department of Pulp, Paper and Printing Arts, Faculty of Chemical Technology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (D.T.); (N.Y.)
| | - Nikolay Yavorov
- Department of Pulp, Paper and Printing Arts, Faculty of Chemical Technology, University of Chemical Technology and Metallurgy, 1797 Sofia, Bulgaria; (D.T.); (N.Y.)
| | - Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Hedayati R, Alavi M, Sadighi M. Effect of Degradation of Polylactic Acid (PLA) on Dynamic Mechanical Response of 3D Printed Lattice Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3674. [PMID: 39124338 PMCID: PMC11312661 DOI: 10.3390/ma17153674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Material-extrusion-based 3D printing with polylactic acid (PLA) has transformed the production of lightweight lattice structures with a high strength-to-weight ratio for various industries. While PLA offers advantages such as eco-friendliness, affordability, and printability, its mechanical properties degrade due to environmental factors. This study investigated the impact resistance of PLA lattice structures subjected to material degradation under room temperature, humidity, and natural light exposure. Four lattice core types (auxetic, negative-to-positive (NTP) gradient in terms of Poisson's ratio, positive-to-negative (PTN) gradient in terms of Poisson's ratio, and honeycomb) were analyzed for variations in mechanical properties due to declines in yield stress and failure strain. Mechanical testing and numerical simulations at various yield stress and failure strain levels evaluated the degradation effect, using undegraded material as a reference. The results showed that structures with a negative Poisson's ratio exhibited superior resistance to local crushing despite material weakening. Reducing the material's brittleness (failure strain) had a greater impact on impact response compared to reducing its yield stress. This study also revealed the potential of gradient cores, which exhibited a balance between strength (maintaining similar peak force to auxetic cores around 800 N) and energy absorption (up to 40% higher than auxetic cores) under moderate degradation (yield strength and failure strain at 60% and 80% of reference values). These findings suggest that gradient structures with varying Poisson's ratios employing auxetic designs are valuable choices for AM parts requiring both strength and resilience in variable environmental conditions.
Collapse
Affiliation(s)
- Reza Hedayati
- Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands
| | - Melikasadat Alavi
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (M.A.); (M.S.)
| | - Mojtaba Sadighi
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (M.A.); (M.S.)
| |
Collapse
|
37
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
38
|
Ivanov Y, Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms 2024; 12:1378. [PMID: 39065146 PMCID: PMC11279212 DOI: 10.3390/microorganisms12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of antimicrobial food packaging is a very important and current goal, but it still difficult to implement in practice. Reducing microbial contamination and preserving food quality are very important tasks for food manufacturers as the use of antimicrobial packaging can preserve the health of consumers. On the other hand, the difficulty of degrading packaging materials, leading to environmental pollution, is also an important problem. These problems can be solved by using biodegradable biopolymers and antimicrobial agents in the production of food packaging. Very suitable antimicrobial agents are grape seed and skin extracts as they have high antioxidant and antimicrobial capacity and are obtained from grape pomace, a waste product of winemaking. The present review presents the valuable bioactive compounds contained in grape seeds and skins, the methods used to obtain the extracts, and their antimicrobial and antioxidant properties. Then, the application of grape seed and skin extracts for the production of antimicrobial packaging is reviewed. Emphasis is placed on antimicrobial packaging based on various biopolymers. Special attention is also paid to the application of the extract of grape skins to obtain intelligent indicator packages for the continuous monitoring of the freshness and quality of foods. The focus is mainly placed on the antimicrobial properties of the packaging against different types of microorganisms and their applications for food packaging. The presented data prove the good potential of grape seed and skin extracts to be used as active agents in the preparation of antimicrobial food packaging.
Collapse
Affiliation(s)
| | - Tzonka Godjevargova
- Department Biotechnology, University “prof. d-r A. Zlatarov”, 8010 Burgas, Bulgaria;
| |
Collapse
|
39
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
40
|
Dini I. "Edible Beauty": The Evolution of Environmentally Friendly Cosmetics and Packaging. Antioxidants (Basel) 2024; 13:742. [PMID: 38929181 PMCID: PMC11200421 DOI: 10.3390/antiox13060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The cosmetics industry plays a significant role in the global economy and consumer lifestyles. Its dynamic and adaptable characteristics make it a key player worldwide. The cosmetics industry generates enormous profits globally, injecting billions of dollars into the world's economy each year. The industry's marketing efforts, product launches, and trends influence consumer behavior and perceptions of beauty, contributing to cultural dialogues and societal norms. This study, conducted with a rigorous bibliometric and systematic literature review, offers a comprehensive overview of recent progress in edible cosmetics. The "skincare you can eat" is an innovative branch of cosmetics that employs food co-products and by-products to create edible skincare and hair products and edible packaging materials to advance human well-being and sustainability while honoring the ecological boundaries of our planet. Nutrients and antioxidants derived from organic waste are used in cosmetics and packaging. Some doubts remain about the capacity of edible packaging to be attractive to consumers and offer a reasonable shelf life for cosmetics, and also about safety. It is desirable for the authorities to guarantee consumer health through carefully regulating labeling requirements and good manufacturing practices for cosmetics and edible packaging.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
41
|
Crescente G, Cascone G, Volpe MG, Moccia S. Application of PLA-Based Films to Preserve Strawberries' Bioactive Compounds. Foods 2024; 13:1844. [PMID: 38928785 PMCID: PMC11202936 DOI: 10.3390/foods13121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Poly-(Lactic Acid) (PLA) is regarded as one of the most promising bio-based polymers due to its biocompatibility, biodegradability, non-toxicity, and processability. The investigation of the potential of PLA films in preserving the quality of strawberries is fully in line with the current directives on the sustainability of food packaging. The study aims to investigate the effects of PLA films on strawberries' physical and chemical properties, thereby determining whether they can be used as a post-harvest solution to control antioxidant loss, reduce mold growth, and extend the shelf-life of strawberries. Well-designed PLA films with different-sized holes obtained by laser perforation (PLA0, PLA16 and PLA23) were tested against a conventional packaging polypropylene (PP) tray for up to 20 days of storage. Weight loss and mold growth were significantly slower in strawberries packed in PLA films. At the same time, PLA-based films effectively preserved the deterioration of vitamin C content, polyphenols and antioxidant activity compared to the control. Furthermore, among all, the micro-perforated PLA film (PLA23) showed better preservation in the different parameters evaluated. These results could effectively inhibit the deterioration of fruit quality, showing promising expectations as an effective strategy to extend the shelf-life of strawberries.
Collapse
Affiliation(s)
- Giuseppina Crescente
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| | - Giovanni Cascone
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
- National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy
| | - Maria Grazia Volpe
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| |
Collapse
|
42
|
Rammal M, Khreiss S, Badran A, Mezher M, Bechelany M, Haidar C, Khalil MI, Baydoun E, El-Dakdouki MH. Antibacterial and Antifungal Activities of Cimbopogon winterianus and Origanum syriacum Extracts and Essential Oils against Uropathogenic Bacteria and Foodborne Fungal Isolates. Foods 2024; 13:1684. [PMID: 38890913 PMCID: PMC11171924 DOI: 10.3390/foods13111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on testing the antibacterial and antifungal activity of Origanum syriacum (O. syriacum) and Cimbopogon winterianus (C. winterianus) extracts and their essential oils (EOs). The bacteria were isolated from urine samples and identified by a VITEK assay, and the fungi were isolated from spoiled food samples and further identified by MALDI-TOF. The susceptibility of the microbial isolates was assessed by determining the bacteriostatic and bactericidal/fungicidal effects by the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) broth microdilution assay and time-kill test. The antibiofilm activities were assessed by the antibiofilm screening assays. The bacterial isolates included three Gram-negative isolates (Escherichia coli, Klebsiella pneumonia, and Citrobacter freundii) and two Gram-positive isolates (Staphylococcus aureus and Streptococcus intermedius). The fungal isolates included Candida albicans and Aspergillus niger. The O. syriacum and C. winterianus extracts exhibited bacteriostatic and fungistatic activities (MIC 1.25-2.5 mg/mL for the bacterial isolates and 2.5-5 mg/mL for the fungal isolates). However, their EOs exhibited bactericidal (MBC 5-20%) and fungicidal (MFC 1.25-10%) activities, meaning that the EOs had a better antimicrobial potential than the extracts. The antibiofilm activities of the mentioned extracts and their EOs were relatively weak. The O. syriacum extract inhibited S. aureus, S. intermedius, and K. pneumonia biofilms at a concentration of 0.3125 mg/mL and C. albicans and A. niger biofilms at 0.625 mg/mL. No antibiofilm activity was recorded for C. winterianus extract. In addition, the packaging of grapes with C. winterianus extract preserved them for about 40 days. The results reflect the significant antimicrobial activity of O. syriacum and C. winterianus extracts and their EOs, thus suggesting their potential in food packaging and preservation.
Collapse
Affiliation(s)
- Marwa Rammal
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Salam Khreiss
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343, Jordan;
| | - Malak Mezher
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugene Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Chaden Haidar
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut 11072020, Lebanon;
| | - Mohammad H. El-Dakdouki
- Department of Chemistry, Faculty of Science, Beirut Arab University, Riad El Solh, P.O. Box 11-5020, Beirut 11072809, Lebanon
| |
Collapse
|
43
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
44
|
Mavai S, Bains A, Sridhar K, Rashid S, Elossaily GM, Ali N, Chawla P, Sharma M. Formulation and application of poly lactic acid, gum, and cellulose-based ternary bioplastic for smart food packaging: A review. Int J Biol Macromol 2024; 268:131687. [PMID: 38642692 DOI: 10.1016/j.ijbiomac.2024.131687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, Prince Sattam Bin Abdulaziz University, P.O. Box 173 Al-Kharj 11942, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | | |
Collapse
|
45
|
Alsaedi WH, Abu Al-Ola KA, Alhaddad O, Albelwe Z, Alawaji R, Abu-Dief AM. Effect of Nano Spinel Ferrites Co 0.9Cu 0.1Fe 2O 4 on Non-Isothermal Cold Crystallization Behaviours and Kinetics of Its Composites with Polylactic Acid. Polymers (Basel) 2024; 16:1190. [PMID: 38732659 PMCID: PMC11085212 DOI: 10.3390/polym16091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Nanoparticles of spinel ferrites with a composition of Co0.9Cu0.1Fe2O4 (AM NPs) were effectively synthesized via a hydrothermal route. The structure of ferrite nanoparticles was characterized with X-ray diffraction, which showed a single cubic spinel phase. Energy-dispersive X-ray (EDX) spectroscopy and field emission-scanning electron microscopy (FE-SEM) were employed to analyse elemental composition and surface morphology, respectively. Moreover, the effects of the Co0.9Cu0.1Fe2O4 on the morphology of [PLA = polylactic acid] nanocomposites were examined through polarized light optical microscopy (POM) and X-ray diffraction (XRD). The thermal behaviours for tested samples were studied through [DSC = differential scanning calorimetry] and [TGA = thermal gravimetric analysis]. A great number of minor PLA spherulites were detected using POM in the presence of the Co0.9Cu0.1Fe2O4 ceramic magnetic nanoparticles (AM), increasing with AM nanoparticle contents. X-ray diffraction (XRD) analysis showed that the presence of nanoparticles led to an increase in the intensity of diffraction peaks. The DSC findings implied that the crystallization behaviours for the efficient PLA as well as its nanocomposites were affected by the addition of AM nanoparticles. They act as efficient nucleating agents because they shift the temperature of crystallization to a lower value. The Avrami models were used to analyse kinetics data. The experimental data were well described using the Avrami method for all samples tested. The addition of AM to the PLA matrix resulted in a decrease in the crystallization half-time t1/2 values, indicating a faster crystallization rate. TGA data showed that the occurrence of AM nanoparticles decreased the thermal stability of PLA.
Collapse
Affiliation(s)
- Wael H. Alsaedi
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
| | - Omaima Alhaddad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
| | - Zyzafon Albelwe
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
| | - Renad Alawaji
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
| | - Ahmed M. Abu-Dief
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah P.O. Box 30002, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
46
|
Othman SH, Shapi'i RA, Ronzi NDA. Starch biopolymer films containing chitosan nanoparticles: A review. Carbohydr Polym 2024; 329:121735. [PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
Collapse
Affiliation(s)
- Siti Hajar Othman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ruzanna Ahmad Shapi'i
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Diana Arisya Ronzi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Olunusi SO, Ramli NH, Fatmawati A, Ismail AF, Okwuwa CC. Revolutionizing tropical fruits preservation: Emerging edible coating technologies. Int J Biol Macromol 2024; 264:130682. [PMID: 38460636 DOI: 10.1016/j.ijbiomac.2024.130682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.
Collapse
Affiliation(s)
- Samuel Olugbenga Olunusi
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nor Hanuni Ramli
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Adam Fatmawati
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Ahmad Fahmi Ismail
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200, Bandar Indera Mahkota Razak, Kuantan, Pahang, Malaysia
| | - Chigozie Charity Okwuwa
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
48
|
Plota-Pietrzak A, Czechowski L, Masek A. Influence of a Biofiller, Polylactide, on the General Characteristics of Epoxy-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1069. [PMID: 38473541 DOI: 10.3390/ma17051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The aim of this work was to obtain epoxy-based composite structures with good mechanical performance, high aging resistance, and an improved degradability profile. For this purpose, powdered polylactide in the amount of 5, 10, 20, 30, and 40 phr was introduced into the epoxy resin, and the composites were fabricated by a simple method, which is similar to that used on an industrial scale in the fabrication of these products. The first analysis concerned the study of the effect of PLA addition to epoxy resin-based composites on their mechanical properties. One-directional tensile tests of samples were performed for three directions (0, 90, and 45 degrees referring to the plate edges). Another aspect of this research was the assessment of the resistance of these composites to long-term exposure to solar radiation and elevated temperature. Based on the obtained results, it was observed that the samples containing 20 or 40 phr of polylactide were characterized by the lowest resistance to the solar aging process. It was therefore concluded that the optimal amount of polylactide in the epoxy resin composite should not be greater than 10 phr to maintain its mechanical behavior and high aging resistance. In the available literature, there are many examples in which scientists have proposed the use of various biofillers (e.g., lignin, starch, rice husk, coconut shell powder) in epoxy composites; however, the impact of polylactide on the general characteristics of the epoxy resin has not been described so far. Therefore, this work perfectly fills the gaps in the literature and may contribute to a more widespread use of additives of natural origin, which may constitute an excellent alternative to commonly used non-renewable compounds.
Collapse
Affiliation(s)
- Angelika Plota-Pietrzak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, 90-537 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
49
|
Brandelli A. Nanocomposites and their application in antimicrobial packaging. Front Chem 2024; 12:1356304. [PMID: 38469428 PMCID: PMC10925673 DOI: 10.3389/fchem.2024.1356304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
The advances in nanocomposites incorporating bioactive substances have the potential to transform the food packaging sector. Different nanofillers have been incorporated into polymeric matrixes to develop nanocomposite materials with improved mechanical, thermal, optical and barrier properties. Nanoclays, nanosilica, carbon nanotubes, nanocellulose, and chitosan/chitin nanoparticles have been successfully included into polymeric films, resulting in packaging materials with advanced characteristics. Nanostructured antimicrobial films have promising applications as active packaging in the food industry. Nanocomposite films containing antimicrobial substances such as essential oils, bacteriocins, antimicrobial enzymes, or metallic nanoparticles have been developed. These active nanocomposites are useful packaging materials to enhance food safety. Nanocomposites are promising materials for use in food packaging applications as practical and safe substitutes to the traditional packaging plastics.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center of Nanoscience and Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
50
|
de Souza RC, da Silva LM, Buratti BA, Carra S, Flores M, Puton BM, Rigotti M, Salvador M, Malvessi E, Moreira FKV, Steffens C, Valduga E, Zeni J. Purification, bioactivity and application of maltobionic acid in active films. 3 Biotech 2024; 14:32. [PMID: 38188310 PMCID: PMC10764696 DOI: 10.1007/s13205-023-03879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The objective of this study was to purify sodium maltobionate using Zymomonas mobilis cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL-1. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL-1 for Salmonella enterica serovar Choleraesuis, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL-1. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03879-3.
Collapse
Affiliation(s)
- Roberta Cristina de Souza
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Leonardo Meirelles da Silva
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Bruna Angela Buratti
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Sabrina Carra
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Maicon Flores
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Bruna Maria Puton
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Marina Rigotti
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Mirian Salvador
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Eloane Malvessi
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | | | - Clarice Steffens
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Eunice Valduga
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Jamile Zeni
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| |
Collapse
|