1
|
Zhu CY, Li K, Wang Y, Du MT, Chen B, Wang YT, Zhou YF, Bai YH. Antioxidant and antimicrobial PSE-like chicken protein isolate films loaded with oregano essential oil nanoemulsion for pork preservation. Food Chem 2025; 475:143355. [PMID: 39952189 DOI: 10.1016/j.foodchem.2025.143355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The oregano essential oil (OEO) nanoemulsion was prepared, and the effects of different added amounts of OEO nanoemulsion on the mechanical and antibacterial properties of PSE-like chicken protein isolate (PPI) film were investigated. Results revealed that the nanoemulsion containing 12 % Tween 80 and 6 % OEO had the smallest particle size (82.46 nm) and the best stability. Compared to the control group, the film of the PPI/OEO-2.5 % treatment group demonstrated superior mechanical properties. With the increase of the concentration of OEO nanoemulsion, the UV transmittance and water contact angle of the films decreased gradually (more hydrophilic), the opacity and water vapor permeability significantly increased, while the thermal stability, antioxidant properties (DPPH scavenging activity, 17.07 % ∼ 56.00 %), and antibacterial properties were markedly enhanced. The PPI/OEO-2.5 % treated film was applied to the preservation of pork, extending the shelf life by 2-4 days. These findings suggested that PPI had great application potential in bioactive packaging materials.
Collapse
Affiliation(s)
- Chen-Yan Zhu
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Ke Li
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| | - Yu Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Man-Ting Du
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Bo Chen
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Yun-Tao Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Yan-Fang Zhou
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Ke Xue Road No. 136, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Beyaz H, Kavaz D, Rizaner N. Chitosan nanoparticle encapsulation of thymus capitatus essential oil: in vitro release, antioxidant, antibacterial activity and cytotoxicity in MDA-MB-231 cells. Pharm Dev Technol 2025:1-15. [PMID: 40163347 DOI: 10.1080/10837450.2025.2487255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Thymus capitatus (Th. Ca) is known to treat mouth ulcers and respiratory infections in Cyprus. However, antioxidant, antibacterial, and cytotoxic potential of Th. Ca. EO on MDA-MB-231 cells and its' encapsulation into nanoparticles has not been well studied. Therefore, we aimed to analyze the antioxidant, antibacterial, cytotoxic potential, loading efficiency, and in vitro release profile of both Th. Ca. EO and Chitosan Nanoparticle (Ch. Np) - Th. Ca. EO. GC-MS analysis revealed 53.97% carvacrol, 14.53% borneol, and 12.09% sabinene presence in EO. The loading efficiency of Th. Ca. EO into Ch. Np. was calculated as 35.27% and the in vitro release profile reached a maximum of 68% in pH 7 for two weeks. The Minimum Inhibitory Concentration (MIC) assay showed that E. coli had an MIC50 of 0.3215 mg/ml while B. subtilis had an MIC50 of 0.5304 mg/ml. The antioxidant activity of the EO was assessed by performing a DPPH assay with an IC50 = 440 μg/ml. Trypan Blue Assay revealed that 60 µg/ml Th. Ca. EO significantly reduced the cell viability of MDA-MB-231 cells by 10.7% at 48h and 20.06% at 72h. Overall, Ch. Np. - Th. Ca. EO has shown a promising formulation for the pharmaceutical industry.
Collapse
Affiliation(s)
- Huseyin Beyaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
- Biotechnology Research Centre, Cyprus International University, Nicosia, Turkey
| | - Nahit Rizaner
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
- Biotechnology Research Centre, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
3
|
Ganea M, Georgiana Ioana PC, Ghitea TC, Ștefan L, Groza F, Frent OD, Nagy C, Iova CS, Schwarz-Madar AF, Ciavoi G, Vicas LG, Constanta PD, Moisa C. Development and Evaluation of Gelatin-Based Gummy Jellies Enriched with Oregano Oil: Impact on Functional Properties and Controlled Release. Foods 2025; 14:479. [PMID: 39942072 PMCID: PMC11817771 DOI: 10.3390/foods14030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Functional foods play a crucial role in contemporary dietary strategies. This study investigates the incorporation of oregano oil, a bioactive extract that is known for its antimicrobial and antioxidant properties, into gelatin-based gummy jellies to develop functional food products with controlled release properties. The jellies were evaluated for mass uniformity, swelling index, disintegration time, and tensile strength under simulated oral and gastric conditions. The results showed that oregano oil significantly reduced the swelling index (e.g., 128.76 ± 0.67% at pH 5) and prolonged the disintegration time (e.g., 6-18 min across pH environments), highlighting its potential for controlled release. The mechanical strength remained stable (5.2 ± 0.3 N), ensuring structural integrity. These findings suggest that oregano-oil-enriched gummy jellies offer health benefits, although further studies are needed to explore their long-term stability and bioavailability.
Collapse
Affiliation(s)
- Mariana Ganea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Potra Cicalau Georgiana Ioana
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (P.C.G.I.); (G.C.)
| | - Timea Claudia Ghitea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Liana Ștefan
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Florina Groza
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (F.G.); (C.S.I.)
| | - Olimpia Daniela Frent
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Csaba Nagy
- Doctoral School of Biomedical Science, University of Oradea, No. 1 University Street, 410087 Oradea, Romania;
| | - Claudiu Sorin Iova
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (F.G.); (C.S.I.)
| | - Andrada Florina Schwarz-Madar
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (P.C.G.I.); (G.C.)
| | - Laura Gratiela Vicas
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| | - Pelea Diana Constanta
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.Ș.); (A.F.S.-M.); (P.D.C.)
| | - Corina Moisa
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (M.G.); (O.D.F.); (L.G.V.); (C.M.)
| |
Collapse
|
4
|
Sun J, Yang X, Bai Y, Fang Z, Zhang S, Wang X, Yang Y, Guo Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods 2024; 13:3999. [PMID: 39766942 PMCID: PMC11675707 DOI: 10.3390/foods13243999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
There is growing interest in the use of bio-based materials as viable alternatives to petrochemical-based packaging. However, the practical application of bio-based films is often hampered by their poor barrier and poor mechanical properties. In this context, cellulose nanofibers (CNFs) have attracted considerable attention owing to their exceptional biodegradability, high aspect ratio, and large surface area. The extraction of CNFs from agricultural waste or non-food biomass represents a sustainable approach that can effectively balance cost and environmental impacts. The functionalization of CNFs improves the economics of raw materials and production processes while expanding their applications. This paper reviews recent advances in cellulose nanofibers, including their sources, surface modification, and characterization techniques. Furthermore, we systematically discuss the interactions of CNFs with different composites in the development of functional food films. Finally, we highlight the application of cellulose nanofiber films in food preservation. Due to their environmentally friendly properties, CNFs are a promising alternative to petroleum-based plastics. The aim of this paper is to present the latest discoveries and advances in CNFs while exploring the future prospects for edible food films, thereby encouraging further research and application of CNFs in the field of active food packaging.
Collapse
Affiliation(s)
- Jiaojiao Sun
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Xi Yang
- College of Food Science and Engineering, Ningbo University, Ningbo 315100, China;
| | - Yifan Bai
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Zhisheng Fang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yali Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| |
Collapse
|
5
|
Mahgoub SA, Qattan SYA, AlMalki F, Kamal M, Alqurashi AF, Almuraee AA, Alhassani WE, Abu-Hiamed HA, Almarkhan WD, Alsanei WA, Alfassam HE, Rudayni HA, Allam AA, Moustafa M, Alshaharni MO, Taha AE. Impact of packaging atmosphere, oregano essential oil, and storage temperature on cold-adapted Salmonella Enteritidis and Salmonella Typhimurium on ready-to-eat smoked turkey. Poult Sci 2024; 103:103846. [PMID: 38796987 PMCID: PMC11152719 DOI: 10.1016/j.psj.2024.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The hazard of diseases created by S. Enteritidis and S. Typhimurium is relatively high in turkey meat products. Combinations of preservation methods are utilized in many strategies, such as mild heat with decreased water activity, a changed atmosphere, refrigerated storage, and decreased heat treatment with some acidification. Within the domain of ready-to-eat food technology, a range of preservation methods are typically utilized to enhance shelf life, such as applying mild heat in tandem with reduced water activity, employing modified atmosphere packaging, utilizing refrigerated storage, and utilizing reduced heat treatment combined with acidification. This investigation aimed to determine how S. Enteritidis and S. Typhimurium grew when sliced ready-to-eat smoked turkey (RTE-SM) was stored at 0, 5, 10, and 15°C for various periods. The study also examined the effects of modified atmosphere packaging (MAP) (40% CO2 and 60% N2) and VP on these growth patterns. Total viable count (TVC), lactic acid bacteria (LAB), pH, and redox potential levels were determined. The control experiment on RTE-SM showed no Salmonella growth within 30 d of storage at any temperature. This indicated that the RTE-SM in use did not initially contain S. Typhimurium and S. Enteritidis. Results indicated that the storage of RTE-SM using a combination of VP, MAP, and MAPEO with storage at 0 and 5°C did not allow for the pathogen to grow throughout storage. In comparison, at 10 and 15°C after one day, which allowed for minor growth (0.17-0.5 log CFU/g)? In contrast, at 0 and 5°C, Salmonella survives until the end of storage (173 d). However, the combination of MAPEO with the same storage temperatures achieved the elimination of the pathogen in the meat after 80 d. The combination of both packaging systems with high temperatures (10 or 15°C) allowed for the multiplication and growth of the bacterium through the product's shelf life of more than 1 log CFU/g. Thus, a combination of MAP or MAPEO with low storage temperatures (0 or 5°C) inhibited the growth of the pathogen.
Collapse
Affiliation(s)
- Samir A Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Shaza Y A Qattan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Fatemah AlMalki
- Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra Universit, Al Quwaiiyah 19257, Saudi Arabia
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Amal F Alqurashi
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Areej A Almuraee
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Walaa E Alhassani
- Clinical Nutrition Department , Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Hind A Abu-Hiamed
- Assistant professor of Applied Nutrition, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa D Almarkhan
- Assistant professor of Applied Nutrition, Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Woroud A Alsanei
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Apis 21944, Egypt.
| |
Collapse
|
6
|
González-Moreno BJ, Galindo-Rodríguez SA, Rivas-Galindo VM, Pérez-López LA, Granados-Guzmán G, Álvarez-Román R. Enhancement of Strawberry Shelf Life via a Multisystem Coating Based on Lippia graveolens Essential Oil Loaded in Polymeric Nanocapsules. Polymers (Basel) 2024; 16:335. [PMID: 38337224 DOI: 10.3390/polym16030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Strawberries (Fragaria xannanasa) are susceptible to mechanical, physical, and physiological damage, which increases their incidence of rot during storage. Therefore, a method of protection is necessary in order to minimize quality losses. One way to achieve this is by applying polymer coatings. In this study, multisystem coatings were created based on polymer nanocapsules loaded with Lippia graveolens essential oil, and it was found to have excellent optical, mechanical, and water vapor barrier properties compared to the control (coating formed with alginate and with nanoparticles without the essential oil). As for the strawberries coated with the multisystem formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens, these did not present microbial growth and only had a loss of firmness of 17.02% after 10 days of storage compared to their initial value. This study demonstrated that the multisystem coating formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens could be a viable alternative to preserve horticultural products for longer storage periods.
Collapse
Affiliation(s)
- Barbara Johana González-Moreno
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Verónica Mayela Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Graciela Granados-Guzmán
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| |
Collapse
|