1
|
Chahar M, Rana A, Gupta VK, Singh A, Singh N. Application of a novel lytic phage to control enterotoxigenic Escherichia coli in dairy food matrices. Int J Food Microbiol 2025; 426:110924. [PMID: 39348785 DOI: 10.1016/j.ijfoodmicro.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
A novel Escherichia coli phage designated as EC BD was isolated from cattle dung samples. Transmission electron microscopy demonstrated that the morphology of phage EC BD belongs to the family Myoviridae. The efficiency of plating (EOP) and scanning electron microscopy revealed the strong lytic activity of phage EC BD with a large burst size and a short latent period. Whole genome data analysis suggested that phage EC BD was inclined towards being completely lytic and revealed the absence of toxins, virulence and antibiotic resistance genes. Phylogenomic analysis of phage EC BD receptor binding proteins (RBPs) showed 74-100 % similarity with sixteen Enterobacter phages, representing their broad host range. The phage genome contains 262 ORFs, of which 107 displayed a unique pattern and additionally, the presence of a tRNA gene directed their fast replication and high stability. Comparative genome analysis suggested phage EC BD as a novel member of the genus Duplodnaviria and family Myoviridae. The efficiency of phage EC BD was determined in dairy food matrices (milk, cheese and paneer) artificially contaminated with enterotoxigenic E. coli strains ETEC H10407, ETEC K 12S and ETEC PB 176 with a significant reduction of 4.8, 6.0 and 5.3 log CFU/mL in milk and a substantial 4.9, 5.8 and 4.6 log CFU/mL reduction in cheese samples after 6 days at low storage temperature (4 °C); furthermore, within the similar conditions, paneer samples showed 4, 5.1 and 3.5 log CFU/mL reduction. EC BD phage treatment represents the complete eradication of three ETEC strains in liquid and semisolid dairy food matrices. This study suggested that phage EC BD might have potential as a biocontrol approach against ETEC foodborne infections.
Collapse
Affiliation(s)
- Madhvi Chahar
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| | - Anuj Rana
- Department of Microbiology, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, India
| | - Vinay Kumar Gupta
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Anu Singh
- Department of Microbiology, Swami Vivekanand University, Sagar, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India.
| |
Collapse
|
2
|
Deepa G, Daniel I, Sugumar S. An insight into the applications of bacteriophages against food-borne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:1-10. [PMID: 39867606 PMCID: PMC11754761 DOI: 10.1007/s13197-024-06070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 01/28/2025]
Abstract
Novel and emerging pathogens, enduring contamination, antibiotic resistance, an environment that is always changing, and the complexity of food production systems all contribute to the worsening of foodborne illness. It has been proposed that bacteriophages can serve as both fast food-borne pathogen detection tools and natural food preservatives in a variety of foods. Phages, like many other antimicrobial interventions used in food production systems, are not a cure-all for issues related to food safety, though. Consequently, phage-based biocontrol has a generally narrower antibacterial spectrum than most antibiotics, even though it can be promising in the fight against foodborne infections. Among the difficulties phage-based biocontrol techniques encounter are forming phage-insensitive single-cell variations and creating potent cocktails. To better understand when and where phage-based applications can be successfully implemented at the production and processing levels, this review focuses on phage-based applications at crucial control points in food production systems.
Collapse
Affiliation(s)
- Gutti Deepa
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Irene Daniel
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
3
|
Monsef AS, Nemattalab M, Parvinroo S, Hesari Z. Antibacterial effects of thyme oil loaded solid lipid and chitosan nano-carriers against Salmonella Typhimurium and Escherichia coli as food preservatives. PLoS One 2024; 19:e0315543. [PMID: 39739777 DOI: 10.1371/journal.pone.0315543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVES Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active antibacterial ingredient. TO contains various bioactive compounds that exhibit antimicrobial properties. To increase the antibacterial effects and stability of thyme oil, two promising carrier systems, solid lipid nanoparticles (SLN) and chitosan nanoparticles have been fabricated in this study. METHODS Nanoparticles were made using natural-based lipids and polymers by a probe sonication method. They were characterized using infrared spectrometry (FTIR), transmission electron microscopy (TEM), particle size, cytotoxicity, etc. Antibacterial effects of TO, thyme oil loaded in SLN (TO-SLN) and thyme oil loaded in chitosan nanoparticle (TO-CH) was evaluated against E. coli and S. typhimurium using Minimum inhibitory/bactericidal concentrations (MIC/MBC) determination. Encapsulation efficiency (EE%) and drug release profile were also studied in vitro. RESULTS TEM analysis revealed spherical/ovoid-shaped particles with clear edges. TO-SLN had an average size of 42.47nm, while TO-CH had an average size of 144.8nm. The Encapsulation efficiency of TO-CH and TO-SLN nanoparticles were about 81.6±1% and 73.4±1%, respectively. Results indicated 92% cumulative release in TO-CH in comparison with 88% in TO-SLN in 72 h. MIC against E. coli and S. typhimurium for TO-CH, TO-SLN, and pure TO were 4 and 1.5 μg/mL, 60 and 40 μg/mL, and 180-150 μg/mL, respectively. CONCLUSION Nanoencapsulation of thyme oil significantly potentiated its antimicrobial effects. TO-CH exhibited a significantly higher antibacterial effect compared to TO-SLN (6-fold) and pure thyme oil (more than 10-fold).
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shirin Parvinroo
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Obong’o BO, Ogutu FO, Hurley SK, Okiko GM, Mahony J. Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety. Viruses 2024; 16:1897. [PMID: 39772204 PMCID: PMC11680409 DOI: 10.3390/v16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all.
Collapse
Affiliation(s)
- Boniface Oure Obong’o
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Fredrick Onyango Ogutu
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Shauna Kathleen Hurley
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Gertrude Maisiba Okiko
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| |
Collapse
|
5
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
6
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
7
|
León M, Araya J, Nuñez M, Arce M, Guzmán F, Yáñez C, Besoain X, Bastías R. Evaluation of Different Formulations on the Viability of Phages for Use in Agriculture. Viruses 2024; 16:1430. [PMID: 39339906 PMCID: PMC11437505 DOI: 10.3390/v16091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Bacteriophages have been proposed as biological controllers to protect plants against different bacterial pathogens. In this scenario, one of the main challenges is the low viability of phages in plants and under adverse environmental conditions. This work explores the use of 12 compounds and 14 different formulations to increase the viability of a phage mixture that demonstrated biocontrol capacity against Pseudomonas syringae pv. actinidiae (Psa) in kiwi plants. The results showed that the viability of the phage mixture decreases at 44 °C, at a pH lower than 4, and under UV radiation. However, using excipients such as skim milk, casein, and glutamic acid can prevent the viability loss of the phages under these conditions. Likewise, it was demonstrated that the use of these compounds prolongs the presence of phages in kiwi plants from 48 h to at least 96 h. In addition, it was observed that phages remained stable for seven weeks when stored in powder with skim milk, casein, or sucrose after lyophilization and at 4 °C. Finally, the phages with glutamic acid, sucrose, or skim milk maintained their antimicrobial activity against Psa on kiwi leaves and persisted within kiwi plants when added through roots. This study contributes to overcoming the challenges associated with the use of phages as biological controllers in agriculture.
Collapse
Affiliation(s)
- Marcela León
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Jorge Araya
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Mauricio Nuñez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Manuel Arce
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Carolina Yáñez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Ximena Besoain
- Laboratorio de Fitopatología, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Roberto Bastías
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| |
Collapse
|
8
|
Islam MS, Fan J, Suzauddula M, Nime I, Pan F. Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo. Biomedicines 2024; 12:2036. [PMID: 39335549 PMCID: PMC11428821 DOI: 10.3390/biomedicines12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Fan
- Department of Pathology, School of Basic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, China
| | - Md Suzauddula
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Brás A, Braz M, Martinho I, Duarte J, Pereira C, Almeida A. Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces. Microorganisms 2024; 12:366. [PMID: 38399770 PMCID: PMC10892694 DOI: 10.3390/microorganisms12020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial adhesion to food processing surfaces is a threat to human health, as these surfaces can serve as reservoirs of pathogenic bacteria. Escherichia coli is an easily biofilm-forming bacterium involved in surface contamination that can lead to the cross-contamination of food. Despite the application of disinfection protocols, contamination through food processing surfaces continues to occur. Hence, new, effective, and sustainable alternative approaches are needed. Bacteriophages (or simply phages), viruses that only infect bacteria, have proven to be effective in reducing biofilms. Here, phage phT4A was applied to prevent and reduce E. coli biofilm on plastic and stainless steel surfaces at 25 °C. The biofilm formation capacity of phage-resistant and sensitive bacteria, after treatment, was also evaluated. The inactivation effectiveness of phage phT4A was surface-dependent, showing higher inactivation on plastic surfaces. Maximum reductions in E. coli biofilm of 5.5 and 4.0 log colony-forming units (CFU)/cm2 after 6 h of incubation on plastic and stainless steel, respectively, were observed. In the prevention assays, phage prevented biofilm formation in 3.2 log CFU/cm2 after 12 h. Although the emergence of phage-resistant bacteria has been observed during phage treatment, phage-resistant bacteria had a lower biofilm formation capacity compared to phage-sensitive bacteria. Overall, the results suggest that phages may have applicability as surface disinfectants against pathogenic bacteria, but further studies are needed to validate these findings using phT4A under different environmental conditions and on different materials.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| | - Adelaide Almeida
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| |
Collapse
|
10
|
Liu J, Yuan Y, Feng L, Lin C, Ye C, Liu J, Li H, Hao L, Liu H. Intestinal pathogens detected in cockroach species within different food-related environment in Pudong, China. Sci Rep 2024; 14:1947. [PMID: 38253647 PMCID: PMC10803747 DOI: 10.1038/s41598-024-52306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cockroaches are considered mechanical transmitters of infectious diseases, posing a threat to human health. This study assessed the potential of cockroaches in food-related environments to mechanically transmit intestinal pathogens. Cockroaches captured with traps were placed together into a low temperature refrigerator at - 80° for 2 h. Standard taxonomic keys and Fluorescent quantitative PCR techniques were applied for species identification and digestive tract etiological examination. A total of 360 cockroach traps were placed, with a positive rate of 20.8%, and 266 cockroaches were captured. In general, compared with other places and areas, the degree of infestation of cockroaches was more serious in catering places and kitchens. Blattella germanica were most found in catering places (40.2%), followed by Periplaneta fuliginosa in schools (22.2%). According to the life stage, among the 128 cockroach samples, 23 were positive for nymphs and 13 were positive for adults. There were statistically significant differences in the intestinal pathogen detection rates between nymphs and adults (P < 0.05). A total of eight intestinal pathogens were detected, and enterovirus infections were the main ones, with sapovirus being the most detected in Blattella germanica or nymph. Shiga toxin-producing Escherichia coli (STEC) was the most frequently isolated bacterium. Blastocystis hominis had the highest isolation rate. In contrast, 12 diarrhoeal disease pathogens were isolated, and the viruses and bacteria with the highest frequencies were norovirus and E. coli, respectively; no parasites were found. Blattella germanica and Periplaneta fuliginosa in food-related environments can act as potential vectors for the spread of intestinal pathogens and may pose a significant threat to public health.
Collapse
Affiliation(s)
- Jun Liu
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Yongting Yuan
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Lei Feng
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Chen Lin
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Chuchu Ye
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Jingyi Liu
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Huihui Li
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Lipeng Hao
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China.
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| | - Hanzhao Liu
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China.
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|
11
|
Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel) 2023; 12:1694. [PMID: 38136728 PMCID: PMC10740918 DOI: 10.3390/antibiotics12121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is an increasing global problem for public health, and focusing on biofilms has provided further insights into resistance evolution in bacteria. Resistance is innate in many bacterial species, and many antibiotics are derived from natural molecules of soil microorganisms. Is it possible that nature can help control AMR diffusion? In this review, an analysis of resistance mechanisms is summarized, and an excursus of the different approaches to challenging resistance spread based on natural processes is presented as "lessons from Nature". On the "host side", immunotherapy strategies for bacterial infections have a long history before antibiotics, but continuous new inputs through biotechnology advances are enlarging their applications, efficacy, and safety. Antimicrobial peptides and monoclonal antibodies are considered for controlling antibiotic resistance. Understanding the biology of natural predators is providing new, effective, and safe ways to combat resistant bacteria. As natural enemies, bacteriophages were used to treat severe infections before the discovery of antibiotics, marginalized during the antibiotic era, and revitalized upon the diffusion of multi-resistance. Finally, sociopolitical aspects such as education, global action, and climate change are also considered as important tools for tackling antibiotic resistance from the One Health perspective.
Collapse
Affiliation(s)
- Maria Vitale
- Genetics of Microorganisms Laboratory, Molecular Biology Department, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|