1
|
Liu C, Liu L, Lin H, Deng S, Zeng H, Shi X, Ling Z, Zhou F, Liu Z, Guo S. New biological strategies for preventing and controlling food contaminants in the supply chain: Smart use of common plant-derived substances. Food Chem 2025; 479:143757. [PMID: 40088659 DOI: 10.1016/j.foodchem.2025.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Traditional means of contaminant management that rely on chemical additives and high-temperature processing have raised concerns about long-term safety and environmental issues in the modern food supply chain. Therefore, sustainable, safe, and innovative strategies are urgently needed. Plant-derived substances are known for their biological activity and antifouling potential as natural alternatives for contamination control. This review examines the sources of various contaminants, the categories of plant-derived substances, the action mechanisms, and their feasibility in the food supply chain. The smart use of plant-derived substances to improve microbial, chemical, and metal contamination in the food blockchain is not only a profound fusion of nature and technology, but also a mutual combination of ecological preservation and food safety. However, the realization of its commercialization is subject to multiple sanctions, but as the thorny issues are gradually resolved, the consolidation and market for the new strategies will thrive.
Collapse
Affiliation(s)
- Changwei Liu
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lu Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Senwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xin Shi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhixiang Ling
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou, Hunan 423000, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Shiyin Guo
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Abdel Sattar OI, Abuseada HHM, Emara MS, Rabee M. A green and verified high-performance liquid chromatographic technique for the concurrent measurement of a few veterinary drug residues in milk. BMC Chem 2025; 19:103. [PMID: 40251611 PMCID: PMC12008928 DOI: 10.1186/s13065-025-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
Milk is a widely consumed dietary product due to its high nutritional value. The presence of veterinary drug residues in milk constitutes a potential risk to human health and undesirable effects on consumers. In this study, a chromatographic method was developed and optimized for quantitative analysis of imidocarb dipropionate (IMD), flunixin meglumine (FNM), and sulfadimidine (SDD) residues in milk. These drugs are used together as a combination therapy for the management of anaplasmosis in cattle. The chromatographic separation was performed using an ODS Hypersil C18 column with UV detection at 270 nm. The mobile phase consisted of 0.05 M phosphate buffer, pH 3: acetonitrile: methanol (55:30:15, by volume), with a flow rate of 1 mL/min. Before analysis, a protein precipitation procedure was performed to extract the studied drugs from milk by using methanol as an extractor/deproteinization agent. The proposed method was successfully employed to quantify the studied drug residues in cattle milk samples within and after their withdrawal periods. The developed method was statistically compared with reported methods, demonstrating no significant difference in terms of accuracy and precision. Greenness and environmental impact were also evaluated for the proposed procedure, verifying it was a green and eco-friendly analytical method.
Collapse
Affiliation(s)
- Osama I Abdel Sattar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt
| | - Hamed H M Abuseada
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt
| | - Mohamed S Emara
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt.
| | - Mahmoud Rabee
- Research and Development Department, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
3
|
He J, Tang Y, Lin C, Peng S, Pedersen-Bjergaard S, Hansen FA, Zhou C. Electromembrane extraction of multi-class prohibited/restricted veterinary drugs from food samples - Exploring liquid membrane composition. Food Chem 2025; 470:142680. [PMID: 39733624 DOI: 10.1016/j.foodchem.2024.142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Effective monitoring of veterinary drug residues in food is essential for legislation compliance and food safety, yet remains challenging due to low concentrations and complex matrices. This study introduced a miniaturized 96-well electromembrane extraction (EME) technique for pre-concentration and isolation 80 prohibited/restricted veterinary drugs from honey samples. Three liquid membranes were developed and characterized: V1 ("V" for veterinary), a mixture of 2-undecanone and 0.5 % 2-nitro-p-cymene, was optimal for extraction of quinolones, tetracyclines, and β-agonists. V2, a mixture of 2-nitrophenyl octyl ether and a deep eutectic solution (formed upon mixing 6-methylcoumarin with thymol in a 1:1 w/w ratio) in a 1:1 v/v ratio, with the addition of 0.5 % di(2-ethylhexyl) phosphate (DEHP), was suitable for macrolides and sulfonamides extraction. V3, a deep eutectic solvent formed upon 1-decanoic acid and camphor in a 1:1 w/w ratio with 1 % DEHP, was suitable for aminoglycosides and β-lactams. Operational parameters were fine-tuned to achieve optimal extraction efficiencies, with recoveries ranging from 20.1-117.5 %, 20.3-91.9 %, and 20.1-118.8 % for V1, V2, and V3, respectively. High precision was observed for compounds with recoveries over 40 % (intra-day: 0.4-27.7 %; inter-day: 2.6-33.0 %), and matrix effects were generally within 80-120 %. This work established a theoretical framework for EME in food analysis, highlighting its potential as a powerful sample pretreatment method for the detection of veterinary drug residues. The results demonstrated the feasibility and advantages of using EME for ensuring food safety and regulatory compliance.
Collapse
Affiliation(s)
- Junling He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Chiliang Lin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoyun Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O Box 1068 Blindern, 0316 Oslo, Norway
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Dai Q, Tang S, Dai C. Recent Advances in Pretreatment Methods and Detection Techniques for Veterinary Drug Residues in Animal-Derived Foods. Metabolites 2025; 15:233. [PMID: 40278362 DOI: 10.3390/metabo15040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Veterinary drugs are extensively employed in livestock, poultry, and aquaculture, playing a crucial role in preventing and treating animal diseases, facilitating growth, and enhancing feed conversion rates. Nevertheless, veterinary drug residues in animal-derived foods pose a direct or potential threat to human life and health. Precise detection of these residues in animal-derived foods to ensure their safety has become an important mission. In this review, we sum up the current progress of applied pretreatment methods and detection techniques for veterinary drug residues in animal-derived foods. At present, sample pretreatment methods mainly consist of the following: liquid-liquid extraction; solid-phase extraction; immunoaffinity chromatography; Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method; and molecular imprinting technology. Detection techniques mainly involve chromatographic techniques, immunoassay techniques, fluorescence polarization immunoassay, and surface-enhanced Raman scattering. We also discussed the advantages and limitations of these technologies. Moreover, we point out the development direction and tendency of detection techniques in the future, providing references for the detection of veterinary drug residues in animal-derived foods.
Collapse
Affiliation(s)
- Qing Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
5
|
Sun Q, Liu J, Gou Y, Chen T, Shen X, Wang T, Li Y, He H, Deng H, Hua Y. Determination of veterinary drugs in foods of animal origin by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J Chromatogr A 2025; 1744:465726. [PMID: 39893914 DOI: 10.1016/j.chroma.2025.465726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
A method using QuEChERS coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of the residues of 19 veterinary drugs in ten animal-derived matrices, including beef, pork, sheep, horse, chicken, prawn, fish, liver, milk, and fat. This method was based on the enactment of veterinary drug compounds by Korea, Canada, the United States, and the European Union in recent years. The samples were extracted using 85% acetonitrile and separated on an ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm) with a gradient elution of methanol-0.2% formic acid water as the mobile phase. The detection of the analytes was achieved through the use of positive ion electrospray ionization (ESI) and multiple reaction monitoring (MRM) modes, while the quantification was conducted via the matrix-matched external standard method. Following optimization, the linearity of the target veterinary residues in the ten matrices was observed to be satisfactory, having a range of 0.5-50.0 ng/mL (R2 > 0.991). The limits of detection (LOD) were in the range of 0.01-1.29 μg/kg, while the limits of quantification (LOQ) were in the range of 0.02-4.31 μg/kg. The recoveries were observed to be in the range of 60.6-117.7 %, with relative standard deviations (RSDs) of ≤20.6 %. The method is straightforward and highly sensitive, and it satisfies the maximum limits set by the relevant standards of Korea, Canada, the USA, and the EU. It is well-suited for the rapid screening, qualitative, and quantitative analyses of metomidate, acetanilide, dl-methylephedrine, and other substances in foods of animal origin, providing technical assistance for cross-border food safety and testing.
Collapse
Affiliation(s)
- Qianran Sun
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Jun Liu
- Technology Center, Chengdu Customs, Chengdu 610041, China.
| | - Yuan Gou
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Tieyuan Chen
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Xiaofang Shen
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tao Wang
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Yongli Li
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Huizhen He
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Huidan Deng
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Yi Hua
- Technology Center, Chengdu Customs, Chengdu 610041, China
| |
Collapse
|
6
|
Yardimci SB, Sakin F, Corum O. Pharmacokinetics, Tissue Residues, and Withdrawal Times of Florfenicol in Chukar Partridges (Alectoris chukar). J Vet Pharmacol Ther 2025; 48:94-102. [PMID: 39302085 DOI: 10.1111/jvp.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The aim of this study was to determine pharmacokinetics of florfenicol and its metabolite florfenicol amine after a single (30 mg/kg) intravenous (IV) and oral administration of florfenicol in chukar partridges. It also aimed to investigate tissue residue and withdrawal time of florfenicol after multiple-dose (30 mg/kg, every 24 h for 5 days) oral administration. The research was carried out in two stages: pharmacokinetics and residue. Plasma and tissue concentrations of florfenicol and florfenicol amine were determined by HPLC. The elimination half-life of florfenicol was 5.25 h for IV and 5.44 h for oral. The volume of distribution at a steady state and total body clearance of florfenicol were 0.38 L/kg and 0.07 L/h/kg, respectively, after IV administration. The peak plasma concentration and bioavailability for oral administration were 45.26 ± 4.06 and 51.55%, respectively. After multiple-dose oral administration, the highest concentration was detected in the liver (9.21 μg/g) for florfenicol and in the kidney (0.67 μg/g) for florfeniol amine. The calculated withdrawal period of florfenicol was determined as 6, 3, 4, and 5 days for muscle, liver, kidney, and skin + fat, respectively. These data indicate that a 6-day WT after multiple-dose administration of florfenicol in chukar partridges can be considered safe for human consumption.
Collapse
Affiliation(s)
- Sara Busra Yardimci
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkiye
| | - Fatih Sakin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkiye
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkiye
| |
Collapse
|
7
|
Liu H, Wei X, He Y, Pan S, Wang C, Cheng J, Zhao Q, Shi K, Si H. Elucidating the antiviral effects of a novel compound throat anti-viral through metabolomics and network pharmacology: A study on infectious bronchitis virus in poultry. Poult Sci 2025; 104:104956. [PMID: 40127563 PMCID: PMC11984592 DOI: 10.1016/j.psj.2025.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Infectious bronchitis virus (IBV) is a major pathogen that causes significant economic losses in the global poultry industry. Current vaccination strategies provide only partial protection, highlighting the need for more effective prevention and treatment methods. This study aimed to develop a novel compound throat anti-viral (CTA) from natural plants using data from the Traditional Chinese Medicine Inheritance System and identification through liquid chromatography-mass spectrometry. CTA demonstrated substantial anti-IBV effects both in vitro and in vivo studies. In vitro, CTA significantly inhibited IBV multiplication and alleviated the pathological lesions in chicken embryonic kidney cells, tracheal rings, and chicken embryos. In vivo, a seven-day treatment with CTA obtained much milder clinical signs, enhanced growth performance, and better immune organ indices in infected chickens. Additionally, CTA treatment reduced IBV levels in the trachea and lungs and increased specific antibody titers. CTA also maintained body homeostasis, exhibiting strong antioxidant and anti-inflammatory properties that mitigated respiratory tract damage. Metabolomics and network pharmacology analyses, revealed that CTA's antiviral effects are mediated through the FoxO signaling pathway. This study successfully developed an effective prescription database based on the Traditional Chinese Medicine Inheritance System and validated the antiviral efficacy of CTA through comprehensive in vitro and in vivo experiments. The findings elucidated the mechanisms of CTA's action, particularly through the FoxO signaling pathway, and highlighted its potential for clinical application as a novel antiviral treatment for IBV in the poultry industry.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaofang Wei
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Sijia Pan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chenchen Wang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Junze Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiyuan Zhao
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Herdiana Y. Polymeric rumen-stable delivery systems for delivering nutricines. Open Vet J 2025; 15:565-593. [PMID: 40201846 PMCID: PMC11974284 DOI: 10.5455/ovj.2025.v15.i2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Ruminants face unique drug and nutrient delivery challenges because of their symbiotic rumen microorganisms. Polymeric rumen-stable delivery systems (RDSs) have emerged as a promising solution for efficiently delivering nutrition and enhancing animal health and productivity. Traditional methods such as heat and chemical treatment have been improved with polymeric coatings that facilitate the slow postruminal release of bioactive substances. Polymeric coatings of nutrients offer significant potential for improving ruminant health, reducing farmer costs, and promoting sustainability in livestock. This paper explores the mechanisms of rumen protection and abomasal release provided by polymeric coatings, discusses other RSDs, and reviews methods for evaluating their performance in vitro and in vivo. Further research in this area could advance novel nutricine delivery solutions for ruminants.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Veterinary Pharmaceutical Development Group, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
9
|
Hao Y, Yang M, Li N, Zhao Y, Wang Y, Chen X, Zhang F. Hydrophilic molecularly imprinted thermal-responsive polymers based sorbent for ambient ionization mass spectrometric analysis of sulfonamide antibiotics from food samples. Food Chem 2024; 461:140857. [PMID: 39151346 DOI: 10.1016/j.foodchem.2024.140857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The thermal-responsive magnetic molecularly imprinted polymer (TrMMIP) sorbent was synthesized by surface imprinting method, and then used for magnetic solid-phase extraction (MSPE) and subsequent integrated into the ion source for elution and ionization. The shrinking-strength states change of the thermal-responsive polymer chain on TrMMIP alters the wettability of the sorbent when the working temperature crosses the lower critical solution temperature (LCST) of the polymer, and thus affects its behavior of in the extraction and clean-up process. The targeted analytes could be effectively extracted due to the high selectivity of MIPs and well dispersibility of polymer chain under the open state. Additionally, a hydrophilic polymer chain wrapped on the sorbent surface further protected target substances from co-elution during cleanup. Analytical methods for sulfonamide antibiotics (SAs) detection in complex food samples (milk, honey, fish) were developed, demonstrating potential for rapid and sensitive SAs analysis in diverse food and biological samples.
Collapse
Affiliation(s)
- Yaxin Hao
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China; Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Yanfang Zhao
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Yunshan Wang
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China.
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
10
|
Hu G, Liu Z, Zhang Y, Gao S, Hao J. Simultaneous detection of enrofloxacin and florfenicol in animal-derived foods based on fluorescence quenching BELISA and a nanozyme catalytic strategy. Talanta 2024; 280:126759. [PMID: 39180878 DOI: 10.1016/j.talanta.2024.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Enrofloxacin (ENRO) and florfenicol (FF) are animal-specific drugs, but they present great harm to human health. Therefore, it is essential to rapidly and accurately detect ENRO and FF in animal-derived foods simultaneously. Herein, dual-template molecular imprinted polymers (MIPs) with specific recognition of ENRO and FF were prepared, meanwhile, the molar ratios of templates to monomer and cross-linker were optimized and then applied as a bionic antibody to experiment. Based on the principle that the fluorescence of QDs could be efficiently quenched by the enzymatic fabrication of Prussian blue nanoparticles (PBNPs), a novel and sensitive fluorescence quenching biomimetic enzyme-linked immunosorbent assay (BELISA) was established for simultaneous detection of ENRO and FF by the conversion of the absorption signal into fluorescent signals. Under optimal conditions, the detection limit (IC15) was 4.64 ng L-1 for ENRO and 1.33 ng L-1 for FF. Besides, matrix interference of chicken, eggs, milk and shrimp samples, was investigated in our study, and the result indicates that all of the sample matrices had a profound impact on the fluorescence of QDs, especially for milk samples (with Im of 94.10 %). After performing the matrix-elimination experiments, chicken, eggs, milk and shrimp samples spiked with ENRO and FF were extracted and detected by this proposed method, with recoveries ranging from 82.70 to 113.48 %. The results correlated well with those obtained using HPLC. In conclusion, the developed method could be an alternative and sensitive method for the simultaneous detection of ENRO and FF in animal-derived foods.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yiqin Zhang
- Shijiazhuang Customs District PR China, Shijiazhuang, Hebei 050061, China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
11
|
Dong J, Wang L, Liu L, Zhang Y, Wu Q, Zhao J. How policy advocacy promotes regulated antibiotic use: Evidence from meat duck farmers of China. One Health 2024; 19:100900. [PMID: 39386999 PMCID: PMC11462372 DOI: 10.1016/j.onehlt.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Antibiotic residues resulting from the misuse of veterinary antibiotics pose a serious threat to global food safety and the ecological environment. Regulating the use of antibiotics is currently a major concern; however, existing literature on this issue remains insufficient. Therefore, to advance research in this area, this study utilizes data from 988 questionnaires collected across 9 provinces in China and employs the 3SLS systematic estimation method. It constructs an analytical framework to explore the mechanisms through which policy advocacy (PA) influences regulating antibiotics use (RAU) among meat duck farmers. Specifically, the study examines two pathways: " PA - public opinion pressure perception (POPP) - RAU" and " PA - moral responsibility (MR) - RAU." Additionally, it explores the potential mechanisms through which PA impacts RAU among farmers. The results show that PA (Coef = 0.070, SE = 0.014) can promote RAU by increasing the level of POPP (Coef = 0.173, SE = 0.091). PA (Coef = 0.351, SE = 0.028) can also promote RAU by enhancing MR (Coef = 0.239, SE = 0.035). Meanwhile, this study introduces Internet use (IU) and reputational incentives (RI) as moderating variables to analyze their role in moderating the impact of PA on RAU. It was demonstrated that IU (Coef = 0.088, SE = 0.016) significantly enhances farmers' awareness of the value of RAU and amplifies the impact of PA on MR. However, IU (Coef = -0.017, SE = 0.008) was found to inhibit the effect of PA on POPP. RI fully satisfies farmers' need for " honor " and enhances the effectiveness of PA in promoting both POPP (Coef = 0.009, SE = 0.002) and MR (Coef = 0.058, SE = 0.004). Finally, the study proposes that the government expand PA channels, innovate methods, and combine online outreach with demonstrations to improve farmers' awareness of antibiotic use and address their reputational needs.
Collapse
Affiliation(s)
- Jinpeng Dong
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lina Wang
- Heze Rural Commercial Bank, Heze 274000, China
| | - Lingzhi Liu
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanyuan Zhang
- College of Economics and Management, Shandong Agricultural University, Taian, Shandong 430070, China
| | - Qiang Wu
- College of Economics and Management, Shandong Agricultural University, Taian, Shandong 430070, China
| | - Jiajia Zhao
- College of Economics, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
12
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
13
|
Corum O, Uney K, Coskun D, Durna Corum D, Cetin G, Elmas M. Plasma and Milk Pharmacokinetics and Estimated Milk Withdrawal Time of Tolfenamic Acid in Lactating Sheep. Vet Med Sci 2024; 10:e70047. [PMID: 39321188 PMCID: PMC11423908 DOI: 10.1002/vms3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the plasma and milk pharmacokinetics, as well as the withdrawal time (WT) from milk of tolfenamic acid (2 and 4 mg/kg) following intravenous (IV) administration to eight healthy lactating Akkaraman sheep. METHODS The trial was conducted in two periods in accordance with a crossover pharmacokinetic design. The concentrations of tolfenamic acid in the plasma and milk were determined using high-pressure liquid chromatography and evaluated using non-compartmental analysis. The WT of tolfenamic acid in milk was calculated using the WT 1.4 software. RESULTS Compared to the 2 mg/kg dose, plasma volume of distribution at steady state (from 0.43 to 0.50 L/kg), terminal elimination half-life (from 2.41 to 4.14 h) and dose-normalized area under the plasma concentration-time curve (AUC0-∞, from 9.46 to 30.11 h µg/mL) increased, whereas total body clearance (from 0.21 to 0.13 L/h/kg) decreased at the 4 mg/kg dose. The peak milk concentration (Cmax) and AUC0-∞ values in milk were 0.26 µg/mL and 0.28 h µg/mL, respectively, for 2 mg/kg, and 0.43 µg/mL and 0.55 h µg/mL, respectively, for 4 mg/kg. Although the dose-normalized Cmax of milk decreased depending on the dose, no difference was observed in dose-normalized AUC0-∞. The AUC0-∞ milk/AUC0-∞ plasma ratio was 0.03 for 2 mg/kg and 0.02 for 4 mg/kg. The WT values calculated for milk at dosages of 2 and 4 mg/kg were 3 and 4 h, respectively. CONCLUSIONS A decrease in plasma elimination and an increase in plasma concentration of tolfenamic acid were observed depending on the dose. Tolfenamic acid lowly passed into sheep's milk at 2 and 4 mg/kg doses. This study may provide valuable information for clinicians' decision-making processes.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of Hatay Mustafa KemalAntakyaHatayTürkiye
| | - Kamil Uney
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SelcukKonyaTürkiye
| | - Devran Coskun
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SiirtSiirtTürkiye
| | - Duygu Durna Corum
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of Hatay Mustafa KemalAntakyaHatayTürkiye
| | - Gul Cetin
- Department of PharmacologyFaculty of PharmacyUniversity of Erzincan Binali YıldırımErzincanTürkiye
| | - Muammer Elmas
- Department of Pharmacology and ToxicologyFaculty of Veterinary MedicineUniversity of SelcukKonyaTürkiye
| |
Collapse
|
14
|
Lan H, Li X, Wu Z, Pan D, Gan N, Wen L. Detection of Veterinary Drugs in Food Using a Portable Mass Spectrometer Coupled with Solid-Phase Microextraction Arrow. Foods 2024; 13:3337. [PMID: 39456399 PMCID: PMC11507621 DOI: 10.3390/foods13203337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
A portable mass spectrometer (PMS) was combined with a mesoporous silica material (SBA-15) coated solid-phase microextraction (SPME) Arrow to develop a rapid, easy-to-operate and sensitive method for detecting five veterinary drugs-amantadine, thiabendazole, sulfamethazine, clenbuterol, and ractopamine-in milk and chicken samples. Equipped with a pulsed direct current electrospray ionization source and a hyperboloid linear ion trap, the PMS can simultaneously detect all five analytes in approximately 30 s using a one-microliter sample. Unlike traditional large-scale instruments, this method shows great potential for on-site detection with no need for chromatographic pre-separation and minimal sample preparation. The SBA-15-SPME Arrow, fabricated via electrospinning, demonstrated superior extraction efficiency compared to commercially available SPME Arrows. Optimization of the coating preparation conditions and SPME procedures was conducted to enhance the extraction efficiency of the SBA-15-SPME Arrow. The extraction and desorption processes were optimized to require only 15 and 30 min, respectively. The SBA-15-SPME Arrow-PMS method showed high precision and sensitivity, with detection limits and quantitation limits of 2.8-9.3 µg kg-1 and 10-28 µg kg-1, respectively, in milk. The LOD and LOQ ranged from 3.5 to 11.7 µg kg-1 and 12 to 35 µg kg-1, respectively, in chicken. The method sensitivity meets the requirements of domestic and international regulations. This method was successfully applied to detect the five analytes in milk and chicken samples, with recoveries ranging from 85% to 116%. This approach represents a significant advancement in food safety by facilitating rapid, in-field monitoring of veterinary drug residues.
Collapse
Affiliation(s)
- Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Xueying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (X.L.); (Z.W.); (D.P.)
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
| | - Luhong Wen
- China Innovation Instrument Co., Ltd., Ningbo 315000, China;
| |
Collapse
|
15
|
Shang Y, Zhang D, Shen Y, Pan Y, Wang J, Wang Y. A Lincomycin-Specific Antibody Was Developed Using Hapten Prediction, and an Immunoassay Was Established to Detect Lincomycin in Pork and Milk. Foods 2024; 13:3118. [PMID: 39410153 PMCID: PMC11476017 DOI: 10.3390/foods13193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Prolonged consumption of animal-derived foods containing high levels of lincomycin (LIN) residues can adversely impact human health. Therefore, it is essential to develop specific antibodies and immunoassay methods for LIN. This study utilized computational chemistry to predict the efficacy of LIN haptens prior to chemical synthesis, with subsequent confirmation obtained through an immunization experiment. A hybridoma cell line named LIN/1B11 was established, which is specific to LIN. The optimized indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method exhibited high specificity for detecting LIN residues, with an IC50 value of 0.57 ± 0.03 µg/kg. The method effectively detected LIN residues in pork and milk samples, achieving a limit of detection (LOD) ranging from 0.81 to 1.20 µg/kg and a limit of quantification (LOQ) ranging from 2.09 to 2.29 µg/kg, with recovery rates between 81.9% and 108.8%. This study offers a valuable tool for identifying LIN residues in animal-derived food products. Furthermore, the efficient hapten prediction method presented herein improves antibody preparation efficiency and provides a simple method for researchers in screening haptens.
Collapse
Affiliation(s)
- Yuhan Shang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Dandan Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Yun Shen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Jing Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, Beijing 100081, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| |
Collapse
|
16
|
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024; 13:2921. [PMID: 39335850 PMCID: PMC11431016 DOI: 10.3390/foods13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.
Collapse
Affiliation(s)
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, La Plata RA1900, Argentina;
| |
Collapse
|
17
|
Xu X, Yuan J, Zhu M, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. The potential of orally exposed risk factors and constituents aggravating food allergy: Possible mechanism and target cells. Compr Rev Food Sci Food Saf 2024; 23:e70014. [PMID: 39230383 DOI: 10.1111/1541-4337.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Mengting Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
18
|
El Hawari K, El Khatib M, Zeineh M, Beh D, Jaber F, Mokh S. Contaminant and residue profiles in Lebanese food: a comparative analysis with global standards. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1077-1098. [PMID: 39038014 DOI: 10.1080/19440049.2024.2374358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Lebanon's agricultural sector, known for its diverse crop and livestock production, faces challenges in the international market due to the presence of chemical residues and contaminants in its food exports. Recent rejections of these exports have raised global concerns about food safety, increasingly seen as vital for public health and economic prosperity. This review focuses on examining scientific studies about the levels of various chemical residues including pesticides, and veterinary drugs and contaminants like mycotoxins, and polycyclic aromatic hydrocarbons, and heavy metals in Lebanese food products. Findings indicate that these residues and contaminants often exceed both the maximum residue limits (MRLs) and maximum limits (MLs) set by the Codex Alimentarius and the European Union. The review concludes with recommendations for reducing these contaminants and residues to enhance Lebanon's food safety and quality, aligning with international standards, and mitigating the risk of export rejections.
Collapse
Affiliation(s)
- Khaled El Hawari
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Mariam Zeineh
- Faculty of Public Health- I, Lebanese University, Hadath, Lebanon
| | - Daniel Beh
- Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Farouk Jaber
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
- Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Samia Mokh
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
- Faculty of Public Health- I, Lebanese University, Hadath, Lebanon
- Department of Biochemistry and Plant Immunology, University of Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
19
|
Diab H, Calle A, Thompson J. Rapid and Online Microvolume Flow-Through Dialysis Probe for Sample Preparation in Veterinary Drug Residue Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3971. [PMID: 38931755 PMCID: PMC11207326 DOI: 10.3390/s24123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
A rapid and online microvolume flow-through dialysis probe designed for sample preparation in the analysis of veterinary drug residues is introduced. This study addresses the need for efficient and green sample preparation methods that reduce chemical waste and reagent use. The dialysis probe integrates with liquid chromatography and mass spectrometry (LC-MS) systems, facilitating automated, high-throughput analysis. The dialysis method utilizes minimal reagent volumes per sample, significantly reducing the generation of solvent waste compared to traditional sample preparation techniques. Several veterinary drugs were spiked into tissue homogenates and analyzed to validate the probe's efficacy. A diagnostic sensitivity of >97% and specificity of >95% were obtained for this performance evaluation. The results demonstrated the effective removal of cellular debris and particulates, ensuring sample integrity and preventing instrument clogging. The automated dialysis probe yielded recovery rates between 27 and 77% for multiple analytes, confirming its potential to streamline veterinary drug residue analysis, while adhering to green chemistry principles. The approach highlights substantial improvements in both environmental impact and operational efficiency, presenting a viable alternative to conventional sample preparation methods in regulatory and research applications.
Collapse
Affiliation(s)
| | | | - Jonathan Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
20
|
Spišáková D, Kožárová I, Hriciková S, Marcinčák S. Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA). Foods 2024; 13:1661. [PMID: 38890889 PMCID: PMC11171941 DOI: 10.3390/foods13111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Salinomycin is a coccidiostat approved as a feed additive for the prevention of coccidiosis in poultry. Official control of its residues is set by the Commission Delegated Regulation (EU) 2022/1644. The aim of our study was to assess the suitability of three microbial inhibition tests (MITs), Premi®Test, Explorer 2.0, and the Screening Test for Antibiotic Residues (STAR) linked to the enzyme-linked immunosorbent assay (ELISA), for the screening of salinomycin residues in the tissues of broiler chickens (breast and thigh muscle, heart, liver, gizzard, kidneys, lungs, spleen, skin, and fat) fed commercially produced feed containing 70 mg.kg-1 of salinomycin in the complete feed. The first residue screening (Sampling A) was performed on the last day of administration of the salinomycin-medicated feed (day 30), and the second screening (Sampling B) was performed on the day of slaughter (day 37) after the expiry of the withdrawal period with the feeding of non-medicated feed. Based on the quantitative confirmation of salinomycin residues in the examined chicken tissues by the ELISA method (Sampling A from 0.025 to 0.241 mg.kg-1; Sampling B from 0.003 to 0.076 mg.kg-1), all the MITs with the preference of the bacterial strain Bacillus stearothermophilus var. calidolactis ATCC 10149 demonstrated the ability to detect the residues of salinomycin in the examined tissues of broiler chickens at the level of the maximum residue limits set from 0.015 to 0.150 mg.kg-1 by Commission Implementing Regulation (EU) 2017/1914 and confirmed the relevance of their sensitivity to the coccidiostat salinomycin.
Collapse
Affiliation(s)
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia; (D.S.); (S.H.); (S.M.)
| | | | | |
Collapse
|
21
|
Khalifa HO, Shikoray L, Mohamed MYI, Habib I, Matsumoto T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024; 13:1629. [PMID: 38890858 PMCID: PMC11172309 DOI: 10.3390/foods13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 3351, Egypt
| | - Lamek Shikoray
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
| |
Collapse
|
22
|
Wijayanti AD, Muzaki AY, Wibisono C, Widiasih DA. Therapeutic effects of lincomycin and level of drug degradation in broiler tissues after treatment. Vet World 2024; 17:1026-1034. [PMID: 38911093 PMCID: PMC11188879 DOI: 10.14202/vetworld.2024.1026-1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Lincomycin is an antibiotic used in broiler farming and is commonly combined with other substances to achieve synergistic and complementary effects on the antibacterial spectrum and mechanism. We developed a specific high-performance liquid chromatography (HPLC) method to measure lincomycin levels in broiler tissues. This study aimed to determine the lincomycin level in tissues and compare it with the minimum inhibitory concentration (MIC) and maximum residue limit (MRL) of certain pathogenic bacteria. Materials and Methods Three groups of broiler chickens were involved in the study (n = 20 in each group): A control group without lincomycin treatment and two groups (each further divided into two sub-groups) that received oral lincomycin at a dose of 1 g/10 kg of body weight daily for 7 and 14 consecutive days. Tissue samples were collected from each group 1 day and 1 week after lincomycin administration (ALA). This study validated the development of a technique for analyzing drug level degradation in tissues using HPLC. Descriptive and statistical analyses were performed for drug levels to assess their therapeutic value and safety based on lincomycin MIC of certain pathogenic bacteria and MRL. Results The method validation resulted in linear regression and coefficient of determination for tissues with r2 > 0.99, with a recovery rate of 90%-110%, precision as the coefficient of variation 15%, and specificity with no peak overlap for lincomycin. The limits of detection for the liver and kidney were 0.01 μg/g, 0.05 μg/g, and 0.1 μg/g for the breast muscle and all tissues. Administration of lincomycin for 7 and 14 days resulted in therapeutic value concentrations. Lincomycin levels in the liver and kidney of ALA exceeded the MRL, whereas breast muscles were below the MRL for a week of ALA treatment. Conclusion Administration of lincomycin for 7 and 14 consecutive days resulted in therapeutic value; however, after a week, most tissues showed high drug concentrations that exceeded the MRL. It is necessary to carefully consider the prolonged therapeutic dose of lincomycin in broilers. Antibiotic therapy must be guided in such a way as to protect the product from harmful residues.
Collapse
Affiliation(s)
- Agustina Dwi Wijayanti
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alfian Yusak Muzaki
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cahyo Wibisono
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah Ayu Widiasih
- Department of Veterinary Public Health, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Cheng Y, Liu S, Wang F, Wang T, Yin L, Chen J, Fu C. Effects of Dietary Terminalia chebula Extract on Growth Performance, Immune Function, Antioxidant Capacity, and Intestinal Health of Broilers. Animals (Basel) 2024; 14:746. [PMID: 38473130 DOI: 10.3390/ani14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terminalia chebula extract (TCE) has many physiological functions and is potentially helpful in maintaining poultry health, but its specific effect on the growth of broilers is not yet known. This research investigated the effects of dietary Terminalia chebula extract (TCE) supplementation on growth performance, immune function, antioxidant capacity, and intestinal health in yellow-feathered broilers. A total of 288 one-day-old yellow-feathered broilers were divided into four treatment groups (72 broilers/group), each with six replicates of 12 broilers. The broilers were given a basal diet of corn-soybean meal supplemented with 0 (control), 200, 400, and 600 mg/kg TCE for 56 d. The results demonstrated that, compared with the basal diet, the addition of TCE significantly increased (linear and quadratic, p < 0.05) the final body weight and overall weight gain and performance and decreased (linear and quadratic, p < 0.05) the feed-to-gain ratio in the overall period. Dietary TCE increased (linear, p < 0.05) the levels of IgM, IL-4, and IL-10 and decreased (linear and quadratic, p < 0.05) the level of IL-6 in the serum. Dietary TCE increased (linear and quadratic, p < 0.05) the levels of IL-2 and IL-4, decreased (linear and quadratic, p < 0.05) the level of IL-1β, and decreased (linear, p < 0.05) the level of IL-6 in the liver. Dietary TCE increased (linear and quadratic, p < 0.05) the level of IgM and IL-10, increased (linear, p < 0.05) the level of IgG, and decreased (linear and quadratic, p < 0.05) the levels of IL-1β and IL-6 in the spleen. Supplementation with TCE linearly and quadratically increased (p < 0.05) the catalase, superoxide dismutase, glutathione peroxidase, and total antioxidant capacity activities while decreasing (p < 0.05) the malonic dialdehyde concentrations in the serum, liver, and spleen. TCE-containing diets for broilers resulted in a higher (linear and quadratic, p < 0.05) villus height, a higher (linear and quadratic, p < 0.05) ratio of villus height to crypt depth, and a lower (linear and quadratic, p < 0.05) crypt depth compared with the basal diet. TCE significantly increased (linear, p < 0.05) the acetic and butyric acid concentrations and decreased (quadratic, p < 0.05) the isovaleric acid concentration. Bacteroidaceae and Bacteroides, which regulate the richness and diversity of microorganisms, were more abundant and contained when TCE was added to the diet. In conclusion, these findings demonstrate that supplementing broilers with TCE could boost their immune function, antioxidant capacity, and gut health, improving their growth performance; they could also provide a reference for future research on TCE.
Collapse
Affiliation(s)
- Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|