1
|
van de Put M, van den Belt M, de Wit N, Kort R. Rationale and design of a randomized placebo-controlled nutritional trial embracing a citizen science approach. Nutr Res 2024; 131:96-110. [PMID: 39378660 DOI: 10.1016/j.nutres.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/10/2024]
Abstract
Modulation of the gut microbiota through specific dietary interventions shows potential for maintenance and optimization of health. A dietary fiber diet and fermented foods diet appear to alter the gut microbiota, but evidence is limited. Therefore, we designed the Gut Health Enhancement by Eating Favorable Food study, a 21-week randomized controlled trial studying effects of dietary fibers and fermented foods on gut microbiota diversity and composition, while also stimulating dietary behavior changes through a citizen science (CS) approach. We hypothesized that a high-fermented food diet would increase microbial diversity, whereas a high-dietary fiber diet would stimulate the growth of specific fiber-degrading bacteria. The following elements of CS were adopted: education on the gut microbiota, tailored dietary intervention, remote data collection by participants, sharing of personal gut microbiota outcomes with participants, and vlogs by participants for dissemination of results. Here we describe the study protocol and report the flow of participants, baseline characteristics, and compliance rates. Completed in March 2024, the trial included 147 healthy adults randomized to a high-dietary fiber intervention, high-fermented food intervention, or control group. Each group received an additional study product after 2 weeks: dried chicory root, a fermented beverage, or maltodextrin (placebo). A 3-month follow-up assessed the participants' ability to sustain dietary changes. The recruitment of participants was successful, reflected by 1448 applications. The compliance with the dietary guidelines and study products was >90%. This study shows that including elements of CS in an randomized controlled trial is feasible and may help recruitment and compliance.
Collapse
Affiliation(s)
- Marieke van de Put
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maartje van den Belt
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Nicole de Wit
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; ARTIS-Micropia, Plantage Kerklaan 38-40, 1018 CZ Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Houngbédji M, Jespersen JS, Wilfrid Padonou S, Jespersen L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38973125 DOI: 10.1080/10408398.2024.2365342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | | | - Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
4
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
5
|
Zhou Z, Xiang H, Cheng J, Ban Q, Sun X, Guo M. Effects of Panax notoginseng Saponins Encapsulated by Polymerized Whey Protein on the Rheological, Textural and Bitterness Characteristics of Yogurt. Foods 2024; 13:486. [PMID: 38338621 PMCID: PMC10855543 DOI: 10.3390/foods13030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Panax notoginseng saponins (PNSs) have been used as a nutritional supplement for many years, but their bitter taste limits their application in food formulations. The effects of PNS (groups B, C, and D contained 0.8, 1.0 and 1.2 mg/mL of free PNS, respectively) or Panax notoginseng saponin-polymerized whey protein (PNS-PWP) nanoparticles (groups E, F, and G contained 26.68, 33.35 and 40.03 mg/mL of PNS-PWP nanoparticles, respectively) on the rheological, textural properties and bitterness of yogurt were investigated. Group G yogurt showed a shorter gelation time (23.53 min), the highest elastic modulus (7135 Pa), higher hardness (506 g), higher apparent viscosity, and the lowest syneresis (6.93%) than other groups, which indicated that the yogurt formed a stronger gel structure. The results of the electronic tongue indicated that the bitterness values of group E (-6.12), F (-6.56), and G (-6.27) yogurts were lower than those of group B (-5.12), C (-4.31), and D (-3.79), respectively, which might be attributed to PNS being encapsulated by PWP. The results indicated that PWP-encapsulated PNS could cover the bitterness of PNS and improve the quality of yogurt containing PNS.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Huiyu Xiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Z.Z.); (H.X.); (J.C.); (Q.B.)
| | - Mingruo Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, 351 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
7
|
Fernandes TH, Bell V. The imprecision of micronutrient requirement values: the example of vitamin D. J Food Sci 2024; 89:51-63. [PMID: 38126105 DOI: 10.1111/1750-3841.16889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Food, not nutrients, is the fundamental unit in nutrition. Nutrient requirement values and recommended daily intakes have long been determined and organized in tables by several regulators. These figures, however, overlook the complexity of mixing different foods in a diet and the mediation by human gut microbiota on digestion, metabolism, and health. The microbiome molecular mechanisms and its potential influence on nutrient requirements are far from clear. Guidelines should depend on the sort of intake, along with the dietary habits, rather than focusing on single nutrients. Despite many decades of attempts to investigate the proximate nutrient composition of foods consumed by different world populations, there are still neither standardization of food composition databases nor harmonized dietary intake methods of assessment of nutrients. No all-inclusive attempt was yet made to emphasize the requirements of the various micronutrients, phytonutrients, and non-nutrients on gut microbiota and vice versa, and thereafter reflected into dietary guidelines. New multifaceted methods have been advanced to reevaluate the way nutrients and nutrient requirements are assessed within the intricate biological systems. Our main goal here was to enhance the fact that existing food guidelines hold inherent strengths and limitations but fail, in many aspects, namely, in not taking into account essential geographical, ethnic and cultural differences, and the different stages of life, infant nutrition, and the microbiota impact on several micronutrient requirements. Vitamin D is given as an illustration on present inaccuracy of its requirements. Defining dietary reference intakes is therefore an ongoing process specific for each population.
Collapse
Affiliation(s)
| | - Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| |
Collapse
|
8
|
Navarrete-Bolaños JL, Serrato-Joya O. A novel strategy to construct multi-strain starter cultures: an insight to evolve from natural to directed fermentation. Prep Biochem Biotechnol 2023; 53:1199-1209. [PMID: 36799653 DOI: 10.1080/10826068.2023.2177870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Some biotechnological strategies have succeeded in the attempt to imitate natural fermentation, and bioprocesses have been efficiently designed when the product is the result of a unique biological reaction. However, when the process requires more than one biological reaction, few bioprocesses have been successfully designed because the available tools to construct multi-strain starter cultures are not yet well defined. In this work, a novel experimental strategy to construct multi-strain starter cultures with selected native microorganisms from natural fermentation is proposed. The strategy analyses, selects, and defines the number and proportion of each strain that should form a starter culture to be used in directed fermentations. It was applied to evolve natural fermentation to directed fermentation in distilled agave production. The results showed that a starter culture integrated by Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum in proportions of 35, 32, and 33%, respectively, allows obtaining fermented agave juice containing a 2.1% alcohol yield and a distilled product with a broad profile of aromatic compounds. Hence, the results show, for the first time, a tool that addresses the technical challenge for multi-strain starter culture construction, offering the possibility of preserving the typicity and genuineness of the original traditional product.
Collapse
Affiliation(s)
- J L Navarrete-Bolaños
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| | - O Serrato-Joya
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| |
Collapse
|
9
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr 2022; 9:1050099. [PMID: 36562045 PMCID: PMC9763630 DOI: 10.3389/fnut.2022.1050099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The potential of edible mushrooms as an unexploited treasure trove, although rarely included in known food guidelines, is highlighted. Their role in shielding people against the side effects of an unhealthy stylish diet is reviewed. Mushrooms complement the human diet with various bioactive molecules not identified or deficient in foodstuffs of plant and animal sources, being considered a functional food for the prevention of several human diseases. Mushrooms have been widely used as medicinal products for more than 2,000 years, but globally the potential field of use of wild mushrooms has been untapped. There is a broad range of edible mushrooms which remain poorly identified or even unreported which is a valuable pool as sources of bioactive compounds for biopharma utilization and new dietary supplements. Some unique elements of mushrooms and their role in preventative healthcare are emphasized, through their positive impact on the immune system. The potential of mushrooms as antiviral, anti-inflammatory, anti-neoplastic, and other health concerns is discussed. Mushrooms incorporate top sources of non-digestible oligosaccharides, and ergothioneine, which humans are unable to synthesize, the later a unique antioxidant, cytoprotective, and anti-inflammatory element, with therapeutic potential, approved by world food agencies. The prebiotic activity of mushrooms beneficially affects gut homeostasis performance and the balance of gut microbiota is enhanced. Several recent studies on neurological impact and contribution to the growth of nerve and brain cells are mentioned. Indeed, mushrooms as functional foods' nutraceuticals are presently regarded as next-generation foods, supporting health and wellness, and are promising prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- V. Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| | - C. R. P. G. Silva
- Department of Health and Social Care, School of Health and Care Management, Arden University, Coventry, United Kingdom
| | - J. Guina
- Instituto Superior de Estudos Universitários de Nampula (ISEUNA), Universidade a Politécnica, Nampula, Mozambique
| | - T. H. Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
- Centro de Estudos Interdisciplinares Lurio (CEIL), Lúrio University, Nampula, Mozambique
| |
Collapse
|
11
|
Tlais AZA, Lemos Junior WJF, Filannino P, Campanaro S, Gobbetti M, Di Cagno R. How Microbiome Composition Correlates with Biochemical Changes during Sauerkraut Fermentation: a Focus on Neglected Bacterial Players and Functionalities. Microbiol Spectr 2022; 10:e0016822. [PMID: 35699432 PMCID: PMC9430578 DOI: 10.1128/spectrum.00168-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study provided a new perspective on the bacterial community succession during sauerkraut fermentation, and on resulting metabolic functions. While culture-dependent methods confirmed the key role of the well-known core microbiome species, metagenomic approach (shotgun) revealed Secundilactobacillus malefermentans as a species of the core microbiome, especially during the last weeks of fermentation. Although the potentiality of S. malefermentans has not yet fully explored, it held core functional genes usually attributed to others lactic acid bacteria driving sauerkraut fermentation. Based on our results it is arguable that S. malefermentans might have a key a role during sauerkraut fermentation carried out at low temperature. Under our experimental conditions, the profile of phenolic compounds changed throughout sauerkraut fermentation. The amount of free phenolics, including free phenolic acids, increased at the beginning of the fermentation, whereas the conversion of phenolic acids into microbial derivatives was consistent during the last part of the sauerkraut fermentation. We pioneered correlating changes in the phenolics profile to changes in the microbiome, although the framework presented is still fragmentary. Annotated genes linked to the phenolic compounds metabolism (VprA and padA) were found in many core species during the whole process. A high metabolic potential for phenolics bioconversion emerged for lactobacilli and Pediococcus spp. through correlation analysis between microbiome composition and phenolics profile. IMPORTANCE Our study was not limited to describe the succession pattern of the microbial community during sauerkraut fermentation, but also revealed how some neglected bacterial players belong to the core species during sauerkrauts processing, especially at low temperature. Such species might have a role as potential starters to optimize the fermentation processes and to obtain sauerkrauts with improved and standardized nutritional and sensory features. Furthermore, our correlations between microbiome composition and phenolics profile might also represent new references for sauerkraut biotechnology, aiming to identify new metabolic drivers of potential sauerkraut functionalities. Finally, sauerkraut ecosystem is a tractable model, although with high level of complexity, and resultant ecological information might be extended to other plant ecosystems.
Collapse
Affiliation(s)
| | | | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, Bari, Italy
| | | | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| |
Collapse
|
12
|
Qu Q, Zhao C, Yang C, Zhou Q, Liu X, Yang P, Yang F, Shi X. Limosilactobacillus fermentum-fermented ginseng improved antibiotic-induced diarrhoea and the gut microbiota profiles of rats. J Appl Microbiol 2022; 133:3476-3489. [PMID: 35965438 DOI: 10.1111/jam.15780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study investigated the efficacy of Limosilactobacillus fermentum-fermented ginseng for improving colitis and the gut microbiota profiles in rats and explored the benefits of the L. fermentum fermentation process to ginseng. METHODS AND RESULTS Ginseng polysaccharide and ginsenoside from fermented ginseng were analysed by UV and HPLC. Antibiotic-fed rats were treated with fermented ginseng and a L. fermentum-ginseng mixture. Histopathology- and immune-related factors (TNF-α, IL-1β, IL-6 and IL-10) of the colon were assayed by using pathological sections and ELISA. After treatment, fermented ginseng relieved the symptoms of antibiotic-induced diarrhoea and colon inflammation, and the expression of colon immune factors returned to normal. The gut microbial communities were identified by 16S rRNA gene sequencing. The results showed that the alterations in the gut microbiota returned to normal. In addition, the gut microbiota changes were correlated with immune factor expression after treatment. The fermented ginseng had better biological functions than a L. fermentum-ginseng mixture. CONCLUSIONS Fermented ginseng can relieve diarrhoea and colon inflammation and restore the gut microbiota to its original state. The process of L. fermentum fermentation can expand the therapeutic use of ginseng. SIGNIFICANCE AND IMPACT OF THE STUDY This research suggested the potential function of fermented ginseng to relieve diarrhoea and recover the gut microbiota to a normal level and explored the benefits of the Limosilactobacillus fermentum fermentation process to ginseng.
Collapse
Affiliation(s)
- Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyan Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cuiting Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
13
|
Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070303] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological, social, and psychological practices greatly affect the dietary intake of people; as a result, health-related complexities occur. Functional food and supplements have become popular due to their nutraceutical benefits, which make different choices of fermented food and beverages available to people. This review describes the characteristics of probiotics, prebiotics, post- and paraprobiotics, and their role in nutrition and in the sustainability of health. Currently, several synbiotic supplements have attracted consumers in the nutraceutical market to offer a number of health benefits, which are complementary mixtures of selected characterized probiotic cultures and prebiotic substrates. Traditional fermented foods consumed in different cultures are different than probiotics and symbiotic preparations, though these could be considered potential biotics in nutrition. Fermented foods are part of a staple diet in several countries and are cost-effective due to their preparation using seasonal raw materials available from local agriculture practices. Intake of all biotics discussed in this article is intended to improve the population of beneficial microbiota in the gut, which has proved important for the microbiome–gut–brain axis, influencing the activity of vagus nerve.
Collapse
|
14
|
Mukherjee A, Gómez-Sala B, O'Connor EM, Kenny JG, Cotter PD. Global Regulatory Frameworks for Fermented Foods: A Review. Front Nutr 2022; 9:902642. [PMID: 35719144 PMCID: PMC9198641 DOI: 10.3389/fnut.2022.902642] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been a global resurgence of public interest in fermented foods. In parallel, there have been several new studies that associate the consumption of fermented foods with a variety of beneficial impacts. These combined developments have led to a renewed focus in research and innovation vis-à-vis fermented foods, particularly traditional fermented foods, with an aim to harness this information to develop novel fermented foodstuffs and ingredients and make them available in the market. Consequently, an ever greater and more diverse array of fermented foods, including functional fermented foods with health benefits, are becoming available for public consumption in global markets, with the number expected to grow substantially in the coming decade. This rapidly expanding portfolio of commercially available fermented foods has in turn required an evolution in the corresponding global regulatory frameworks. Due to the innovative and emerging nature of these foods, combined with historical differences in regulator approaches, significant disharmony exists across these frameworks, with individual nations and organizations often adopting unique approaches relating to the establishment of standards and specifications. In this review, we provide an overview of the current regulatory frameworks for a diversity of fermented foods across multiple jurisdictions, with special emphasis on differences in legislative structures and approaches, regulatory harmonization, and current legislative limitations. Overall, the review provides important perspective and context in relation to current global fermented food regulatory practices with possible directions and recommendations for future legislative efforts.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Beatriz Gómez-Sala
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eibhlís M. O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - John G. Kenny
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
15
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
16
|
Benefits of Fermented Papaya in Human Health. Foods 2022; 11:foods11040563. [PMID: 35206040 PMCID: PMC8870802 DOI: 10.3390/foods11040563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have been used for several years all over the world, due to their unique nutritional characteristics and because fermentation promotes conservation and food security. Moreover, fermented foods and beverages have a strong impact on human gut microbiota. Papaya is the fruit of the Carica papaya plant, traditionally used as a medicinal fruit, but there are also references to the use of the fermented form of this fruit. The main purpose of this review is to provide an improved understanding of fermented papaya nutritional and health applications. A literature search was conducted in the PubMed and Google Scholar databases. Both in vitro and in vivo studies were included. According to the retrieved studies, fermented papaya has proven to be an excellent antioxidant and an excellent nutraceutical adjuvant in combined therapies against several diseases, such as Alzheimer’s disease, allergic reactions, anticancer activity, and anemias. Therefore, it is concluded that fermented papaya has many benefits for human health and can be used as prevention or aid in the treatment of various diseases.
Collapse
|
17
|
Zhao D, Cao J, Jin H, Shan Y, Fang J, Liu F. Beneficial impacts of fermented celery ( Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct 2021; 12:9151-9164. [PMID: 34606532 DOI: 10.1039/d1fo00560j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes and anti-inflammatory properties and blood glucose and serum lipid reduction. However, the effect of probiotic fermentation on celery juice and the association between fermented celery juice (FCJ) and obesity were unclear. This study aimed to evaluate the beneficial effects of FCJ on high-fat diet (HFD) induced obesity and related metabolic syndromes. C57BL/6 mice were randomly divided into six groups (n = 15 per group) fed either a normal diet (ND) or HFD with or without CJ/FCJ (10 g kg-1 day-1) by oral gavage for 12 weeks. Here we demonstrated that the probiotic fermentation of celery juice (CJ) could enhance the active ingredients in celery, such as total polyphenols, flavonoids, vitamin C and SOD. Compared to the slight improvement induced by CJ ingestion, FCJ intake significantly inhibited body weight gain, prevented dyslipidemia and hyperglycemia, and suppressed visceral fat accumulation. Furthermore, 16S rRNA sequencing analysis revealed that FCJ intake altered the composition of gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes and the relative abundance of beneficial bacteria (Lactobacillus, Ruminococcaceae_UCG-014, Faecalibaculum and Blautia), and decreasing the relative abundance of harmful bacteria (Alloprevotella and Helicobacter). These findings suggest that FCJ can prevent HFD-induced obesity and become a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dong Zhao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinhu Cao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiqin Jin
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian Fang
- Weifang Bowei Agricultural Development Co., Ltd, Weifang 261000, Shandong, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
18
|
Contribution of traditional fermented foods to food systems transformation: value addition and inclusive entrepreneurship. Food Secur 2021. [DOI: 10.1007/s12571-021-01185-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractTo date, many efforts to eradicate hunger include increasing agricultural production, processing of raw materials and supplementation, and fortification of foods. Locally produced foods represent a significant part of Food Systems as they contribute to tackling hunger and malnutrition. However, few studies have investigated the processing of traditional fermented foods at household level as a means to improve nutrition and triggering inclusive entrepreneurship, two crucial dimensions Food Systems build on. Fermentation is an ancient processing technique that relies on transformation of raw materials by microbial activity and is mainly undertaken by women. This paper posits that upscaling small scale fermented food processing activities while enhancing functional food properties and fostering women entrepreneurship contributes to prevention of food losses, promotion of nutrition and health, and entrepreneurial opportunities for current processors. This is key for effective policy interventions to foster food security in challenging contexts.⨪.
Collapse
|
19
|
Abstract
Consumption of yogurt and other fermented products is associated with
improved health outcomes. Although dairy consumption is included in most
dietary guidelines, there have been few specific recommendations for yogurt
and cultured dairy products. A qualitative systematic review was conducted
to determine the effect of consumption of fermented milk products on
gastrointestinal and cardiovascular health, cancer risk, weight management,
diabetes and metabolic health, and bone density using PRISMA guidelines.
English language papers in PubMed were searched, with no date restrictions.
In total, 1057 abstracts were screened, of which 602 were excluded owing to
lack of appropriate controls, potential biases, and experimental design
issues. The remaining 455 papers were independently reviewed by both authors
and 108 studies were included in the final review. The authors met regularly
to concur, through consensus, on relevance, methods, findings, quality, and
conclusions. The included studies were published between 1979 and 2017. From
the 108 included studies, 76 reported a favorable outcome of fermented milks
on health and 67 of these were considered to be positive or neutral quality
according to the Academy of Nutrition and Dietetics’ Quality
Criteria Checklist. Of the 32 remaining studies, the study outcomes were
either not significant (28) or unfavorable (4), and most studies (18) were
of neutral quality. A causal relationship exists between lactose digestion
and tolerance and yogurt consumption, and consistent associations exist
between fermented milk consumption and reduced risk of breast and colorectal
cancer and type 2 diabetes, improved weight maintenance, and improved
cardiovascular, bone, and gastrointestinal health. Further, an association
exists between prostate cancer occurrence and dairy product consumption in
general, with no difference between fermented and unfermented products. This
article argues that yogurt and other fermented milk products provide
favorable health outcomes beyond the milk from which these products are made
and that consumption of these products should be encouraged as part of
national dietary guidelines. Systematic review
registration: PROSPERO registration no.
CRD42017068953.
Collapse
Affiliation(s)
- Dennis A Savaiano
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
20
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
21
|
Anti-Inflammatory Effect on Colitis and Modulation of Microbiota by Fermented Plant Extract Supplementation. FERMENTATION 2021. [DOI: 10.3390/fermentation7020055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although results of recent studies suggest that fermented foods strongly affect the gut microbiota composition and that they relieve inflammatory bowel disease symptoms, some reports have described that fermented foods increase some inflammation markers based on differences in fermented food materials. This study evaluated the effects of fermented plant extract (FPE) on dextran sulfate sodium (DSS)-induced colitis in mice and the effects on fecal microbiota composition in humans. Mice fed 5% FPE with 3% DSS (FPE group) showed no body weight loss, atrophy of colonic length, or bloody stool, similar to mice fed a basal diet (negative group), whereas mice fed 3% DSS (positive group) exhibited those effects. Concentrations of inflammation markers IL-6 and TNF-α were not significantly different between FPE and negative groups; however, those concentrations became higher in the positive group. 16S ribosomal RNA gene sequencing was used to characterize fecal microbiota in healthy women before and after 3-month FPE supplementation. The FPE supplementation induced increases in Firmicutes phyla and in Clostridiales order, which play a central role in inflammation suppression. These results suggest that FPE enhances Clostridiales growth in the gut and that it has an anti-inflammatory effect.
Collapse
|
22
|
Zhou M, Bu T, Zheng J, Liu L, Yu S, Li S, Wu J. Peptides in Brewed Wines: Formation, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2647-2657. [PMID: 33621074 DOI: 10.1021/acs.jafc.1c00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The traditional low-alcoholic beverages, such as grape wine, sake, and rice wine, have been consumed all over the world for thousands of years, each with their unique methods of production that have been practiced for centuries. Moderate consumption of wine is generally touted as beneficial for health, although there is ongoing debate for the responsible components in wine. In this review, the structural and functional characteristics, the formation mechanisms, and their health-promoting activities of peptides in three brewed wines, grape wine, Chinese rice wine (also called Chinese Huangjiu or Chinese yellow wine), and Japanese sake, are discussed. The formation of peptides in wine imparts sensorial, technological, and biological attributes. Prospects on future research, with an emphasis on the peptide characterization, formation mechanism, physiological activity, and molecular mechanisms of action, are presented.
Collapse
Affiliation(s)
- Mengjie Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
23
|
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021; 18:196-208. [PMID: 33398112 PMCID: PMC7925329 DOI: 10.1038/s41575-020-00390-5] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Marie Claire Arrieta
- Department of Physiology and Pharmacology, International Microbiome Center, University of Calgary, Calgary, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Gregor Reid
- Lawson Health Research Institute, and Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, Ontario, Canada
| | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE, USA.
| |
Collapse
|
24
|
Soyuçok A, Zafer Yurt MN, Altunbas O, Ozalp VC, Sudagidan M. Metagenomic and chemical analysis of Tarhana during traditional fermentation process. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
26
|
ÖZGÜL AA, BOZAT C, SEZİŞ M, BADUR Y, ÖZCAN ÖÖ, SARIYER ET, ÇEVİK E, ÇOLAK H, KARAHAN M. Çalışma Hayatındaki Bireylerin Probiyotik Besinler Hakkındaki Bilgi Düzeyi ve Tüketim Durumlarının Belirlenmesi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.38079/igusabder.784094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Marco ML, Hill C, Hutkins R, Slavin J, Tancredi DJ, Merenstein D, Sanders ME. Should There Be a Recommended Daily Intake of Microbes? J Nutr 2020; 150:3061-3067. [PMID: 33269394 PMCID: PMC7726123 DOI: 10.1093/jn/nxaa323] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The collective findings from human microbiome research, randomized controlled trials on specific microbes (i.e., probiotics), and associative studies of fermented dairy consumption provide evidence for the beneficial effects of the regular consumption of safe live microbes. To test the hypothesis that the inclusion of safe, live microbes in the diet supports and improves health, we propose assessment of the types and evidentiary quality of the data available on microbe intake, including the assembly and evaluation of evidence available from dietary databases. Such an analysis would help to identify gaps in the evidence needed to test this hypothesis, which can then be used to formulate and direct initiatives focused on prospective and randomized controlled trials on live microbe consumption. Outcomes will establish whether or not the evidence exists, or can be generated, to support the establishment of dietary recommendations for live microbes.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Joanne Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Daniel J Tancredi
- Department of Pediatrics and Center for Healthcare Policy and Research, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University, Washington DC, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| |
Collapse
|
28
|
Li KJ, Brouwer-Brolsma EM, Burton KJ, Vergères G, Feskens EJM. Prevalence of fermented foods in the Dutch adult diet and validation of a food frequency questionnaire for estimating their intake in the NQplus cohort. BMC Nutr 2020; 6:69. [PMID: 33292738 PMCID: PMC7712622 DOI: 10.1186/s40795-020-00394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Background Humans have a long history of consuming fermented foods. However, their prevalence in human diets remains largely undetermined, and there is a lack of validated dietary assessment tools assessing the intake of different fermented products. This study aimed to identify fermented foods consumed in The Netherlands and determine the relative validity of a food frequency questionnaire (FFQ) compared to multiple 24-h recalls for estimating their intake. Methods The validation population consisted of 809 participants (53.1 ± 11.9 years) from a Dutch observational cohort (NQplus) who completed a FFQ and multiple 24-h recalls. Fermented foods from the FFQ and recalls were identified and aggregated into conventional food groups. Percent difference in mean intakes, quintile cross-classification, Spearman’s correlations, and Bland-Altman analyses were used to evaluate the agreement between the two dietary assessment methods. Results Approximately 16–18% of foods consumed by this population were fermented, and a further 9–14% were dishes containing a fermented ingredient. Fermented foods with the highest consumption included coffee (~ 453 g/day;~ 0.5% of daily energy intake), yoghurts (~ 88 g/day;~ 2.2%), beer (~ 84 g/day;~ 1.7%), wholegrain bread (~ 81 g/day;~ 9.4%), wine (~ 65 g/day;~ 2.7%), and cheese (~ 32 g/day;~ 5.0%). Mean percent difference between the FFQ and recalls was small for fermented beverages (coffee), breads (brown, white, wholegrain, rye), and fermented dairy (cheeses) (0.3–2.8%), but large for buttermilk and quark (≥53%). All fermented food groups had > 50% of participants classified into the same or adjacent quintile of intake (58%-buttermilk to 89%-fermented beverages). Strong Spearman’s correlations (crude/energy-adjusted rs ≥ 0.50) were obtained for fermented beverages (coffee, beer, wine), cereals/grains (wholegrain bread), and dairy (yoghurts). For ‘other bread’, quark, and buttermilk, correlations were low (rs < 0.20). Bland-Altman analyses revealed good agreement for fermented beverages (coffee, beer), breads (brown, wholegrain, rye, other), pastries, chocolate, and fermented dairy (cheeses) (mean difference: 0.1–9.3). Conclusions Fermented food groups with acceptable or good validity across all measures included commonly consumed foods in The Netherlands: fermented beverages (coffee), wholegrain and rye bread, and fermented dairy (cheeses). However, for less frequently consumed foods, such as quark and buttermilk, the levels of agreement were poor and estimates of intake should be interpreted with caution. This report provides the basis for developing a FFQ specific for fermented foods. Supplementary Information The online version contains supplementary material available at 10.1186/s40795-020-00394-z.
Collapse
Affiliation(s)
- Katherine J Li
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands. .,Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland.
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands
| | - Kathryn J Burton
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland
| | - Guy Vergères
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture (FOAG), Federal Department of Economic Affairs, Education and Research (EAER), Bern, Switzerland
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, Netherlands
| |
Collapse
|
29
|
Varzakas T. Microbiology of Fermented Foods and Beverages. Foods 2020; 9:foods9111660. [PMID: 33202840 PMCID: PMC7696630 DOI: 10.3390/foods9111660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
30
|
Yang L, Fan W, Xu Y. Metaproteomics insights into traditional fermented foods and beverages. Compr Rev Food Sci Food Saf 2020; 19:2506-2529. [PMID: 33336970 DOI: 10.1111/1541-4337.12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Traditional fermented foods and beverages (TFFB) are important dietary components. Multi-omics techniques have been applied to all aspects of TFFB research to clarify the composition and nutritional value of TFFB, and to reveal the microbial community, microbial interactions, fermentative kinetics, and metabolic profiles during the fermentation process of TFFB. Because of the advantages of metaproteomics in providing functional information, this technology has increasingly been used in research to assess the functional diversity of microbial communities. Metaproteomics is gradually gaining attention in the field of TFFB research because it can reveal the nature of microorganism function at the protein level. This paper reviews the common methods of metaproteomics applied in TFFB research; systematically summarizes the results of metaproteomics research on TFFB, such as sauces, wines, fermented tea, cheese, and fermented fish; and compares the differences in conclusions reached through metaproteomics versus other omics methods. Metaproteomics has great advantages in revealing the microbial functions in TFFB and the interaction between the materials and microbial community. In the future, metaproteomics should be further applied to the study of functional protein markers and protein interaction in TFFB; multi-omics technology requires further integration to reveal the molecular nature of TFFB fermentation.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Ding X, Yang L, Guan Q, Zeng H, Song C, Wu J, Song L. Fermented black barley ameliorates lung injury induced by cooking oil fumes via antioxidant activity and regulation of the intestinal microbiome in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110473. [PMID: 32199220 DOI: 10.1016/j.ecoenv.2020.110473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 05/06/2023]
Abstract
To investigate the effect of fermented black barley on cooking oil fume (COF)-induced lung injury, male ICR mice were randomized into five groups: normal control (NC), fermented black barley treatment (NF), COF exposure (O), COF + fermented black barley treatment (OF) and COF + Lactobacillus treatment (OL). The exposure of mice to COF was performed for 5 min per day and 4 days per week for a total of 9 weeks, and the mice in the OF, NF and OL groups were administered fermented black barley or Lactobacillus continuously for 9 weeks (1 mL/100 g). Our results showed that the gamma-aminobutyric acid (GABA), total phenolic, and flavonoid contents significantly increased after fermentation (P < 0.01). In addition, fermented black barley significantly increased SOD activity in the lung tissue, decreased the wet pulmonary coefficient, inhibited the reduction of microbial diversity and richness, and upregulated genes involved in cilium assembly and the cilium axoneme. These findings support the notion that fermented black barley can ameliorate COF-induced lung injury in mice.
Collapse
Affiliation(s)
- Xinwen Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Guan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenwei Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Food Safety and Engineering Technology Research Center, China.
| |
Collapse
|
32
|
Harnessing Microbes for Sustainable Development: Food Fermentation as a Tool for Improving the Nutritional Quality of Alternative Protein Sources. Nutrients 2020; 12:nu12041020. [PMID: 32276384 PMCID: PMC7230334 DOI: 10.3390/nu12041020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
In order to support the multiple levels of sustainable development, the nutritional quality of plant-based protein sources needs to be improved by food technological means. Microbial fermentation is an ancient food technology, utilizing dynamic populations of microorganisms and possessing a high potential to modify chemical composition and cell structures of plants and thus to remove undesirable compounds and to increase bioavailability of nutrients. In addition, fermentation can be used to improve food safety. In this review, the effects of fermentation on the protein digestibility and micronutrient availability in plant-derived raw materials are surveyed. The main focus is on the most important legume, cereal, and pseudocereal species (Cicer arietinum, Phaseolus vulgaris, Vicia faba, Lupinus angustifolius, Pisum sativum, Glycine max; Avena sativa, Secale cereale, Triticum aestivum, Triticum durum, Sorghum bicolor; and Chenopodium quinoa, respectively) of the agrifood sector. Furthermore, the current knowledge regarding the in vivo health effects of fermented foods is examined, and the critical points of fermentation technology from the health and food safety point of view are discussed.
Collapse
|
33
|
Influence of Storage Temperature and Packaging on Bacteria and Yeast Viability in a Plant-Based Fermented Food. Foods 2020; 9:foods9030302. [PMID: 32155967 PMCID: PMC7143826 DOI: 10.3390/foods9030302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Optimization of food storage has become a central issue for food science and biotechnology, especially in the field of functional foods. The aim of this work was to investigate the influence of different storage strategies in a fermented food product (FFP) and further determine whether the regular storage (room temperature (RT) and standard packaging (SP)) could be refined. Eight experimental conditions (four different temperatures × two packaging) were simulated and changes in FFP's microbial ecology (total bacteria, lactic acid bacteria (LAB), and yeasts) and physicochemical characteristics (pH and moisture content (MC)) were determined following 1, 3, 6, and 12 months. All conditions tested showed a decline in microbial content due to the effect of the temperature, 37 °C being the most detrimental condition, while -20 and 4 °C seemed to be better than RT in some parameters. Vacuum packaging (VP) only had a major effect on MC and we found that VP preserved greater MC values than SP at 3, 6, and 12 months. The correlation analysis revealed that total bacteria, LAB, and yeasts were positively associated, and also both pH and MC showed a correlation. According to our results and with the purpose to maintain the load of viable microorganisms, we observed that the best storage conditions should contemplate SP and freezing or cooling temperature during a period no longer than 3 months.
Collapse
|
34
|
Lee JW, Trinh CT. Towards renewable flavors, fragrances, and beyond. Curr Opin Biotechnol 2020; 61:168-180. [PMID: 31986468 DOI: 10.1016/j.copbio.2019.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
Esters constitute a large space of unique molecules with broad range of applications as flavors, fragrances, pharmaceuticals, cosmetics, green solvents, and advanced biofuels. Global demand of natural esters in food, household cleaner, personal care, and perfume industries is increasing while the ester supply from natural sources has been limited. Development of novel microbial cell factories for ester production from renewable feedstocks can potentially provide an alternative and sustainable source of natural esters and hence help fulfill growing demand. Here, we highlight recent advances in microbial production of esters and provide perspectives for improving its economic feasibility. As the field matures, microbial ester production platforms will enable renewable and sustainable production of flavors and fragrances, and open new market opportunities beyond what nature can offer.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
35
|
Rawi MH, Zaman SA, Pa'ee KF, Leong SS, Sarbini SR. Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology 2020; 57:2786-2799. [PMID: 32624588 DOI: 10.1007/s13197-020-04244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
There are numerous species of bacteria resides in the lumen of human colon. The word 'colon', resembles colony or the colonization of microbiota of which plays an important role in the fermentation of prebiotics. The standpoint of prebiotic nowadays is well reported for attenuating gut dysbiosis in many clinical studies tested on animals and human. However, because of the huge amount of gut microbiome, the attempt to connect the dots between bacterial population and the host are not plainly discernible. Thus, a need to analyse recent research on the pathways of prebiotic metabolism adopted by commonly studied probiotics i.e. Bifidobacteria and Lactobacillus. Several different substrate-dependent gene expressions are induced to break down oligosaccharide molecules shown by those probiotics. The hydrolysis can occur either by membrane bound (extracellular) or cytoplasmic (intracellular) enzyme of the enteric bacteria. Therefore, this review narrates several prebiotic metabolisms occur during gut fermentation, and metabolite production i.e. organic acids conversion.
Collapse
Affiliation(s)
- Muhamad Hanif Rawi
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Siti Aisyah Zaman
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Khairul Faizal Pa'ee
- Food Technology Section, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bio-Engineering Technology (UniKL-MICET), Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka Malaysia
| | - Sui Sien Leong
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Shahrul Razid Sarbini
- Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| |
Collapse
|
36
|
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19:184-217. [PMID: 33319517 DOI: 10.1111/1541-4337.12520] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Paul D Cotter
- Food Biosciences, Principal Research Officer, Teagasc Food Research Centre, Moorepark, Fermoy and APC Microbiome Ireland, Cork, Ireland
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Shao Quan Liu
- Food Science and Technology Programme, National University of Singapore
| | - Baltasar Mayo
- Department of Microbiology and Chemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
37
|
Gómez-Gallego C, Gueimonde M, Salminen S. The role of yogurt in food-based dietary guidelines. Nutr Rev 2019; 76:29-39. [PMID: 30452698 DOI: 10.1093/nutrit/nuy059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the modern food technology era, one of the aims of food safety and quality is to eliminate or reduce the number of microorganisms in food. This may now be changing. In particular, the importance of live microorganisms as beneficial food constituents is now being recognized. Microorganisms present in food that contribute to the human diet include not only viable bacteria but also metabolites and bioactive components. Yogurt is one of the most biologically active foods consumed by humans. It is an excellent source of proteins, vitamins, and minerals. Additionally, the nutritional value is especially high relative to cost. Potential nutritional benefits are also associated with the ingestion of the bacteria that are ordinarily present at the time of consumption. Thus, yogurt serves as a major source of live bacteria in the human diet, as well as a delivery vehicle for added probiotic bacteria. Yogurt may provide a simple and affordable solution for enhancing the nutritional value of the diet, including the intake of live bacteria and their metabolites. A further benefit may be obtained when yogurt is used as a carrier for specific probiotic bacteria and/or prebiotic compounds. These factors suggest that yogurt could have a more visible role in food-based dietary guidelines.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias (IPLA), Spanish National Research Council (CSIC), Villaviciosa, Spain
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019; 11:E1189. [PMID: 31137859 PMCID: PMC6567126 DOI: 10.3390/nu11051189] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have long been produced according to knowledge passed down from generation to generation and with no understanding of the potential role of the microorganism(s) involved in the process. However, the scientific and technological revolution in Western countries made fermentation turn from a household to a controlled process suitable for industrial scale production systems intended for the mass marketplace. The aim of this paper is to provide an up-to-date review of the latest studies which investigated the health-promoting components forming upon fermentation of the main food matrices, in order to contribute to understanding their important role in healthy diets and relevance in national dietary recommendations worldwide. Formation of antioxidant, bioactive, anti-hypertensive, anti-diabetic, and FODMAP-reducing components in fermented foods are mainly presented and discussed. Fermentation was found to increase antioxidant activity of milks, cereals, fruit and vegetables, meat and fish. Anti-hypertensive peptides are detected in fermented milk and cereals. Changes in vitamin content are mainly observed in fermented milk and fruits. Fermented milk and fruit juice were found to have probiotic activity. Other effects such as anti-diabetic properties, FODMAP reduction, and changes in fatty acid profile are peculiar of specific food categories.
Collapse
Affiliation(s)
- Francesca Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| |
Collapse
|
39
|
Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018; 7:foods7120195. [PMID: 30513869 PMCID: PMC6306734 DOI: 10.3390/foods7120195] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Changes in present-day society such as diets with more sugar, salt, and saturated fat, bad habits and unhealthy lifestyles contribute to the likelihood of the involvement of the microbiota in inflammatory diseases, which contribute to global epidemics of obesity, depression, and mental health concerns. The microbiota is presently one of the hottest areas of scientific and medical research, and exerts a marked influence on the host during homeostasis and disease. Fermented foods and beverages are generally defined as products made by microbial organisms and enzymatic conversions of major and minor food components. Further to the commonly-recognized effects of nutrition on the digestive health (e.g., dysbiosis) and well-being, there is now strong evidence for the impact of fermented foods and beverages (e.g., yoghurt, pickles, bread, kefir, beers, wines, mead), produced or preserved by the action of microorganisms, on general health, namely their significance on the gut microbiota balance and brain functionality. Fermented products require microorganisms, i.e., Saccharomyces yeasts and lactic acid bacteria, yielding alcohol and lactic acid. Ingestion of vibrant probiotics, especially those contained in fermented foods, is found to cause significant positive improvements in balancing intestinal permeability and barrier function. Our guts control and deal with every aspect of our health. How we digest our food and even the food sensitivities we have is linked with our mood, behavior, energy, weight, food cravings, hormone balance, immunity, and overall wellness. We highlight some impacts in this domain and debate calls for the convergence of interdisciplinary research fields from the United Nations’ initiative. Worldwide human and animal medicine are practiced separately; veterinary science and animal health are generally neither considered nor inserted within national or international Health discussions. The absence of a clear definition and subsequent vision for the future of One Health may act as a barrier to transdisciplinary collaboration. The point of this mini review is to highlight the role of fermented foods and beverages on gut microbiota and debate if the need for confluence of transdisciplinary fields of One Health is feasible and achievable, since they are managed by separate sectors with limited communication.
Collapse
Affiliation(s)
- Victoria Bell
- Faculdade de Farmácia, Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Jorge Ferrão
- Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo 1000-001, Mozambique.
| | - Lígia Pimentel
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Tito Fernandes
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.
| |
Collapse
|
40
|
Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Rezac S, Kok CR, Heermann M, Hutkins R. Fermented Foods as a Dietary Source of Live Organisms. Front Microbiol 2018; 9:1785. [PMID: 30197628 PMCID: PMC6117398 DOI: 10.3389/fmicb.2018.01785] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
The popularity of fermented foods and beverages is due to their enhanced shelf-life, safety, functionality, sensory, and nutritional properties. The latter includes the presence of bioactive molecules, vitamins, and other constituents with increased availability due to the process of fermentation. Many fermented foods also contain live microorganisms that may improve gastrointestinal health and provide other health benefits, including lowering the risk of type two diabetes and cardiovascular diseases. The number of organisms in fermented foods can vary significantly, depending on how products were manufactured and processed, as well as conditions and duration of storage. In this review, we surveyed published studies in which lactic acid and other relevant bacteria were enumerated from the most commonly consumed fermented foods, including cultured dairy products, cheese, fermented sausage, fermented vegetables, soy-fermented foods, and fermented cereal products. Most of the reported data were based on retail food samples, rather than experimentally produced products made on a laboratory scale. Results indicated that many of these fermented foods contained 105-7 lactic acid bacteria per mL or gram, although there was considerable variation based on geographical region and sampling time. In general, cultured dairy products consistently contained higher levels, up to 109/mL or g. Although few specific recommendations and claim legislations for what constitutes a relevant dose exist, the findings from this survey revealed that many fermented foods are a good source of live lactic acid bacteria, including species that reportedly provide human health benefits.
Collapse
Affiliation(s)
| | | | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln, NE, United States
| |
Collapse
|
42
|
Leroy F, Aymerich T, Champomier-Vergès MC, Cocolin L, De Vuyst L, Flores M, Leroi F, Leroy S, Talon R, Vogel RF, Zagorec M. Fermented meats (and the symptomatic case of the Flemish food pyramid): Are we heading towards the vilification of a valuable food group? Int J Food Microbiol 2018; 274:67-70. [DOI: 10.1016/j.ijfoodmicro.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 02/01/2023]
|
43
|
Zabat MA, Sano WH, Wurster JI, Cabral DJ, Belenky P. Microbial Community Analysis of Sauerkraut Fermentation Reveals a Stable and Rapidly Established Community. Foods 2018; 7:E77. [PMID: 29757214 PMCID: PMC5977097 DOI: 10.3390/foods7050077] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Despite recent interest in microbial communities of fermented foods, there has been little inquiry into the bacterial community dynamics of sauerkraut, one of the world’s oldest and most prevalent fermented foods. In this study, we utilize 16S rRNA amplicon sequencing to profile the microbial community of naturally fermented sauerkraut throughout the fermentation process while also analyzing the bacterial communities of the starting ingredients and the production environment. Our results indicate that the sauerkraut microbiome is rapidly established after fermentation begins and that the community is stable through fermentation and packaging for commercial sale. Our high-throughput analysis is in agreement with previous studies that utilized traditional microbiological assessments but expands the identified taxonomy. Additionally, we find that the microbial communities of the starting ingredients and the production facility environment exhibit low relative abundance of the lactic acid bacteria that dominate fermented sauerkraut.
Collapse
Affiliation(s)
- Michelle A Zabat
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | - William H Sano
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | - Damien J Cabral
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
44
|
|