1
|
Ying X, Tao Y, Yuan Y, Ni D, Zhang W, Yan B, Zhao J, Zhang H, Chen W, Fan D. Microwave irradiation benefits fructan degradation in sourdough steamed cake by tunning the β-fructosidase FosE-substrate interaction. Food Chem 2025; 480:143960. [PMID: 40120306 DOI: 10.1016/j.foodchem.2025.143960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Producing low FODMAP grain-based staple foods is crucial for individuals with irritable bowel syndrome (IBS). This study aimed to resolve the impact of microwave heating on the fructan content in sourdough steamed cake and to elucidate the potential mechanism by which microwave fields activate β-fructosidase FosE. With similar heating rate, microwave treatment induced a significant reduction of fructans in sourdough steamed cakes compared to conventional steaming method, and this was confirmed to be the result of enhanced FosE activity by microwaves irradiation. Molecular docking and molecular dynamics simulations revealed that microwave irradiation improves the structural stability of the enzyme-substrate complex. Analysis of binding free energy indicated that microwaves enhance the coulombic interactions through energy transfer. These findings provide valuable insights into the molecular mechanisms underlying the interactions between FosE and fructan under microwave irradiation, paving the way for the future applications of microwaves in low-FODMAP cereal-based food processing.
Collapse
Affiliation(s)
- Xiaoyue Ying
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Caffrey EB, Perelman D, Ward CP, Sonnenburg ED, Gardner CD, Sonnenburg JL. Unpacking Food Fermentation: Clinically Relevant Tools for Fermented Food Identification and Consumption. Adv Nutr 2025:100412. [PMID: 40120687 DOI: 10.1016/j.advnut.2025.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Fermented foods have been consumed for millennia, valued for their extended shelf life, distinctive sensory properties, and potential health benefits. Emerging research suggests that fermented food consumption may contribute to gut microbiome diversity, immune modulation, and metabolic regulation; however, mechanistic insights and clinical validation remain limited. This review synthesizes current scientific evidence on the microbial and metabolite composition of fermented foods, their proposed health effects, and safety considerations for vulnerable populations. Additionally, we highlight the need for standardized definitions, serving sizes, and regulatory frameworks to enhance consumer transparency and research reproducibility. By providing a structured overview of existing data and knowledge gaps, this review establishes a foundation for integrating fermented foods into dietary recommendations and guiding future research directions.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States
| | - Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
3
|
Murniece R, Reidzane S, Radenkovs V, Straumite E, Keke A, Kobrin EG, Klava D. Scald Fermentation Time as a Factor Determining the Nutritional and Sensory Quality of Rye Bread. Foods 2025; 14:979. [PMID: 40231976 PMCID: PMC11941048 DOI: 10.3390/foods14060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
This study investigates the effect of extended rye scald fermentation times (12-48 h) on its biochemical properties and rye bread's nutritional and sensory qualities. Traditional rye bread production in Latvia involves prolonged fermentation with lactic acid bacteria (LAB), a process that influences the bread's acidity, sugar content, and concentrations of organic acids, fructans, and phytates. Scald fermentation was analyzed at intervals of 0, 12, 24, 36, and 48 h to monitor microbial activity, particularly LAB population dynamics. Organic acids and sugar profiles were analyzed using HPLC, while phytic acid and fructan concentrations were determined using the Phytic Acid Assay Kit (K-PHYT) and Fructan Assay Kit (K-FRUC). Sensory evaluation assessed attributes including aroma, sour and sweet taste, stickiness, and floury aftertaste. A rapid pH decrease and increased total titratable acidity (TTA) after 12 h confirmed scald's suitability as a substrate for Lactobacillus delbrueckii metabolism. Lactic acid content increased 13.8-fold after 48 h. Combined scald and dough sourdough fermentation reduced phytic acid by 20% and fructans by 49%, improving mineral bioavailability. Extending fermentation beyond 24 h showed no significant differences in physicochemical parameters, although it improved sensory quality, reduced stickiness, balanced sweet-sour flavors, enhanced aroma, and minimized floury aftertaste.
Collapse
Affiliation(s)
- Ruta Murniece
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Sanita Reidzane
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Radenkovs
- Division of Smart Technologies, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, Rigas Street 22b, LV-3004 Jelgava, Latvia
- Institute of Horticulture (LatHort), Graudu Street 1, LV-3701 Dobele, Latvia
| | - Evita Straumite
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Anete Keke
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Eeva-Gerda Kobrin
- AS TFTAK (Center of Food and Fermentation Technologies), Mäealuse 2/4B, 12618 Tallinn, Estonia
| | - Dace Klava
- Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
4
|
Torbica AM, Miljić M, Radosavljević M. FODMAP Profile of Wholegrain Pasta. Foods 2025; 14:667. [PMID: 40002111 PMCID: PMC11853891 DOI: 10.3390/foods14040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Pasta is a staple food consumed worldwide and is made from wholegrain semolina, which is a food rich in dietary fibre, proteins, minerals, vitamins, and bioactive compounds. However, fermentable oligo-, di-, and monosaccharides and polyols (FODMAP), part of soluble dietary fibre in pasta, can trigger/worsen irritable bowel syndrome (IBS) symptoms and increase the prevalence of gastrointestinal disorders. These dietary fibres include lactose, excess fructose relative to glucose, polyols, fructans (mostly fructooligosaccharides), and galactooligosaccharides. Due to a lack of information on the FODMAP profile for pasta, this research conducted a detailed analysis using high-performance anion-exchange chromatography with pulsed amperometric detection to determine the FODMAP compound content in commercially available pasta, with a focus on wholegrain products. The results showed that fructooligosaccharides (FOSs) are the dominant group of FODMAPs, and kestose is the predominant oligosaccharide in all pasta samples both dry (67.1-95.0%) and cooked (27.1-93.9%). Almost all pasta samples are classified as high-FODMAP foods. The degree of reduction in FODMAP compound content during cooking varies between pasta types and is influenced by the wheat type, cooking time, amount of water used for cooking, pasta shapes, and pasta supplementation. In samples of dry pasta, there are statistically significant differences in the results between all samples, while after cooking, there is evident grouping of the results in four clusters. The reduction in FOS content of pasta after cooking was in the range from 30.9% to 84%. Further research should be focused on higher activity of FODMAP degrading enzymes during pasta production process.
Collapse
Affiliation(s)
- Aleksandra M. Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Milorad Miljić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia;
| |
Collapse
|
5
|
Torbica AM, Filipčev B, Vujasinović V, Miljić U, Radivojević G, Miljić M, Radosavljević M. Biotechnological Tools for the Production of Low-FODMAP Wholegrain Wheat and Rye Cookies and Crackers. Foods 2025; 14:582. [PMID: 40002026 PMCID: PMC11854839 DOI: 10.3390/foods14040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fermentable oligosaccharides, di- and monosaccharides, and polyols defined as FODMAPs readily trigger the symptoms of irritable bowel syndrome (IBS), which affects up to 23% of the population, through several mechanisms. A low-FODMAP diet is a short-term solution due to significant nutrient deficiencies, especially in dietary fibre (DF). IBS patients must avoid cereals, especially wholegrain cereals such as wheat and rye, which are an important natural source of DF and therefore FODMAPs (part of soluble DF). This study is the first of its kind to employ biotechnological tools for the creation of wholegrain low-FODMAP cookies and crackers based on wholegrain wheat and rye flours with high FODMAP contents. Endogenous enzymes activated via prolonged dough resting and exogenously activated enzymes originating from chicory extract, wheat malt, and baker's yeast were employed. The prolonged dough resting time and the addition of wheat malt reduced the FODMAP content in the wholegrain wheat and rye cookies by 46% and 99.5%, respectively. The best result was achieved in the wholegrain wheat crackers, with a FODMAP content reduction of 59.3% based on the combination of a prolonged dough resting time and the addition of wheat malt and baker's yeast. In the wholegrain rye crackers, a prolonged resting time alone was sufficient to achieve an 83.6% reduction in the total oligosaccharide content.
Collapse
Affiliation(s)
- Aleksandra M. Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Uroš Miljić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Milorad Miljić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| |
Collapse
|
6
|
Ağagündüz D, Keskin FN. The impact of fermentation on development of medical foods (for celiac, irritable bowel syndrome patients). HANDBOOK OF SOURDOUGH MICROBIOTA AND FERMENTATION 2025:161-181. [DOI: 10.1016/b978-0-443-18622-6.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Koc F, Arendt E, Coffey A, Ross RP, Stanton C. Impact of low FODMAP sourdough bread on gut microbiota using an in vitro colonic fermentation model. Front Microbiol 2024; 15:1496022. [PMID: 39588097 PMCID: PMC11586379 DOI: 10.3389/fmicb.2024.1496022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
This study explores the development of whole-grain sourdough bread with reduced FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) content to offer dietary solutions for individuals with irritable bowel syndrome (IBS). Three sourdough breads were prepared using different lactic acid bacteria (LAB) strains including Lactiplantibacillus plantarum FST1.7 (SD-FST1.7), Lacticaseibacillus paracasei R3 (SD-R3), and Pediococcus pentosaceus RYE106 (SD-RYE106). A control sourdough bread was prepared using baker's yeast (SD-control). In vitro digestion and in vitro colonic fermentation were employed on bread samples with cellulose (negative control) and inulin (positive control), followed by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis to evaluate the impact on gut microbiota and SCFA levels. Alpha and beta diversity did not reveal any significant differences within the groups following in vitro colonic fermentation (FDR > 0.05). Taxonomic analysis displayed Firmicutes as the predominant phylum across all fecal samples at the end of colonic fermentation. Actinobacteriota was significantly lower in cellulose fermented fecal samples compared to samples fermented with SD-Control (ANCOMBC, FDR = 0.02) and inulin (ANCOMBC, FDR = 0.0001). Fecal samples fermented with inulin had significantly higher Bacteroidota levels compared to those fermented with cellulose (ANCOMBC, FDR =0.002). Acetate levels were higher in fecal samples fermented with SD-FST1.7 compared to those fermented with SD-R3 and SD-RYE106 (p = 0.03 for both). Positive correlations between butyrate and Lachnospira, Agathobacter, and Bifidobacterium were observed, demonstrating the potential of sourdough fermentation to influence gut health and support IBS management.
Collapse
Affiliation(s)
- Fatma Koc
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Moorepark Research Center, Fermoy, Ireland
| | - Elke Arendt
- APC Microbiome Ireland, Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Food Biosciences Department, Teagasc Moorepark Research Center, Fermoy, Ireland
| |
Collapse
|
8
|
Islam MA, Islam S. Sourdough Bread Quality: Facts and Factors. Foods 2024; 13:2132. [PMID: 38998638 PMCID: PMC11241011 DOI: 10.3390/foods13132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The term "sourdough" denotes a dough composed of flour and water, fermented through the action of yeast and lactic acid bacteria. The utilization of sourdough fermentation technology can enhance the nutritional attributes of bread made from wheat grain. In recent times, sourdough bread has experienced a resurgence, fueled by growing consumer demand for healthier bread options. The market dynamics for sourdough illustrate its rapid expansion and significant role in the contemporary food industry. Sourdough fermentation improves nutritional qualities by altering the structure and function of proteins and starch, enhancing dietary fiber, volatile compound profiles, and antioxidant activity, and reducing FODMAPs. The quality of sourdough bread is influenced by several factors, including fermentation environment, flour particle size, protein quality, starch characteristics, and dietary fiber composition. Moreover, the incorporation of alternative grains (intermediate wheatgrass and legume flour) and non-flour ingredients (fruits, herbs, and dairy products) presents opportunities for creating sourdough bread with unique sensory and nutritional profiles. This review offers updated insights on the quality aspects of sourdough fermentation, the factors that influence the effectiveness of the sourdough fermentation process, sourdough technology with unconventional and non-flour ingredients, and the potential market for frozen sourdough, considering its convenience and extended shelf life.
Collapse
Affiliation(s)
- Md Ahmadul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| |
Collapse
|
9
|
Shewry PR, Prins A, Kosik O, Lovegrove A. Challenges to Increasing Dietary Fiber in White Flour and Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13513-13522. [PMID: 38834187 PMCID: PMC11191685 DOI: 10.1021/acs.jafc.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
Increasing the intake of dietary fiber from staple foods is a key strategy to improve the health of consumers. White bread is an attractive vehicle to deliver increased fiber as it is widely consumed and available to all socio-economic groups. However, fiber only accounts for about 4% of the dry weight of white flour and bread compared to 10-15% in whole grain bread and flour. We therefore discuss the challenges and barriers to developing and exploiting new types of wheat with high fiber content in white flour. These include defining and quantifying individual fiber components and understanding how they are affected by genetic and environmental factors. Rapid high throughput assays suitable for determining fiber content during plant breeding and in grain-utilizing industries are urgently required, while the impact of fiber amount and composition on flour processing quality needs to be understood. Overcoming these challenges should have significant effects on human health.
Collapse
Affiliation(s)
| | - Anneke Prins
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | - Ondrej Kosik
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | | |
Collapse
|
10
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
11
|
de Graaf MC, Timmers E, Bonekamp B, van Rooy G, Witteman BJ, Shewry PR, Lovegrove A, America AH, Gilissen LJ, Keszthelyi D, Brouns FJ, Jonkers DMAE. Two randomized crossover multicenter studies investigating gastrointestinal symptoms after bread consumption in individuals with noncoeliac wheat sensitivity: do wheat species and fermentation type matter? Am J Clin Nutr 2024; 119:896-907. [PMID: 38373694 DOI: 10.1016/j.ajcnut.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Many individuals reduce their bread intake because they believe wheat causes their gastrointestinal (GI) symptoms. Different wheat species and processing methods may affect these responses. OBJECTIVES We investigated the effects of 6 different bread types (prepared from 3 wheat species and 2 fermentation conditions) on GI symptoms in individuals with self-reported noncoeliac wheat sensitivity (NCWS). METHODS Two parallel, randomized, double-blind, crossover, multicenter studies were conducted. NCWS individuals, in whom coeliac disease and wheat allergy were ruled out, received 5 slices of yeast fermented (YF) (study A, n = 20) or sourdough fermented (SF) (study B, n = 20) bread made of bread wheat, spelt, or emmer in a randomized order on 3 separate test days. Each test day was preceded by a run-in period of 3 d of a symptom-free diet and separated by a wash-out period of ≥7 d. GI symptoms were evaluated by change in symptom score (test day minus average of the 3-d run-in period) on a 0-100 mm visual analogue scale (ΔVAS), comparing medians using the Friedman test. Responders were defined as an increase in ΔVAS of ≥15 mm for overall GI symptoms, abdominal discomfort, abdominal pain, bloating, and/or flatulence. RESULTS GI symptoms did not differ significantly between breads of different grains [YF bread wheat median ΔVAS 10.4 mm (IQR 0.0-17.8 mm), spelt 4.9 mm (-7.6 to 9.4 mm), emmer 11.0 mm (0.0-21.3 mm), P = 0.267; SF bread wheat 10.5 mm (-3.1 to 31.5 mm), spelt 11.3 mm (0.0-15.3 mm), emmer 4.0 mm (-2.9 to 9.3 mm), P = 0.144]. The number of responders was also comparable for both YF (6 to wheat, 5 to spelt, and 7 to emmer, P = 0.761) and SF breads (9 to wheat, 7 to spelt, and 8 to emmer, P = 0.761). CONCLUSIONS The majority of NCWS individuals experienced some GI symptoms for ≥1 of the breads, but on a group level, no differences were found between different grains for either YF or SF breads. CLINICAL TRIAL REGISTRY clinicaltrials.gov, NCT04084470 (https://classic. CLINICALTRIALS gov/ct2/show/NCT04084470).
Collapse
Affiliation(s)
- Marlijne Cg de Graaf
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Emma Timmers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Bo Bonekamp
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Gonny van Rooy
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Ben Jm Witteman
- Division Gastroenterology-Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands; Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | - Antoine Hp America
- Business Unit Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Luud Jwj Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Fred Jph Brouns
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Daisy M A E Jonkers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| |
Collapse
|
12
|
Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food Res Int 2023; 173:113425. [PMID: 37803764 DOI: 10.1016/j.foodres.2023.113425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Consumption of high FODMAP (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) diet is the leading cause of alteration in the human gut microbiome, thereby, causing irritable bowel syndrome (IBS). Therefore, sourdough technology can be exploited for reduction of FODMAPs in various foods to alleviate the symptoms of IBS. Several microorganisms viz. Pichia fermentans, Lactobacillus fetmentum, Saccharomyces cerevisiae, Torulaspora delbrueckii, Kluyveromyces marxianus etc. have been identified for the production of low FODMAP type II sourdough fermented products. However, more research on regulation of end-product and volatilome profile is required for maximal exploitation of FODMAP-reducing microorganisms. Therefore, the present review is focused on utilisation of lactic acid bacteria and yeasts, alone and in synergy, for the production of low FODMAP sourdough foods. Moreover, the microbial bioprocessing of cereal and non-cereal based low FODMAP fermented sourdough products along with their nutritional and therapeutic benefits have been elaborated. The challenges and future prospects for the production of sourdough fermented low FODMAP foods, thereby, bringing out positive alterations in gut microbiome, have also been discussed.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena SP 12.602-810, Brazil.
| |
Collapse
|
13
|
Pejcz E, Lachowicz-Wiśniewska S, Nowicka P, Wojciechowicz-Budzisz A, Harasym J. Enhancing Bread's Benefits: Investigating the Influence of Boosted Native Sourdough on FODMAP Modulation and Antioxidant Potential in Wheat Bread. Foods 2023; 12:3552. [PMID: 37835204 PMCID: PMC10572427 DOI: 10.3390/foods12193552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to assess the impact of bacterial species and fermentation time on wheat bread quality, FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) content, and antioxidant activity of wheat bread, utilizing boosted native sourdough as a novel approach to enhance bread production. The incorporation of lactic acid bacteria strains, i.e., Lacticaseibacillus casei and Lactiplantibacillus plantarum, during 72 h fermentation significantly reduced FODMAP content to less than 0.1 g/100 g of wheat bread. Extending the fermentation time to 72 h notably increased the polyphenol content to 145.35 mg gallic acid (GA) per 100 g in the case of spontaneous fermentation and to 151.11 and 198.73 mg GA/100 g in the case of sourdoughs inoculated with L. casei and L. plantarum, respectively. While the treatment yielded positive effects on FODMAP modulation and antioxidant activity, it is crucial to acknowledge its impact on some organoleptic properties, such as aroma and flavor, which, despite good overall bread quality, have changed as a result of prolonged fermentation time. The study results indicate that choosing specific bacterial species and controlling fermentation time can effectively reduce FODMAPs and boost antioxidants. These findings contribute to the understanding of sourdough-based interventions in bread production, offering insights for the development of healthier and nutritionally improved wheat bread products.
Collapse
Affiliation(s)
- Ewa Pejcz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland; (A.W.-B.); (J.H.)
| | | | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Agata Wojciechowicz-Budzisz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland; (A.W.-B.); (J.H.)
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland; (A.W.-B.); (J.H.)
| |
Collapse
|
14
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Schmidt M, Raczyk M. FODMAP reduction strategies for nutritionally valuable baking products: current state and future challenges. Crit Rev Food Sci Nutr 2023; 64:8036-8053. [PMID: 37000015 DOI: 10.1080/10408398.2023.2195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fermentable oligo-, di- and monosaccharides and polyols (FODMAP) comprise several previously unrelated carbohydrates, such as fructans, fructo-oligosaccharides, galacto-oligosaccharides, fructose (in excess of glucose), mannitol and sorbitol, and among others. For many patients with gastro-intestinal disorders, such as irritable bowel syndrome, the ingestion of FODMAP triggers symptoms and causes discomfort. Among the main contributors to the dietary FODMAP intake are baking products, in particular bread as a major global staple food. This is primarily due to the fructan content of the cereal flours, but also process induced accumulation of FODMAP is possible. To provide low-FODMAP baking products, researchers have investigated various approaches, such as bio-process reduction by yeast, lactic acid bacteria, germination of the raw material or the use of exogenous enzymes. In addition, the selection of appropriate ingredients, which are either naturally or after pretreatment suitable for low-FODMAP products, is discussed. The sensory and nutritional quality of low-FODMAP baking products is another issue, that is addressed, with particular focus on providing sufficient dietary fiber intake. Based on this information, the current state of low-FODMAP baking and future research necessities, to establish practical strategies for low-FODMAP products, are evaluated in this article.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
16
|
Borowska M, Ispiryan L, Neylon E, Sahin AW, Murphy CP, Zannini E, Arendt EK, Coffey A. Screening and Application of Novel Homofermentative Lactic Acid Bacteria Results in Low-FODMAP Whole-Wheat Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
FODMAPs are fermentable oligo-, di-, monosaccharides, and polyols. The application of homofermentative lactic acid bacteria (LAB) has been investigated as a promising approach for producing low-FODMAP whole-wheat bread. The low-FODMAP diet is recommended to treat irritable bowel syndrome (IBS). Wheat flour is staple to many diets and is a significant source of fructans, which are considered FODMAPs. The reduction of fructans via sourdough fermentation, generally associated with heterofermentative lactic acid bacteria (LAB), often leads to the accumulation of other FODMAPs. A collection of 244 wild-type LAB strains was isolated from different environments and their specific FODMAP utilisation profiles established. Three homofermentative strains were selected for production of whole-wheat sourdough bread. These were Lactiplantibacillus plantarum FST1.7 (FST1.7), Lacticaseibacillus paracasei R3 (R3), and Pediococcus pentosaceus RYE106 (RYE106). Carbohydrate levels in flour, sourdoughs (before and after 48 h fermentation), and resulting breads were analysed via HPAEC-PAD and compared with whole-wheat bread leavened with baker’s yeast. While strain R3 was the most efficient in FODMAP reduction, breads produced with all three test strains had FODMAP content below cut-off levels that would trigger IBS symptoms. Results of this study highlighted the potential of homofermentative LAB in producing low-FODMAP whole-wheat bread.
Collapse
|
17
|
Strategies for Producing Low FODMAPs Foodstuffs: Challenges and Perspectives. Foods 2023; 12:foods12040856. [PMID: 36832931 PMCID: PMC9956220 DOI: 10.3390/foods12040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
In recent years, there has been a growing interest in a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) as a promising therapeutic approach to reduce the symptoms associated with irritable bowel syndrome (IBS). Hence, the development of low FODMAPs products is an important challenge for the food industry, and among the various foodstuffs associated with the intake of FODMAPs, cereal-based products represent an issue. In fact, even if their content in FODMAPs is limited, their large use in diet can be an important factor in developing IBS symptoms. Several useful approaches have been developed to reduce the FODMAPs content in processed food products. Accurate ingredient selection, the use of enzymes or selected yeasts, and the use of fermentation steps carried out by specific lactic bacteria associated with the use of sourdough represent the technical approaches that have been investigated, alone or in combination, to reduce the FODMAPs content in cereal-based products. This review aims to give an overview of the technological and biotechnological strategies applicable to the formulation of low-FODMAPs products, specifically formulated for consumers affected by IBS. In particular, bread has been the foodstuff mainly investigated throughout the years, but information on other raw or processed products has also been reported. Furthermore, taking into account the required holistic approach for IBS symptoms management, in this review, the use of bioactive compounds that have a positive impact on reducing IBS symptoms as added ingredients in low-FODMAPs products is also discussed.
Collapse
|
18
|
Koj K, Pejcz E. Rye Dietary Fiber Components upon the Influence of Fermentation Inoculated with Probiotic Microorganisms. Molecules 2023; 28:1910. [PMID: 36838898 PMCID: PMC9958741 DOI: 10.3390/molecules28041910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Rye flour is used as the main ingredient of sourdough bread, which has technological and gastronomic benefits and increased nutritional value. The transformations observed during fermentation and baking may enable the conversion or degradation of rye dietary fiber carbohydrates built mainly of arabinoxylans, fructans, and β-glucans. This study aimed to determine the dynamics of the changes in the contents of complex carbohydrates in sourdoughs inoculated with potential probiotic microorganisms as well as the polysaccharide composition of the resulting bread. Sourdoughs were inoculated with the potential probiotic microorganisms Saccharomyces boulardii, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Bacillus coagulans, and spontaneous fermentation was performed as a control. Samples of the sourdoughs after 24 and 48 h of fermentation and of bread obtained with these sourdoughs were analyzed for the content of individual dietary fiber components. The present study demonstrated that the treatments applied contributed to an increased total content of arabinoxylans in the breads, and the inoculation of the sourdoughs with the potential probiotic strains improved their solubility in water. The use of the S.boulardii strain may seem prospective as it allowed for the greatest reduction in fructans in the rye bread. Rye sourdough bread is an attractive source of dietary fiber and can be modified for different nutritional needs.
Collapse
Affiliation(s)
| | - Ewa Pejcz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
19
|
Reidzane S, Gramatina I, Galoburda R, Komasilovs V, Zacepins A, Bljahhina A, Kince T, Traksmaa A, Klava D. Composition of Polysaccharides in Hull-Less Barley Sourdough Bread and Their Impact on Physical Properties of Bread. Foods 2022; 12:foods12010155. [PMID: 36613370 PMCID: PMC9818821 DOI: 10.3390/foods12010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The complex of polysaccharides of the grain transforms during processing and modifies the physical and chemical characteristics of bread. The aim of the research was to characterize the changes of glucans, mannans and fructans in hull-less barley and wholegrain wheat breads fermented with spontaneous hull-less barley sourdough, germinated hull-less barley sourdough and yeast, as well as to analyze the impact of polysaccharides on the physical parameters of bread. By using the barley sourdoughs for wholegrain wheat bread dough fermentation, the specific volume and porosity was reduced; the hardness was not significantly increased, but the content of β-glucans was doubled. Principal component analysis indicates a higher content of β-glucans and a lower content of starch, total glucans, fructans and mannans for hull-less barley breads, but wholegrain wheat breads fermented with sourdoughs have a higher amount of starch, total glucans, fructans and mannans, and a lower content of β-glucans. The composition of polysaccharides was affected by the type of flour and fermentation method used.
Collapse
Affiliation(s)
- Sanita Reidzane
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
- Correspondence:
| | - Ilze Gramatina
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Ruta Galoburda
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Komasilovs
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Aleksejs Zacepins
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Anastassia Bljahhina
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tatjana Kince
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Anna Traksmaa
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Dace Klava
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
20
|
Impact of sourdough fermentation on FODMAPs and amylase-trypsin inhibitor levels in wheat dough. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Zimmermann J, De Fazio L, Kaden-Volynets V, Hitzmann B, Bischoff SC. Consumption of Yeast-Fermented Wheat and Rye Breads Increases Colitis and Mortality in a Mouse Model of Colitis. Dig Dis Sci 2022; 67:4422-4433. [PMID: 35394589 PMCID: PMC9352744 DOI: 10.1007/s10620-022-07462-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. AIMS We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. METHODS Epithelial caspase-8 gene knockout (Casp8ΔIEC) and control (Casp8fl) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. RESULTS Regardless of the diet, Casp8ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8fl mice were hardly inflamed. Casp8fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. CONCLUSIONS Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.
Collapse
Affiliation(s)
- Julia Zimmermann
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Luigia De Fazio
- Department of Medical and Surgical Science (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Valentina Kaden-Volynets
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, University of Hohenheim, Garbenstraße 23, 70599 Stuttgart, Germany
| | - Stephan C. Bischoff
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| |
Collapse
|
23
|
Development of High-Fibre and Low-FODMAP Crackers. Foods 2022; 11:foods11172577. [PMID: 36076763 PMCID: PMC9455160 DOI: 10.3390/foods11172577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Since there are no products in the European market labelled as low-FODMAP (low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols), patients with irritable bowel syndrome and non-celiac wheat sensitivity often consume gluten-free products. These naturally contain little FODMAP, but have poorer sensory properties and lower nutritional value. This study aimed to develop sensory attractive crackers with high-fibre and low-FODMAP content. Various gluten-free flours (wholemeal buckwheat and millet, white maize), pumpkin seed meal, chia seeds, flax seeds, rice protein, sweet potato, sourdough, and spices were used to develop nine formulations. Using a nine-point hedonic scale and ranking test, four best-scored products were selected for which descriptive sensory analysis was performed and nutritional value and fructan content were determined. Crackers made from maize and millet flour mixtures (ratio 1:2.5) with sourdough and with chia or flax seed addition were rated highest for overall impression (8.2 and 7.0, respectively). Generally, high-fibre content, hardness, chewiness, dark colour, and bitterness lower the acceptability of crackers, but the addition of spices and sourdough can improve their acceptability and marketability. The crackers could be labelled as “gluten-free”, “low-FODMAP” (<0.12 g/100 g), “naturally high-fibre” (7−10 g/100 g of which 17−23% are soluble), and “high in protein” (24−26 g/100 g).
Collapse
|
24
|
The Sensory-Directed Elucidation of the Key Tastants and Odorants in Sourdough Bread Crumb. Foods 2022; 11:foods11152325. [PMID: 35954091 PMCID: PMC9368349 DOI: 10.3390/foods11152325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Sourdough bread is highly enjoyed for its exceptional flavor. In contrast to bread crust, which has been investigated intensively, the knowledge on bread crumb is rather fragmentary. In this study, the taste-active compounds of sourdough bread crumb were identified and quantified. By means of recombination experiments and omission tests, the authentic flavor signature of sourdough rye bread crumb was decoded and recreated with ten key tastants and eleven key odorants. Based on the final taste and aroma recombinants, a fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method using stable isotope dilution analysis (SIDA) was developed and validated. Due to prior derivatization using 3-nitrophenylhydrazine (3-NPH), key tastants and odorants in bread crumb could be quantified simultaneously in a single UHPLC run. The identified key flavor compounds in combination with the developed UHPLC-MS/MS method could offer the scientific basis for a knowledge-based optimization of the taste and odor of sourdough bread.
Collapse
|
25
|
Torbica A, Radosavljević M, Belović M, Djukić N, Marković S. Overview of nature, frequency and technological role of dietary fibre from cereals and pseudocereals from grain to bread. Carbohydr Polym 2022; 290:119470. [DOI: 10.1016/j.carbpol.2022.119470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
26
|
Impact of Leavening Agent and Wheat Variety on Bread Organoleptic and Nutritional Quality. Microorganisms 2022; 10:microorganisms10071416. [PMID: 35889135 PMCID: PMC9317705 DOI: 10.3390/microorganisms10071416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated. Here, we assessed the impact of two wheat varieties as well as the impact of sourdoughs and yeasts on multiple components of bread organoleptic and nutritional quality. Using a participatory research approach including scientists and bakers, we compared breads leavened with three different sourdoughs and three different commercial yeasts as well as a mix of sourdough and yeast. Breads were made from two wheat varieties commonly used in organic farming: the variety “Renan” and the landrace “Barbu”. Except for bread minerals contents that mostly depended on wheat variety, bread quality was mostly driven by the fermenting agent. Sourdough breads had lower sugar and organic acids contents. These differences were mostly attributable to lower amounts of maltose and malate. They also had a higher proportion of soluble proteins than yeast breads, with specific aroma profiles. Finally, their aroma profiles were specific and more diverse compared to yeast breads. Interestingly, we also found significant nutritional and organoleptic quality differences between sourdough breads. These results highlight the value of sourdough bread and the role of sourdough microbial diversity in bread nutritional and organoleptic quality.
Collapse
|
27
|
Habuš M, Mykolenko S, Iveković S, Pastor K, Kojić J, Drakula S, Ćurić D, Novotni D. Bioprocessing of Wheat and Amaranth Bran for the Reduction of Fructan Levels and Application in 3D-Printed Snacks. Foods 2022; 11:1649. [PMID: 35681399 PMCID: PMC9180899 DOI: 10.3390/foods11111649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Bran can enrich snacks with dietary fibre but contains fructans that trigger symptoms in people with irritable bowel syndrome (IBS). This study aimed to investigate the bioprocessing of wheat and amaranth bran for degrading fructans and its application (at 20% flour-based) in 3D-printed snacks. Bran was bioprocessed with Saccharomyces cerevisiae alone or combined with inulinase, Kluyveromyces marxianus, Limosilactobacillus fermentum, or commercial starter LV1 for 24 h. Fructans, fructose, glucose, and mannitol in the bran were analysed enzymatically. Dough rheology, snack printing precision, shrinkage in baking, texture, colour, and sensory attributes were determined. The fructan content of wheat bran was 2.64% dry weight, and in amaranth bran, it was 0.96% dry weight. Bioprocessing reduced fructan content (up to 93%) depending on the bran type and bioprocessing agent, while fructose and mannitol remained below the cut-off value for IBS patients. Bran bioprocessing increased the complex viscosity and yield stress of dough (by up to 43 and 183%, respectively) in addition to printing precision (by up to 13%), while it lessened shrinkage in baking (by 20-69%) and the hardness of the snacks (by 20%). The intensity of snack sensory attributes depended on the bran type and bioprocessing agent, but the liking ("neither like nor dislike") was similar between samples. In conclusion, snacks can be enriched with fibre while remaining low in fructans by applying bioprocessed wheat or amaranth bran and 3D printing.
Collapse
Affiliation(s)
- Matea Habuš
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.H.); (S.I.); (S.D.); (D.Ć.)
| | - Svitlana Mykolenko
- Faculty of Engineering and Technology, Dnipro State Agrarian and Economic University, Serhiy Yefremov 25, 49000 Dnipro, Ukraine;
- BETA Tech Center, TECNIO Network, University of Vic—Central University of Catalonia, C/de Roda 70, 08500 Vic, Spain
| | - Sofija Iveković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.H.); (S.I.); (S.D.); (D.Ć.)
| | - Kristian Pastor
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Saša Drakula
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.H.); (S.I.); (S.D.); (D.Ć.)
| | - Duška Ćurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.H.); (S.I.); (S.D.); (D.Ć.)
| | - Dubravka Novotni
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.H.); (S.I.); (S.D.); (D.Ć.)
| |
Collapse
|
28
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
29
|
Ispiryan L, Zannini E, Arendt EK. FODMAP modulation as a dietary therapy for IBS: Scientific and market perspective. Compr Rev Food Sci Food Saf 2022; 21:1491-1516. [PMID: 35122383 DOI: 10.1111/1541-4337.12903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is a promising therapeutic approach to reduce gastrointestinal symptoms associated with irritable bowel syndrome (IBS). However, a shift toward a more sustainable, healthy diet with higher inclusion of whole-grain cereals (i.e., wheat, rye, barley) and pulses, naturally rich in FODMAPs, poses a severe challenge for susceptible individuals. Dietary restriction of fermentable carbohydrates (commonly called the "low FODMAP diet") has received significant consideration. Hence, the development of functional low FODMAP products is emerging in food science and the food industry. In this review, we evaluate the most promising yet neglected (bio)-technological strategies adopted for modulating the FODMAP contents in complex food systems and the extent of their uptake in the global food market. We extensively investigated the global low FODMAP market, contrasted with the status quo in food science and discussed the key principles and concomitant challenges of targeted FODMAP reduction strategies. Powerful tools are available which are based either on the use of ingredients where FODMAPs have been physically removed (e.g., by membrane filtration) or biotechnologically reduced during the food processing, mediated by added enzymes, microbial enzymes during a fermentation process, and seed endogenous enzymes. However, <10% of the small market of functional products with a low FODMAP claim (total ∼800 products) used any of the targeted FODMAP reduction techniques. The global market is currently dominated by gluten-free products, which are naturally low in FODMAPs and characterized by inferior sensory attributes.
Collapse
Affiliation(s)
- Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| |
Collapse
|
30
|
Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chem 2021; 374:131710. [PMID: 34891089 DOI: 10.1016/j.foodchem.2021.131710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Wholemeal flours from blends of bread wheat, emmer and spelt were processed into bread using yeast-based and sourdough fermentation. The bread wheat flour contained significantly higher concentrations of total dietary fibre and fructans than the spelt and emmer flours, the latter having the lowest contents. Breadmaking using sourdough and yeast systems resulted in changes in composition from flour to dough to bread including increases in organic acids and mannitol in the sourdough system and increases in amino acids and sugars (released by hydrolysis of proteins and starch, respectively) in both processing systems. The concentrations of fructans and raffinose (the major endogenous FODMAPs) were reduced by yeast and sourdough fermentation, with yeast having the greater effect. Both systems resulted in greater increases in sugars and glycerol in emmer than in bread wheat and spelt, but the significance of these differences for human health has not been established.
Collapse
|
31
|
Ispiryan L, Borowska M, Sahin AW, Zannini E, Coffey A, Arendt EK. Lachancea fermentati FST 5.1: an alternative to baker's yeast to produce low FODMAP whole wheat bread. Food Funct 2021; 12:11262-11277. [PMID: 34710210 DOI: 10.1039/d1fo01983j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is a successful therapeutic approach to alleviate symptoms of irritable bowel syndrome. However, wheat, as a fructan accumulating grain, is a major source of FODMAPs. Baker's yeast degrades fructans during fermentation, yet conventional whole wheat bread is often still high in FODMAPs. In this study, 96 yeast isolates from different environments were screened regarding their capability to metabolise FODMAPs. Two promising isolates were identified: Lachancea fermentati FST 5.1 and Cyberlindnera fabianii NTCyb, and their potential to produce low FODMAP whole wheat bread was compared to baker's yeast (Saccharomyces cerevisiae). A comprehensive characterisation of the carbohydrate metabolism by the different yeasts was achieved via HPAEC-PAD analysis of flour, doughs, and breads. L. fermentati FST 5.1 fermented fructans and excess fructose much more efficiently than baker's yeast and resulted in bread low in FODMAPs (below all cutoff levels known to induce symptoms). In contrast, C. fabianii NTCyb was unable to ferment FODMAPs in the wheat-dough-matrix. Furthermore, the yeasts' impact on the GC/MS-TOF profile of volatile aroma compounds, the sensory profile, the breads' ultrastructure, and the technological quality was examined. While C. fabianii NTCyb bread had poor technological and sensory attributes, the quality characteristics (volume, crumb structure, texture, sensory, aroma) of L. fermentati FST 5.1 bread were comparable to the baker's yeast bread. Ultimately, this study identified Lachancea fermentati FST 5.1 as an alternative to baker's yeast to produce low FODMAP whole wheat bread while maintaining optimal bread quality and consumer acceptance.
Collapse
Affiliation(s)
- Lilit Ispiryan
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Małgorzata Borowska
- Department of Biological Sciences, Munster Technological University, Cork, T12P928, Ireland
| | - Aylin W Sahin
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Emanuele Zannini
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, T12P928, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Elke K Arendt
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland. .,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
32
|
Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cereal products are staple foods highly appreciated and consumed worldwide. Nonetheless, due to the presence of gluten proteins, and other co-existing compounds such as amylase-trypsin inhibitors and fermentable short-chain carbohydrates in those products, their preference by consumers has substantially decreased. Gluten affects the small gut of people with celiac disease, triggering a gut inflammation condition via auto-immune response, causing a cascade of health disorders. Amylase-trypsin inhibitors and fermentable short-chain carbohydrate compounds that co-exists with gluten in the cereal-based foods matrix have been associated with several gastrointestinal symptoms in non-celiac gluten sensitivity. Since the symptoms are somewhat overlapped, the relation between celiac disease and irritable bowel syndrome has recently received marked interest by researchers. Sourdough fermentation is one of the oldest ways of bread leavening, by lactic acid bacteria and yeasts population, converting cereal flour into attractive, tastier, and more digestible end-products. Lactic acid bacteria acidification in situ is a key factor to activate several cereal enzymes as well as the synthesis of microbial active metabolites, to positively influence the nutritional/functional and health-promoting benefits of the derived products. This review aims to explore and highlight the potential of sourdough fermentation in the Food Science and Technology field.
Collapse
|
33
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
34
|
Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules 2021; 26:molecules26144193. [PMID: 34299468 PMCID: PMC8306408 DOI: 10.3390/molecules26144193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inoculation of sourdough allows the fermentation medium to be dominated by desired microorganisms, which enables determining the kinetics of the conversion of chemical compounds by individual microorganisms. This knowledge may allow the design of functional food products with health features dedicated to consumers with special needs. The aim of the study was to assess the dynamics of transformations of fermentable oligosaccharide, disaccharide, monosaccharide and polyol (FODMAP) compounds from wheat flour as well as their antioxidant activity during inoculated and spontaneous sourdough fermentation. The FODMAP content in grain products was determined by the fructan content with negligible amounts of sugars and polyols. To produce a low-FODMAP cereal product, the fermentation time is essential. The 72 h fermentation time of L. plantarum-inoculated sourdough reduced the FODMAP content by 91%. The sourdough fermentation time of at least 72 h also positively influenced the content of polyphenols and antioxidant activity, regardless of the type of fermentation. The inoculation of both L. plantarum and L. casei contributed to a similar degree to the reduction in FODMAP in sourdough compared to spontaneous fermentation.
Collapse
|
35
|
A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme Microb Technol 2021; 149:109836. [PMID: 34311881 DOI: 10.1016/j.enzmictec.2021.109836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Complex carbohydrates, proteins, and other food components require a longer digestion process to be absorbed by the lining of the alimentary canal. In addition to the enzymes of the gastrointestinal tract, gut microbiota, comprising a large range of bacteria and fungi, has complementary action on the production of digestive enzymes. Within this universe of "hidden soldiers", lactobacilli are extensively studied because of their ability to produce lactase, proteases, peptidases, fructanases, amylases, bile salt hydrolases, phytases, and esterases. The administration of living lactobacilli cells has been shown to increase nutrient digestibility. However, it is still little known how these microbial-derived enzymes act in the human body. Enzyme secretion may be affected by variations in temperature, pH, and other extreme conditions faced by the bacterial cells in the human body. Besides, lactobacilli administration cannot itself be considered the only factor interfering with enzyme secretion, human diet (microbial substrate) being determinant in their metabolism. This review highlights the potential of lactobacilli to release functional enzymes associated with the digestive process and how this complex metabolism can be explored to contribute to the human diet. Enzymatic activity of lactobacilli is exerted in a strain-dependent manner, i.e., within the same lactobacilli species, there are different enzyme contents, leading to a large variety of enzymatic activities. Thus, we report current methods to select the most promising lactobacilli strains as sources of bioactive enzymes. Finally, a patent landscape and commercial products are described to provide the state of art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
|
36
|
Fang S, Yan B, Tian F, Lian H, Zhao J, Zhang H, Chen W, Fan D. β-fructosidase FosE activity in Lactobacillus paracasei regulates fructan degradation during sourdough fermentation and total FODMAP levels in steamed bread. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Atzler JJ, Sahin AW, Gallagher E, Zannini E, Arendt EK. Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractConsumption of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) often induces symptoms of irritable bowel syndrome (IBS). Since FODMAPs and dietary fibre (DF) share certain characteristics, IBS-patients have a limited intake of DF. Therefore, enrichment of a low FODMAP model bread (based on 84% wheat starch and 16% vital gluten) with various fibres (bamboo, cellulose, psyllium, guar gum) in two different concentrations (3 g/100 g and 6 g/100 g) was investigated. Physico-chemical properties of doughs and breads were analysed (fermentation quality, gluten development, specific volume and hardness), as well as the release of reducing sugars during in vitro digestion. High performance anion exchange chromatography with coupled pulsed amperometric detection (HPAEC-PAD) was used to determine the FODMAP levels (contents of mannitol, sorbitol, fructose in excess of glucose, fructans and α-galactooligosaccharides) of both dough and bread. Prototypes were compared with wheat flour-based breads (bakers’ flour with and without wheat bran addition) to assess the performance of these prototypes. Prototypes showed a decreased quality compared to a baker’s flour control, however, a quality comparable to commercial wheat bran breads was found. This in combination with a lower release of reducing sugars during in vitro digestion underline the potential of fibre enriched breads as part of a healthier and more palateable low FODMAP diet. Furthermore, this study highlights the importance of the type (viscous and insoluble) and the concentration of fibres used. Application of psyllium in a concentration of 3 g/100 g showed the most beneficial impact on both physical (specific volume, hardness after 0 h and 24 h) and nutritional aspects of bread.
Collapse
|
38
|
Enzymatic and microbial conversions to achieve sugar reduction in bread. Food Res Int 2021; 143:110296. [PMID: 33992395 DOI: 10.1016/j.foodres.2021.110296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
A standard level of sugar addition to bread is 2% (flour base) but sweet baked goods including hamburger buns, hot dog buns and some sandwich bread contain more than 10% sucrose. This study aimed to provide an integrated assessment of different strategies for sugar-reduced bread by using isomaltooligosaccharides (IMO) as bulk sweetening agent, polysaccharide hydrolases to generate sugars from flour polysaccharides, and sourdough. Trained panel sensory analyses of the intensity of sour and sweet tastes were compared to the concentration of organic acids and the sugar concentration of bread. Sourdough fermentation reduced the sweet taste intensity of bread produced with 9% sucrose. This effect was more pronounced with Leuconostoc mesenteroides, which converts fructose to mannitol with concomitant production of acetate. Addition of up to 20% sourdough fermented with Weissella cibaria 10 M, which does not produce mannitol and less acetate when compared to L. mesenteroides, did not substantially reduce the sweet taste intensity. Bread produced with 9% IMO tasted less sweet than bread prepared with 9% sucrose but partial replacement of sucrose with IMO maintained the sweet taste intensity. Addition of 4.5% IMO in combination with W. cibaria sourdough, amyloglucosidase and the fructosidase FruA enabled production of bread with 50% reduced sucrose addition while maintaining the sweet taste intensity. In conclusion, the single use of a sweet bulking agent, of amyloglucosidase or fructanases or the use of sourdough alone, did not maintain the sweet taste intensity of sugar-reduced bread, however, a combination of the three approaches allowed a reduction of sucrose addition without reducing the sweet taste intensity.
Collapse
|
39
|
Reale A, Di Stasio L, Di Renzo T, De Caro S, Ferranti P, Picariello G, Addeo F, Mamone G. Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem 2021; 359:129955. [PMID: 34010753 DOI: 10.1016/j.foodchem.2021.129955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the dynamics of proteolysis during dough fermentation started with different lactic acid bacteria species, through the identification of intermediate and small-sized peptides generated during fermentation. Single-strain cultures of Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Companilactobacillus alimentarius, and Leuconostoc pseudomesenteroides were assayed as sourdough starters. Assays were carried out at lab-scale for 48 h of fermentation, using both unstarted and yeast-leavened dough as controls. Physicochemical and microbiological analyses were combined with peptidomic and proteomic profiling, identifying several hundreds of peptides mainly released from the water-soluble wheat proteins, including β-amylase, triticin, and serpins. Both α- and γ-gliadins were hydrolyzed, though only at the N-terminal domain, while the central protein region - encrypting celiac disease epitopes- remained unaffected. The bacterial-mediated consumption of sugars and the concomitant hydrolysis of starch degrading β-amylase could underlie improved digestibility and several nutritionally beneficial effects of sourdough baked products.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Salvatore De Caro
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Francesco Addeo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
40
|
Strain-specific interaction of Fructilactobacillus sanfranciscensis with yeasts in the sourdough fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03722-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractFructilactobacillus (F.) sanfranciscensis is a key bacterium in traditional (type 1) sourdough fermentations. It typically occurs in combination with the sourdough yeast Kazachstania (K.) humilis or the generalist Saccharomyces (S.) cerevisiae. Previous studies revealed intra-species diversity in competitiveness or dominance in sourdoughs of F. sanfranciscensis, as well as preferences for a life with or without a specific yeast. In this study representative, differently behaving strains were studied in media with different sugars and electron acceptors, and in rye sourdough fermentations in the presence and absence of K. humilis or S. cerevisiae. Strain-specific differences were observed in sugar and organic acids spectra in media, and in sourdoughs with F. sanfranciscensis strains in combination with K. humilis or S. cerevisiae. F. sanfranciscensis TMW 1.1150 proved dominant in the presence and absence of any yeast because it most effectively used maltose. Its maltose fermentation was unaffected by electron acceptors. F. sanfranciscensis TMW 1.2138 was the weakest maltose fermenter and incapable of glucose fermentation, and evidently not competitive against the other strains. F. sanfranciscensis TMW 1.392 was the most versatile strain regarding the utilization of different carbohydrates and its ability to exploit electron acceptors like fructose and oxygen. In sourdoughs without yeasts, it outcompeted other strains. The metabolism of F. sanfranciscensis TMW 1.907 was stimulated in combination with S. cerevisiae. In competitive trials, it was assertive only with S. cerevisiae. The intra-species differences in carbohydrate metabolism can widely explain the differences in their behavior in sourdough fermentation. Interaction between F. sanfranciscensis and the yeasts was strain specific and supposedly commensal with K. humilis and rather competitive with S. cerevisiae.
Collapse
|
41
|
Pitsch J, Sandner G, Huemer J, Huemer M, Huemer S, Weghuber J. FODMAP Fingerprinting of Bakery Products and Sourdoughs: Quantitative Assessment and Content Reduction through Fermentation. Foods 2021; 10:foods10040894. [PMID: 33921672 PMCID: PMC8074121 DOI: 10.3390/foods10040894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are associated with digestive disorders and with diseases such as irritable bowel syndrome. In this study, we determined the FODMAP contents of bread, bakery products, and flour and assessed the effectiveness of sourdough fermentation for FODMAP reduction. The fermentation products were analyzed to determine the DP 2-7 and DP >7 fructooligosaccharide (FOS) content of rye and wheat sourdoughs. FOSs were reduced by Acetobacter cerevisiae, Acetobacter okinawensis, Fructilactobacillus sanfranciscensis, and Leuconostoc citreum to levels below those in rye (-81%; -97%) and wheat (-90%; -76%) flours. The fermentation temperature influenced the sourdough acetic acid to lactic acid ratios (4:1 at 4 °C; 1:1 at 10 °C). The rye sourdough contained high levels of beneficial arabinose (28.92 g/kg) and mannitol (20.82 g/kg). Our study contributes in-depth knowledge of low-temperature sourdough fermentation in terms of effective FODMAP reduction and concurrent production of desirable fermentation byproducts.
Collapse
Affiliation(s)
- Johannes Pitsch
- FFoQSI Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 4600 Wels, Austria; (J.P.); (J.H.); (M.H.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria;
| | - Georg Sandner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria;
| | - Jakob Huemer
- FFoQSI Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 4600 Wels, Austria; (J.P.); (J.H.); (M.H.)
| | - Maximilian Huemer
- FFoQSI Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 4600 Wels, Austria; (J.P.); (J.H.); (M.H.)
| | - Stefan Huemer
- Fischer Brot GmbH, Nebingerstraße 5, 4020 Linz, Austria;
| | - Julian Weghuber
- FFoQSI Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 4600 Wels, Austria; (J.P.); (J.H.); (M.H.)
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600 Wels, Austria;
- Correspondence: ; Tel.: +43-0508-044-4403
| |
Collapse
|
42
|
Suter DAI, Békés F. Who is to blame for the increasing prevalence of dietary sensitivity to wheat? CEREAL RESEARCH COMMUNICATIONS 2021; 49:1-19. [DOI: 10.1007/s42976-020-00114-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 01/05/2025]
|
43
|
Degradation of Wheat Germ Agglutinin during Sourdough Fermentation. Foods 2021; 10:foods10020340. [PMID: 33562539 PMCID: PMC7915439 DOI: 10.3390/foods10020340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Non Celiac Wheat Sensitivity (NCWS) is an intolerance to wheat products and individuals with NCWS often adhere to a gluten free diet. However, gluten free diets are often associated with a reduced sensory and nutritional quality. Wheat Germ Agglutinin (WGA) is one of the wheat components linked to NCWS. This study explored the fate of WGA during sourdough fermentation. To assess the role of thiol-exchange reactions and proteolysis, sourdoughs were fermented with Fructilactobacillus sanfranciscensis DSM20451, F. sanfranciscensis DSM20451ΔgshR, which lacks glutathione reductase activity, or Latilactobacillus sakei TMW1.22, with or without addition of fungal protease. The conversion of WGA was determined by size exclusion chromatography of fluorescence-labeled WGA, and by enzyme-linked immunosorbent assay (ELISA). Commercial whole wheat flour contained 6.6 ± 0.7 μg WGA/g. After fermentation with L. sakei TMW1.22 and F. sanfranciscensis DSM20451, the WGA content was reduced (p < 0.05) to 2.7 ± 0.4 and 4.3 ± 0.3 μg WGA/g, respectively, while the WGA content remained unchanged in chemically acidified controls or in doughs fermented with F. sanfranciscensis DSM20451ΔgshR. Protease addition did not affect the WGA content. In conclusion, the fate of WGA during sourdough fermentation relates to thiol-exchange reactions but not to proteolytic degradation.
Collapse
|
44
|
Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020; 9:microorganisms9010047. [PMID: 33375367 PMCID: PMC7824024 DOI: 10.3390/microorganisms9010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Bakers use pure microorganisms and/or traditional sourdoughs as the leavening agent for making bread. The performance of each starter and the substances produced by the microorganisms greatly affect the dough rheology and features of breads. Modern sourdoughs inoculated with selected lactic acid bacteria and yeasts are microbiologically stable, safer than traditional sourdoughs, and easy to use. However, the commercial repertoire of baker’s yeasts is still limited. Therefore, there is a demand for new strains of yeast species, capable of conferring distinctive traits to breads made from a variety of agri-food matrices, in the design of innovative starters. In this context, we report the first comprehensive study on yeasts isolated from a wide range of fermented doughs, cereal flours, and grains of Spain. Nine yeast species were identified from 433 isolates, which were distributed among separate clades. Moreover, phenotypic traits of potential technological relevance were identified in selected yeast strains. Mother doughs (MDs) showed the greatest yeast biodiversity, whereas commercial Saccharomyces starters or related and wild strains often dominated the bakery doughs. A metataxonomic analysis of wheat and tritordeum MDs revealed a greater richness of yeast species and percentage variations related to the consistency, flour type, and fermentation time of MDs.
Collapse
|
45
|
Shah S, Brown PDS, Mayengbam S, Gänzle MG, Wang W, Mu C, Lettrari S, Bertagnolli C, Shearer J. Metabolic and Gut Microbiota Responses to Sourdough Pasta Consumption in Overweight and Obese Adults. Front Nutr 2020; 7:615003. [PMID: 33425978 PMCID: PMC7785823 DOI: 10.3389/fnut.2020.615003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
Increasing consumer interest in fermented products has driven the emergence of a number of novel foods including shelf-stable sourdough pasta. This study comprehensively examined the impact of fermentation on the microbial composition of the culture, pasta, its subsequent effects on glycemic responses and gut microbiota in overweight men and women (>25 kg/m2) compared to a conventional, non-fermented pasta. Two, randomized crossover trials were performed. Study A examined acute feeding responses to each product wherein fasted participants completed a meal tolerance test comprised of 75 g of conventional or sourdough pasta to examine glycemic responses. Results showed enhanced gastric emptying with sourdough, but no difference in overall blood glucose, insulin or satiety hormone responses between the treatments. Study B consisted of three standard oral glucose tolerance tests as well as fecal collection for sequencing at baseline and following each pasta intervention (150 g or 2 serving/d for 5 days) followed by a 2-week washout period. Results showed no differential impact of either pasta treatment on glucose tolerance. Analysis of fecal bacterial and fungal (mycobiome) microbiota showed no change at the individual species or genus levels. However, fungi were adaptive following chronic pasta consumption with decreases in alpha diversity of fungi following sourdough, but not conventional pasta. This was accompanied by reductions in total fecal short chain fatty acid concentrations. In conclusion, sourdough fermentation did not change the overall glycemic properties of the pasta, incretin responses or bacterial gut microbiota, but appears to impact microbiome fungal community structure with chronic consumption.
Collapse
Affiliation(s)
- Shrushti Shah
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Paul D S Brown
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Weilan Wang
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Chunlong Mu
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
47
|
Schmidt M, Sciurba E. Determination of FODMAP contents of common wheat and rye breads and the effects of processing on the final contents. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03633-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe benefits of a diet, low in fermentable oligo-, di- and monosaccharides and polyols (FODMAP) for patients suffering from irritable bowel syndrome (IBS) has been well established. Thus, the exact knowledge of the amount and composition of FODMAPs in foods is of vital importance for these patients. This study investigated the possibilities of FODMAP reduction by adjusting the processing parameters, which are feasible in practise, while still producing marketable breads. Therefore, the impact of prolonged proofing and the addition of sourdough on the FODMAPs in the final products was evaluated. High performance anion exchange chromatography was used for qualitative and quantitative analysis. A prolonged proofing time resulted in reduction of the fructan content and in consequence of the total FODMAPs. In contrast, the addition of sourdough only altered the FODMAP composition, by reducing the fructan content but increasing the mannitol content. While all the breads produced from refined wheat flour meet the low-FODMAP criteria, the breads from rye and whole meal wheat flour have to be considered as high-FODMAP, regardless of the processing conditions investigated. Breads produced from rye flour exceeded the limits for fructans and mannitol, while whole meal wheat breads were found to exceed the threshold for excess fructose. Overall, the production of low-FODMAP rye breads was identified as the biggest challenge for future research, since it could not be achieved using conventional processing parameter.
Collapse
|
48
|
Rogalski E, Ehrmann MA, Vogel RF. Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis. Microbiol Res 2020; 243:126625. [PMID: 33129664 DOI: 10.1016/j.micres.2020.126625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
49
|
Huang X, Gänzle M, Loponen J, Schuppan D. Reply to Comment on Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020, 9, 943. Foods 2020; 9:foods9101405. [PMID: 33022956 PMCID: PMC7599801 DOI: 10.3390/foods9101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Xin Huang
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, PL 66, FI-00014 Helsinki, Finland
- Correspondence:
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| |
Collapse
|
50
|
Acín Albiac M, Di Cagno R, Filannino P, Cantatore V, Gobbetti M. How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: a proof of concept. Microb Cell Fact 2020; 19:182. [PMID: 32943064 PMCID: PMC7499921 DOI: 10.1186/s12934-020-01438-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND FODMAPs (Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) intake is associated with the onset of irritable bowel syndrome symptoms. FODMAPs in wheat-derived baked goods may be reduced via bioprocessing by endogenous enzymes and/or microbial fermentation. Because of the inherent enzyme activities, bread made by baker's yeast and sourdough may result in decreased levels of FODMAPs, whose values are, however, not enough low for people sensitive to FODMAPs. RESULTS Our study investigated the complementary capability of targeted commercial enzymes and metabolically strictly fructophilic lactic acid bacteria (FLAB) to hydrolyze fructans and deplete fructose during wheat dough fermentation. FLAB strains displayed higher fructose consumption rate compared to conventional sourdough lactic acid bacteria. Fructose metabolism by FLAB was faster than glucose. The catabolism of mannitol with the goal of its reuse by FLAB was also investigated. Under sourdough conditions, higher fructans breakdown occurred in FLAB inoculated doughs compared to conventional sourdough bacteria. Preliminary trials allowed selecting Apilactobacillus kunkeei B23I and Fructobacillus fructosus MBIII5 as starter candidates, which were successfully applied in synergy with commercial invertase for low FODMAPs baking. CONCLUSIONS Results of this study clearly demonstrated the potential of selected strictly FLAB to strongly reduce FODMAPs in wheat dough, especially under liquid-dough and high oxygenation conditions.
Collapse
Affiliation(s)
- Marta Acín Albiac
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100, Bolzano, Italy.
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126, Bari, Italy.
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100, Bolzano, Italy
| |
Collapse
|