1
|
Marx ÍMG, Priego-Capote F. Importance of malaxation conditions to virgin olive oil polar phenolic compounds content. Food Chem 2025; 480:143884. [PMID: 40112719 DOI: 10.1016/j.foodchem.2025.143884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Virgin olive oil (VOO), the "golden liquid" of the Mediterranean diet (MD), has experienced rising global consumption due to its health-related properties and remarkable sensory attributes. VOO's health benefits are linked mainly to its fatty acid and phenolic profiles. Polar phenolic compounds (PPCs) contribute to the VOO quality and sensory-nutritional aspects, being responsible for the only health claim regarding its protective influence on the oxidation of blood lipids. VOO's phenols are influenced by the rate of their solubilisation and the chemical/enzymatic reactions during processing, significantly affected by technological factors. Malaxation plays a significant role in VOO's PPCs content. This review highlights recent technological advances in VOO extraction, particularly the impact of malaxation on PPCs. Non-thermal methods, such as pulsed electric field and ultrasound show promise in improving PPCs content, especially secoiridoids. Future research efforts should focus on industrial-level studies and optimising extraction per olive genotype to standardise high-quality VOO production.
Collapse
Affiliation(s)
- Ítala M G Marx
- Department of Analytical Chemistry, University of Cordoba, Spain; Chemistry Institute for Energy and Environment, University of Cordoba, Spain.
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Cordoba, Spain; Chemistry Institute for Energy and Environment, University of Cordoba, Spain; Maimonides Institute of Biomedical Research, Reina Sofia University Hospital, University of Cordoba, Spain; CIBERFES, Consortium for Biomedical Research on Frailty and Healthy Ageing, Carlos III Health Institute, Spain.
| |
Collapse
|
2
|
Gila A, Aguilera MP, Sánchez-Ortíz A, Jiménez A, Beltrán G. Stability of the natural emulsions (w/o) present in virgin olive oils just obtained: Effect of the temperature and ultrasounds. Food Chem 2025; 476:143388. [PMID: 39987800 DOI: 10.1016/j.foodchem.2025.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Unfiltered virgin olive oils just obtained were submitted at different temperature and ultrasound treatments to study the stability of the natural emulsions present in them. Turbidity, moisture and insoluble impurities content were monitored after a centrifugation test to determine the emulsions stability. Cooling (4 °C) and freezing (-20 °C) temperatures presented the highest destabilization effect of the emulsions (moisture reduction of up to 34 %) due to the slow cooling comparing to temperatures for rapid freeze (-80 °C). Temperature cycles of 4 °C/40 °C/4 °C present higher emulsions destabilization than cycles of 40 °C/4 °C/40 °C. On the contrary, ultrasounds application significantly increased of stabilized moisture in the emulsion, being higher for longer sonication times (up to 21-28 % after 60 min). These results could provide the foundation for several applications into olive oil industry, such as improve the characteristics of the virgin olive oils for their storage or lengthen the time of the cloudy appearance when are bottled to the consumers.
Collapse
Affiliation(s)
- Abraham Gila
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain.
| | - M Paz Aguilera
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| | - Araceli Sánchez-Ortíz
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| | - Antonio Jiménez
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| | - Gabriel Beltrán
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| |
Collapse
|
3
|
Waseem M, Rizwan Javed M, Ali K, Saleem M, Faisal Manzoor M, Farhan M, Mugabi R, Sharma A, Ahmad Nayik G. Microwave-sonication synergistic extraction of dairy waste proteins: A review of green approach for dairy waste proteins valorization. ULTRASONICS SONOCHEMISTRY 2024; 111:107111. [PMID: 39426029 PMCID: PMC11536016 DOI: 10.1016/j.ultsonch.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Ultrasonic and microwave extraction process has great prospects to convert food and agricultural waste from food industries to value-added goods. Also, this review extensively elaborates the utilization of ultrasonication and microwave extraction (US-MW) process for valorization of dairy waste extracted proteins into novel foods. Both of these extraction and processing techniques are considered as green technologies when compared with the other conventional or chemical extraction and processing techniques. Further, this review also explains the impact of US-MW alone and in combination on the dairy waste proteins extraction, nutritional and techno-functional attributes of these dairy-waste proteins. The review also highlights the economic and cost-effective benefits of US-MW processes for extracting the proteins from dairy waste, indicating their feasibility and sustainability. The review also elucidated the synergistic utilization of US-MW extraction as a viable processing technique in extraction or production of bioactive compounds like dairy proteins. In conclusion, this review elucidates the US-MW, both individually and in synergy as a viable source of dairy waste proteins extraction and their application in functional foods. Moreover, in accordance to the latest developments and future prospects at pilot and commercial level to assess the practicability of synergistic use of US-MW extraction in bioenergy production from food wastes other than dairy waste for extraction and production of biodiesel, hydrogen, green methane, and ethanol.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Javed
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muhammad Saleem
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; Faculty of Sciences and Technology, ILMA University, Karachi, Pakistan.
| | - Muhammad Farhan
- Department of Food Science and Technology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, 63100, Pakistan
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Aanchal Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India.
| |
Collapse
|
4
|
Boffa L, Calcio Gaudino E, Grillo G, Binello A, Capaldi G, Rego D, Pereira M, Cravotto G. Industrial Production of Bioactive Nutrient-Enhanced Extra Virgin Olive Oil under Continuous-Flow Ultrasound and Pulsed Electric Field Treatment. Foods 2024; 13:2613. [PMID: 39200540 PMCID: PMC11353453 DOI: 10.3390/foods13162613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet. Many studies have highlighted its crucial preventive role against cardiovascular disease, neurodegenerative disorders, metabolic syndrome and cancer, with these effects being due to the synergistic anti-inflammatory and antioxidant activities of minor components, such as polyphenols and tocols. The aim of the present study is to implement new technologies for olive oil mills and develop an efficient large-sized industrial process for the continuous extraction of healthier EVOOs that are enriched with these bioactive compounds. Non-thermal technologies, namely ultrasound (US) and pulsed electric field (PEF), have been tested, separately and in combination, to eliminate the need for traditional malaxation. There is extensive literature to support the efficacy of ultrasound-assisted extraction (UAE) and PEF treatments in EVOO production. A newly designed US device and a PEF industrial chamber have been combined into a single, integrated continuous-flow setup, the performance of which in the extraction of EVOO from green Coratina olives has been evaluated herein. Extraction yields, physico-chemical and organoleptic characteristics, and polyphenol and tocol contents were monitored throughout the trials, and the last three were measured at accelerated aging times (AAT) of 15 and 30 days. The US and combined US-PEF processes not only increased daily oil production (ton/day, by nearly 45%), but also eliminated the need for kneading during malaxation, resulting in significant energy savings (approximately 35%). In addition, these innovations enriched the resulting EVOO with nutritionally relevant minor components (8-12% polyphenols, 3-5% tocols), thereby elevating its quality and market value, as well as overall stability. The introduction of continuous-flow US and PEF technologies is a remarkable innovation for the EVOO industry, as they offer benefits to both producers and consumers. The EVOO resulting from non-thermal continuous-flow production meets the growing demand for healthier, nutrient-enriched products.
Collapse
Affiliation(s)
- Luisa Boffa
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| | - Emanuela Calcio Gaudino
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| | - Arianna Binello
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| | - Giorgio Capaldi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| | - Duarte Rego
- EnergyPulse Systems, Est Paco Lumiar Polo Tecnológico Lt3, 1600-546 Lisbon, Portugal; (D.R.); (M.P.)
| | - Marcos Pereira
- EnergyPulse Systems, Est Paco Lumiar Polo Tecnológico Lt3, 1600-546 Lisbon, Portugal; (D.R.); (M.P.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (L.B.); (E.C.G.); (G.G.); (A.B.); (G.C.)
| |
Collapse
|
5
|
Negi A, Nimbkar S, Thirukumaran R, Moses JA, Sinija VR. Impact of thermal and nonthermal process intensification techniques on yield and quality of virgin coconut oil. Food Chem 2024; 434:137415. [PMID: 37774639 DOI: 10.1016/j.foodchem.2023.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Virgin coconut oil (VCO) is valued for its nutraceutical potential. The focus of this research was to assess the effect of selected thermal and nonthermal pre-treatments on the yield and quality of subsequently wet-extracted VCO. The fresh coconut cream was subjected to microwave heating (450 W, 2 min), ohmic heating (180 V, 5 min), ultrasonication (350 W, 10 min), or a pulsed electric field (40 kV cm-1, 12.32 min). The thick cream was separated, and VCO was obtained after a freeze-thaw process. The highest VCO yields (>93%) were observed in the cases of ultrasonicated and pulsed electric field-treated samples. A range of oil quality parameters, total phenolic content, and antioxidants were evaluated. Further, the fatty acid composition of all oils was studied. Observations from this research indicate that ultrasonication pre-treatment resulted in the best VCO yield and quality.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - R Thirukumaran
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India.
| | - V R Sinija
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| |
Collapse
|
6
|
Reyes-Goya C, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A. Wild and cultivated olive trees: Nutraceutical insights of extra virgin olive oils in cardiovascular and ocular diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166904. [PMID: 37793462 DOI: 10.1016/j.bbadis.2023.166904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Extra virgin olive oil (EVOO) from Olea europaea (cultivated olive tree) and the oil obtained from the wild olive variety or acebuche (ACE oil from Olea oleaster) contain an extraordinary number of bioactive molecules. These include oleic acid, sterols, tocopherols, triterpene compounds, and polyphenols. Both oils are known for their healthy properties and are considered to be a nutraceutical tool against cardiovascular diseases, including arterial hypertension, preeclampsia, and ocular diseases such as glaucoma or diabetic retinopathy. The benefits of EVOO and ACE oil stem from their anti-inflammatory, antioxidant, and anti-cancer properties. They also have potential as prebiotic compounds. In this update, we synthesise and illustrate the various characteristics and beneficial effects of olive oils from different varieties of olive trees, with special emphasis on Olea oleaster, also known as Olea europaea, L. var. sylvestris.
Collapse
Affiliation(s)
- C Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - P Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
7
|
Chabni A, Vázquez L, Bañares C, Torres CF. Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil. Molecules 2023; 28:6953. [PMID: 37836796 PMCID: PMC10574754 DOI: 10.3390/molecules28196953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
An alternative olive oil (OO) production process has been developed based on the combination of olive dehydration, followed by extraction with an expeller press. This procedure eliminates the utilization of water and avoids the malaxation stage. Hence, no water residues are generated. In this study, the mentioned alternative methodology was compared to conventional extraction methods. High extraction yields and oil recovery were obtained with our novel procedure. On the contrary, substantial percentages of by-products were generated with conventional methodology. The quality indexes (acidity and peroxide values) of the oils obtained by the combination of dehydration and expeller (dOO) were 0.4% of oleic acid and 3 meq O2/kg of oil, respectively. Furthermore, none of the applied processes affected the resulting OO's fatty acid composition and lipid profile. Total phenolic content was up to four times higher for dOO than for other olive oils and it showed resistance to oxidation with an oxidative stability index about five times higher than that for conventional olive oils.
Collapse
Affiliation(s)
- Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (L.V.); (C.B.)
- Department of Applied Physical Chemistry, Departmental Section of Food Sciences, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (L.V.); (C.B.)
- Department of Applied Physical Chemistry, Departmental Section of Food Sciences, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (L.V.); (C.B.)
- Department of Applied Physical Chemistry, Departmental Section of Food Sciences, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Carlos F. Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain; (A.C.); (L.V.); (C.B.)
- Department of Applied Physical Chemistry, Departmental Section of Food Sciences, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Peres F, Marques MP, Mourato M, Martins LL, Ferreira-Dias S. Ultrasound Assisted Coextraction of Cornicabra Olives and Thyme to Obtain Flavored Olive Oils. Molecules 2023; 28:6898. [PMID: 37836741 PMCID: PMC10574346 DOI: 10.3390/molecules28196898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction is an emergent technology able to increase extractability. Combining US and coextraction, it is possible to obtain new products using different types of olives (e.g., cultivar and ripening stage), ingredient(s) with the greatest flavoring and/or bioactive potential, as well as extraction conditions. In the present study, mastic thyme (Thymus mastichina L.) (TM) and lemon thyme (Thymus x citriodorus) (TC) were used for flavoring Cornicabra oils by coextraction. The coextraction trials were performed by (i) thyme addition to the olives during crushing or malaxation and (ii) US application before malaxation. Several parameters were evaluated in the oil: quality criteria parameters, total phenols, fatty acid composition, chlorophyll pigments, phenolic profile and oxidative stability. US application did not change the phenolic profile of Cornicabra olive oils, while the enrichment of olive oils with phenolic compounds or pigments by coextraction was very dependent on the thyme used. TM enrichment showed an improvement of several new phenolic compounds in the oils, while with TC, fewer new phenols were observed. In turn, in the trials with TC, the extraction of chlorophyll pigments was higher, particularly in crushing coprocessing. Moreover, the oils obtained with US and TM added in the mill or in the malaxator showed lower phenol decrease (59%) than oils flavored with TC (76% decrease) or Cornicabra virgin olive oil (80% decrease) over an 8-month storage period. Multivariate data analysis, considering quality parameters, pigments and phenolic contents, showed that flavored oils were mainly grouped by age.
Collapse
Affiliation(s)
- Fátima Peres
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, 6000-909 Castelo Branco, Portugal;
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.P.M.); (M.M.); (L.L.M.)
| | - Madalena Pinho Marques
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.P.M.); (M.M.); (L.L.M.)
| | - Miguel Mourato
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.P.M.); (M.M.); (L.L.M.)
| | - Luisa L. Martins
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.P.M.); (M.M.); (L.L.M.)
| | - Suzana Ferreira-Dias
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.P.M.); (M.M.); (L.L.M.)
- Laboratório de Estudos Técnicos, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
9
|
Cravotto C, Claux O, Bartier M, Fabiano-Tixier AS, Tabasso S. Leading Edge Technologies and Perspectives in Industrial Oilseed Extraction. Molecules 2023; 28:5973. [PMID: 37630225 PMCID: PMC10459726 DOI: 10.3390/molecules28165973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
With the increase in the world's population and per capita wealth, oil producers must not only increase edible oil production but also meet the demand for a higher quality and variety of products. Recently, the focus has shifted from single processing steps to the entire vegetable oil production process, with an emphasis on introducing innovative technologies to improve quality and production efficiency. In this review, conventional methods of oilseed storage, processing and extraction are presented, as well as innovative processing and extraction techniques. Furthermore, the parameters most affecting the products' yields and quality at the industrial level are critically described. The extensive use of hexane for the extraction of most vegetable oils is undoubtedly the main concern of the whole production process in terms of health, safety and environmental issues. Therefore, special attention is paid to environmentally friendly solvents such as ethanol, supercritical CO2, 2-methyloxolane, water enzymatic extraction, etc. The state of the art in the use of green solvents is described and an objective assessment of their potential for more sustainable industrial processes is proposed.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon Université, F-84000 Avignon, France;
| | - Ombéline Claux
- Pennakem Europa (EcoXtract®), 224 Avenue de la Dordogne, F-59944 Dunkerque, France; (O.C.); (M.B.)
| | - Mickaël Bartier
- Pennakem Europa (EcoXtract®), 224 Avenue de la Dordogne, F-59944 Dunkerque, France; (O.C.); (M.B.)
| | | | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
10
|
Influence of Drying Temperature and Harvesting Season on Phenolic Content and Antioxidant and Antiproliferative Activities of Olive ( Olea europaea) Leaf Extracts. Int J Mol Sci 2022; 24:ijms24010054. [PMID: 36613498 PMCID: PMC9820404 DOI: 10.3390/ijms24010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Interest in plant compounds has increased, given recent evidence regarding their role in human health due to their pleiotropic effects. For example, plant bioactive compounds present in food products, including polyphenols, are associated with preventive effects in various diseases, such as cancer or inflammation. Breast and colorectal cancers are among the most commonly diagnosed cancers globally. Although appreciable advances have been made in treatments, new therapeutic approaches are still needed. Thus, in this study, up to 28 olive leaf extracts were obtained during different seasons and using different drying temperatures. The influence of these conditions on total polyphenolic content (measured using Folin-Ciocalteu assays), antioxidant activity (using Trolox Equivalent Antioxidant Capacity and Ferric Reducing Ability of Plasma assays) and antiproliferative capacity (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assays) was tested in breast and colorectal cancer cells. Increased phenolic composition and antioxidant and antiproliferative capacity are noted in the extracts obtained from leaves harvested in autumn, followed by summer, spring and winter. Regarding drying conditions, although there is not a general trend, conditions using the highest temperatures lead to the optimal phenolic content and antioxidant and antiproliferative activities in most cases. These results confirm previously published studies and provide evidence in support of the influence of both harvesting and drying conditions on the biological activity of olive leaf extracts.
Collapse
|
11
|
Lisa Clodoveo M, Tarsitano E, Crupi P, Pasculli L, Piscitelli P, Miani A, Corbo F. Towards a new food labelling system for sustainable food production and healthy responsible consumption: The Med Index Checklist. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
12
|
Abstract
Olive Sound is the acronym of a Horizon 2020 European Project aimed at the development of a high-flow oil extraction plant, the Sono-Heat-Exchanger, which combines ultrasound and heat exchange in order to break, through a radical innovation model in the oil mill, the historical paradigm that sees as inversely correlated the oil yield and the content of bio-phenols. These compounds are biologically active molecules that transform the product, extra virgin olive oil, from a mere condiment into a functional food. The primary objective of the project, financially supported by the European Union through the “Fast Track to Innovation” program, is the development of a product “ready for the market” (TRL 9) capable of making the involved companies more competitive while increasing the competitiveness of European extra virgin olive oil in the international context.
Collapse
|
13
|
Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cold storage of olive fruit has been the subject of study for over more than 50 years. From the 1990s on, an increasing amount of knowledge is build-up about the impact of the conservation on the physiological response of the fruit as well as on the quality of the extracted oil therefrom. This review offers a comprehensive synopsis of this research, discusses the most important influential factors and summarizes the results on the influence of the studied parameters on both the fruit and the oil. Currently, changing climatic conditions, new harvesting techniques and a more demanding consumer market are triggering the need to broaden this strict focus on conservation. A more dynamic view on the effects of temperature from the moment the fruit is harvested up to the oil extraction process, reveals the necessity to manage this crucial influential factor more diversely. An overview of how this management can take form is structured through a focus on the different phases of the postharvest processing and the widely different harvesting scales. Future prospects of research are presented based on the actual state of the art of cold storage research as well as on the necessities that come forward from a broader fruit temperature management perspective.
Collapse
|
14
|
Determination of hydroxytyrosol and tyrosol in human urine after intake of extra virgin olive oil produced with an ultrasounds-based technology. J Pharm Biomed Anal 2021; 203:114204. [PMID: 34130008 DOI: 10.1016/j.jpba.2021.114204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Extra virgin olive oil (EVOO) is a known source of antioxidants, such as phenolic compounds, useful in the prevention of non-infectious diseases (atherosclerosis, diabetes, cancer, and other diseases). In the present study, EVOO obtained using an innovative ultrasounds-based technology was found richer in total polyphenols, hydroxytyrosol and tyrosol, than EVOO obtained using a conventional mechanical technology. The urinary excretion in humans of hydroxytyrosol and tyrosol, after the administration of ultrasounds and mechanical EVOOs, respectively, was assessed and compared. The analytes were determined in urine samples, collected for 24 h, of six healthy people (3 men and 3 women, age 22-70 years and body mass index <30 kg/m2) who ingested 20 g of oil for six consecutive days. A commercial refined olive oil was also used in the study to determine the baseline excretion levels of the two metabolites. High correlation coefficients (≥0.9311) were found between the amounts of the analytes ingested daily with EVOOs and those determined in the 24-h urines. The results clearly indicated that the EVOO obtained with the ultrasound process was characterized by the highest concentration of biophenols which were consequently available in greater quantities after ingestion, indicating that it represents a high-quality product containing high levels of beneficial compounds such as biophenols readily assimilable by the human body.
Collapse
|
15
|
Wang Q, Peng C, Shi L, Liu Z, Zhou D, Meng H, Zhao H, Li F, Zhang M. A Technical System for the Large-Scale Application of Metabolites From Paecilomyces variotii SJ1 in Agriculture. Front Bioeng Biotechnol 2021; 9:671879. [PMID: 34055763 PMCID: PMC8149806 DOI: 10.3389/fbioe.2021.671879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4–10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.
Collapse
Affiliation(s)
- Qingbin Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China.,Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Liran Shi
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| | - Dafa Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hui Meng
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Hongling Zhao
- Shandong Pengbo Biotechnology Co., Ltd., Tai'an, China
| | - Fuchuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
16
|
Colonna MA, Tarricone S, Giannico F, Selvaggi M, Carriero F, Crupi P, Corbo F, Clodoveo ML. Dietary Effects of Extra Virgin Olive Oil Extracted by Ultrasound Technology or Refined Olive Oil on the Quality Traits of Pork and "Capocollo di Martina Franca" Dry-Cured Meat. Animals (Basel) 2021; 11:954. [PMID: 33808085 PMCID: PMC8065921 DOI: 10.3390/ani11040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/19/2023] Open
Abstract
The "Capocollo di Martina Franca" is a traditional dry-cured pig meat product made in Apulia. The dietary fat source is able to influence the lipid profile of muscle and subcutaneous fat in pork, thus affecting its nutritional and sensorial quality as well as its suitability for technological processing. The aim of the study was to evaluate the effect of a diet containing extra virgin olive oil (EVOO, 3%, as-fed basis) extracted by ultrasound technology in comparison to refined olive oil (ROO, 3%, as-fed basis) on the quality of pig meat (longissimus lumborum muscle) and capocollo in relation to its storage time after seasoning (t1 = 0 vs. t2 = +6 months). The EVOO diet lowered the concentration of myristic, palmitic, stearic and total saturated fatty acids (SFA) and increased oleic, linoleic, total monounsaturated (MUFAs), polyunsaturated (PUFAs) and n-3 and n-6 fatty acids in pig meat; moreover, the atherogenicity and thrombogenicity indices were lowered, with potential benefits for human health. The overall quality of capocollo was positively affected by the EVOO diet, although storage for 6 months after ripening levelled the protective effects of extra virgin olive oil in comparison with refined olive oil.
Collapse
Affiliation(s)
- Maria Antonietta Colonna
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.C.); (S.T.)
| | - Simona Tarricone
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.C.); (S.T.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale Casamassima, Km 3, 70010 Valenzano, Italy;
| | - Maria Selvaggi
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.C.); (S.T.)
| | | | - Pasquale Crupi
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70126 Bari, Italy; (P.C.); (M.L.C.)
| | - Filomena Corbo
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70126 Bari, Italy; (P.C.); (M.L.C.)
| |
Collapse
|
17
|
Adjustment of Olive Fruit Temperature before Grinding for Olive Oil Extraction. Experimental Study and Pilot Plant Trials. Processes (Basel) 2021. [DOI: 10.3390/pr9040586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Harvesting at high temperatures and bulk transport can negatively influence the quality of olives and lead to undesirable alterations in the extracted oil. Cooling the fruit in the field would be the most logical solution, but it means that the olives arrive too cold at the mill for immediate processing. In this work, the use of warm water in the washing tub to warm up the fruit before grinding instead of flash heat treatment on the paste was assessed in two experiments. In the first one, at the laboratory level, the temperature after milling was determined in three olive cultivars, previously stored at 5 or 10 °C, and then submerged at different water temperatures (25, 30, and 35 °C) for 15, 30, 45, and 60 s. In the second one, two batches of olives were cooled in the field at 5 °C and then conditioned with washing water to obtain a paste at the entrance of the pilot plant malaxer at 27 °C. The temperature of the olives was measured at five points from the discharging up to their entering, as paste, into the malaxer. The results demonstrated the feasibility of the method as the temperature of the ground olives was kept at the desired temperature (28 ± 1 °C). The trials highlight the potential for automating an even more precise adjustment of the temperature of the olives before milling once the washing tub is equipped with a safe heating system.
Collapse
|
18
|
Gila A, Sánchez-Ortiz A, Jiménez A, Beltrán G. The ultrasound application does not affect to the thermal properties and chemical composition of virgin olive oils. ULTRASONICS SONOCHEMISTRY 2021; 70:105320. [PMID: 32890985 PMCID: PMC7786558 DOI: 10.1016/j.ultsonch.2020.105320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In this work, the effects of high power ultrasound treatment (40 kHz) on virgin olive oil (VOO) for different times (0, 15, 30 min) were studied, in order to verify if extent modifications in their chemical composition and thermal properties. The effects of the different ultrasound treatments on VOOs were determined considering the following parameters: quality index (free acidity, K232 and K270), lipid profile (fatty acids and triglycerides composition) minor components (phenols, tocopherols, pigments and volatiles) and thermal properties (crystallization and melting) by Differential Scanning Calorimetry (DSC). During the ultrasound treatments, bubbles growth was present in the VOO due to the phenomenon of cavitation and a slight increase of the temperature was observed. In general, the ultrasound treatments did not cause alterations on VOO parameters evaluated (oxidation state, lipid profile, minor components and thermal profiles). However, a slight decrease was observed in some volatile compounds.
Collapse
Affiliation(s)
- Abraham Gila
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain.
| | - Araceli Sánchez-Ortiz
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| | - Antonio Jiménez
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| | - Gabriel Beltrán
- IFAPA Centro "Venta del Llano", Junta de Andalucía, P.O. Box 50, Mengíbar, Jaén E-23620, Spain
| |
Collapse
|
19
|
NMR-based metabolomic study of Apulian Coratina extra virgin olive oil extracted with a combined ultrasound and thermal conditioning process in an industrial setting. Food Chem 2020; 345:128778. [PMID: 33310250 DOI: 10.1016/j.foodchem.2020.128778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/23/2022]
Abstract
The innovative combination of ultrasound (Us) with a thermal exchanger to produce high quality extra virgin olive oil (EVOO) was studied using Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate analysis (MVA). Major and minor metabolomic components of Apulian Coratina EVOO obtained using the two methods were compared. Early and late olive ripening stages were also considered. An increased amount of polyphenols was found for EVOOs obtained using the Us with respect to the conventional method for both early and late ripening stages (900.8 ± 10.3 and 571.9 ± 9.9 mg/kg versus 645.1 ± 9.3 and 440.8 ± 10.4 mg/kg). NMR spectroscopy showed a significant increase (P < 0.05) in polyunsaturated fatty acids (PUFA) as well as in the tyrosol and hydroxytyrosol derivatives, such as oleocanthal, oleacein, and elenolic acid, for both ripening stages. In conclusion, NMR spectroscopy provides information about the metabolomic components of EVOOs to producers, while the Us process increases the levels of healthy bioactive components.
Collapse
|
20
|
Boskou D, Clodoveo ML. Olive Oil: Processing Characterization, and Health Benefits. Foods 2020; 9:foods9111612. [PMID: 33172043 PMCID: PMC7694685 DOI: 10.3390/foods9111612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
The Mediterranean diet is now well known worldwide and recognized as a nutrition reference model by the World Health Organization. Virgin olive oil, prepared from healthy and intact fruits of the olive tree only by mechanical means, is a basic ingredient, a real pillar of this diet. Its positive role in health has now been a topic of universal concern. The virtues of natural olive oil, and especially of extra virgin olive oil, are related to the quality of the fruits, the employment of advanced technologies, and the availability of sophisticated analytical techniques that are used to control the origin of the fruits and guarantee the grade of the final product. With the aim of enriching the recent multidisciplinary scientific information that orbits around this healthy lipid source, a new special issue of Foods journal has been published.
Collapse
Affiliation(s)
- Dimitrios Boskou
- School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.B.); (M.L.C.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy
- Correspondence: (D.B.); (M.L.C.)
| |
Collapse
|
21
|
Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: pilot plant’s proposal. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03503-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Cecchi L, Bellumori M, Corbo F, Milani G, Clodoveo ML, Mulinacci N. Implementation of the Sono-Heat-Exchanger in the Extra Virgin Olive Oil Extraction Process: End-User Validation and Analytical Evaluation. Molecules 2019; 24:molecules24132379. [PMID: 31252634 PMCID: PMC6651205 DOI: 10.3390/molecules24132379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
Abstract
The use of innovative systems, such as the heat exchanger, for production of extra virgin olive oil should allow maintenance of the same quality of those oils derived from traditional processes, and presents specific advantages. The performance of this system was evaluated by (i) determining the parameters directly measurable by the olive millers (i.e., end-user validation based on the production yields when the plant is located in different processing lines) and (ii) assessing the product quality through estimation of the content of phenolic and volatile compounds. The phenols were determined by High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) before and after acidic hydrolysis while the volatile fraction was studied by Head-Space Solid-Phase-Micro-Extraction Gas-Chromatography with Mass Detector (HS-SPME-GC-MS). The use of the sono-heat-exchanger presents several advantages: it is a flexible machine, able to interface with all devices of the world's leading manufacturers of the Extra Virgin Olive Oil (EVOO) extraction plant, and it guarantees shorter processing times and energy savings. Our results also pointed out its capability to increase the oil yields up to 5.5%, particularly when it extracts oil from unripe fruits, which in traditional processes yield oils with higher phenolic contents, but with lower oil yields. Overall, the quality of virgin olive oils was maintained, avoiding decreases of phenolic content or detrimental effects on the sensory characteristics.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70100 Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro-Bari, Via Orabona, 4, 70100 Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, Piazza Giulio Cesare, 11-70124 Bari, Italy.
| | - Nadia Mulinacci
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| |
Collapse
|