1
|
Tiwari I, Bhojiya AA, Jain D, Kothari SL, El-Sheikh MA, Porwal S. Managing tomato bacterial wilt through pathogen suppression and host resistance augmentation using microbial peptide. Front Microbiol 2024; 15:1494054. [PMID: 39726970 PMCID: PMC11670319 DOI: 10.3389/fmicb.2024.1494054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing health and environmental risks associated with synthetic chemical pesticides necessitate the exploration of safer, sustainable alternatives for plant protection. This study investigates a novel biosynthesized antimicrobial peptide (AMP) from Lactiplantibacillus argentoratensis strain IT, identified as the amino acid chain PRKGSVAKDVLPDPVYNSKLVTRLINHLMIDGKRG, for its efficacy in controlling bacterial wilt (BW) disease in tomato (Solanum lycopersicum) caused by Ralstonia solanacearum. Our research demonstrates that foliar application of this AMP at a concentration of 200 ppm significantly reduces disease incidence by 49.3% and disease severity by 45.8%. Scanning electron microscopy revealed severe morphological disruptions in the bacterial cells upon exposure to the AMP. Additionally, the AMP enhanced host resistance by elevating defense enzyme activities, leading to notable improvements in plant morphology, including a 95.5% increase in plant length, a 20.1% increase in biomass, and a 96.69% increase in root length. This bifunctional AMP provides dual protection by exerting direct antimicrobial activity against the pathogen and eliciting plant defense mechanisms. These findings underscore the potential of this biologically sourced AMP as a natural agent for combating plant diseases and promoting growth in tomato crops. To the best of our knowledge, this is the first study to demonstrate the use of a foliar spray application of a biosynthesized microbial peptide as biocontrol agent against R. solanacearum. This interaction not only highlights its biocontrol efficacy but also its role in promoting the growth of Solanum lycopersicum thereby increasing overall agricultural yield.
Collapse
Affiliation(s)
- Ishan Tiwari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | - Ali Asger Bhojiya
- U. S. Ostwal P. G. College, Mohanlal Sukhadia University, Chittorgarh, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - S. L. Kothari
- Amity Institute of Biotechnology, Amity University Jaipur, Jaipur, India
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
2
|
El-Aal MSA, Farag HRM, Elbar OHA, Zayed MS, Khalifa GS, Abdellatif YMR. Synergistic effect of Pseudomonas putida and endomycorrhizal inoculation on the physiological response of onion (Allium cepa L.) to saline conditions. Sci Rep 2024; 14:21373. [PMID: 39266608 PMCID: PMC11393462 DOI: 10.1038/s41598-024-71165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Salinity stress negatively affects the growth and yield of crops worldwide. Onion (Allium cepa L.) is moderately sensitive to salinity. Beneficial microorganisms can potentially confer salinity tolerance. This study investigated the effects of endomycorrhizal fungi (M), Pseudomonas putida (Ps) and their combination (MPs) on onion growth under control (0 ppm), moderate (2000 ppm) and high (4000 ppm) NaCl salinity levels. A pot experiment was conducted with sandy loam soil and onion cultivar Giza 20. Results showed that salinity reduced growth attributes, leaf pigments, biomass and bulb yield while increasing oxidative stress markers. However, individual or combined inoculations significantly increased plant height, bulb diameter and biomass production compared to uninoculated plants under saline conditions. MPs treatment provided the highest stimulation, followed by Pseudomonas and mycorrhizae alone. Overall, dual microbial inoculation showed synergistic interaction, conferring maximum benefits for onion growth, bulbing through integrated physiological and biochemical processes under salinity. Bulb yield showed 3.5, 36 and 83% increase over control at 0, 2000 and 4000 ppm salinity, respectively. In conclusion, combined application of mycorrhizal-Pseudomonas inoculations (MPs) effectively mitigate salinity stress. This approach serves as a promising biotechnology for ensuring sustainable onion productivity under saline conditions.
Collapse
Affiliation(s)
- Mona S Abd El-Aal
- Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hanaa R M Farag
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ola H Abd Elbar
- Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mona S Zayed
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Gamal S Khalifa
- Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Yasmin M R Abdellatif
- Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Revathi S, Altemimi AB, Sutikno S, Cacciola F. Phytochemical screening along with in vitro antioxidant, antibacterial and anticancer activity of Senna auriculata (L.) bark extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39189785 DOI: 10.1080/09603123.2024.2395446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
This study aimed to evaluate the phytochemical content and biological properties of Senna auriculata (L.) Roxb. Four extracts-acetone, methanol, ethanol, and chloroform-were tested for antioxidant potential, enzymatic activity (peroxidase and polyphenol oxidase), antimicrobial, and anticancer effects. GC-MS analysis identified 34 bioactive compounds. The acetone extract exhibited the highest total alkaloid (5.8%), phenolic (752.78 ± 2.25 mg GAE/g), and flavonoid (285.78 ± 1.25 mg QE/g) content, along with the highest antioxidant (1489.42 ± 4.35 mg AAE/g) and enzyme activities. All extracts inhibited both Gram-positive and negative bacteria, with the acetone extract showing superior inhibition against S. aureus and B. subtilis. Additionally, the acetone and methanol extracts demonstrated anticancer effects on MDA-MB-231 breast cancer cells. These findings suggest that Senna auriculata has potential as a therapeutic agent for various diseases.
Collapse
Affiliation(s)
- Seemaisamy Revathi
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Sutikno Sutikno
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Shi L, Pico J, Zamani S, Castellarin SD, Dee DR. Fibrillization of lentil proteins is impacted by the protein extraction conditions and co-extracted phenolics. Food Chem 2024; 448:139104. [PMID: 38547711 DOI: 10.1016/j.foodchem.2024.139104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.
Collapse
Affiliation(s)
- Lanfang Shi
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Joana Pico
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sara Zamani
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Simone D Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Helmy KG, Abu-Hussien SH. Root Rot Management in Common Bean (Phaseolus vulgaris L.) Through Integrated Biocontrol Strategies using Metabolites from Trichoderma harzianum, Serratia marcescens, and Vermicompost Tea. MICROBIAL ECOLOGY 2024; 87:94. [PMID: 39008061 PMCID: PMC11249416 DOI: 10.1007/s00248-024-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.
Collapse
Affiliation(s)
- Karima G Helmy
- Plant Pathology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| |
Collapse
|
6
|
Öztürk C, Küfrevioğlu Öİ. Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources. Protein Expr Purif 2024; 219:106474. [PMID: 38518927 DOI: 10.1016/j.pep.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 μM), mushroom (Ki: 0.7 ± 0.3 μM), and eggplant (Ki: 4.8 ± 1.2 μM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 μM), mushroom (Ki: 567 ± 81 μM), and eggplant (Ki: 2016.7 ± 805.6 μM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
7
|
Goyal T, Mukherjee A, Chouhan GK, Gaurav AK, Kumar D, Abeysinghe S, Verma JP. Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon 2024; 10:e29692. [PMID: 38660266 PMCID: PMC11040113 DOI: 10.1016/j.heliyon.2024.e29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses.
Collapse
Affiliation(s)
- Tushar Goyal
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gowardhan Kumar Chouhan
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Sreenayana B, Mondal KK, Mathiyalagan N, Shanmugam KN, Kumar S, Shrinivas Reddy M, Mani C. Molecular characterization and evaluation of novel management options for Burkholderia glumae BG1, the causative agent of panicle blight of rice (Oryza sativa L.). Mol Biol Rep 2024; 51:519. [PMID: 38625424 DOI: 10.1007/s11033-024-09498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.
Collapse
Affiliation(s)
- Bhaskaran Sreenayana
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Kalyan Kumar Mondal
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India.
- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | - Nivetha Mathiyalagan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Sanjeev Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Chander Mani
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Krishnappa C, Balamurugan A, Velmurugan S, Kumar S, Sampathrajan V, Kundu A, Javed M, Chouhan V, Ganesan P, Kumar A. Rice foliar-adapted Pantoea species: Promising microbial biostimulants enhancing rice resilience against foliar pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Microb Pathog 2024; 186:106445. [PMID: 37956936 DOI: 10.1016/j.micpath.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.
Collapse
Affiliation(s)
- Charishma Krishnappa
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanu Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vellaikumar Sampathrajan
- Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, 625104, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vinod Chouhan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
10
|
Javed M, Reddy B, Sheoran N, Ganesan P, Kumar A. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction. Gene 2023; 886:147718. [PMID: 37595851 DOI: 10.1016/j.gene.2023.147718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The plant pathogen Magnaporthe oryzae poses a significant threat to global food security, and its management through the cultivation of resistant varieties and crop husbandry practices, including fungicidal sprays, has proven to be inadequate. To address this issue, we conducted small-RNA sequencing to identify the roles of miRNAs and their target genes in both resistant (PB1637) and susceptible (PB1) rice genotypes. We confirmed the expression of differentially expressed miRNAs using stem-loop qRT-PCR analysis and correlated them with rice patho-phenotypic and physio-biochemical responses. Our findings revealed several noteworthy differences between the resistant and susceptible genotypes. The resistant genotype exhibited reduced levels of total chlorophyll and carotenoids compared to the susceptible genotype. However, it showed increased levels of total protein, callose, H2O2, antioxidants, flavonoids, and total polyphenols. Additionally, among the defense-associated enzymes, guaiacol peroxidase and polyphenol oxidase responses were higher in the susceptible genotypes. In our comparative analysis, we identified 27 up-regulated and 43 down-regulated miRNAs in the resistant genotype, while the susceptible genotype exhibited 44 up-regulated and 62 down-regulated miRNAs. Furthermore, we discovered eight up-regulated and five down-regulated miRNAs shared between the resistant and susceptible genotypes. Notably, we also identified six novel miRNAs in the resistant genotype and eight novel miRNAs in the susceptible genotype. These novel miRNAs, namely Chr8_26996, Chr12_40110, and Chr12_41899, were found to negatively correlate with the expression of predicted target genes, including Cyt-P450 monooxygenase, serine carboxypeptidase, and zinc finger A20 domain-containing stress-associated protein, respectively. The results of our study on miRNA and transcriptional responses provide valuable insights for the development of future rice lines that are resistant to blast disease. By understanding the roles of specific miRNAs and their target genes in conferring resistance, we can enhance breeding strategies and improve crop management practices to ensure global food security.
Collapse
Affiliation(s)
- Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Postal Code: 110012, India.
| |
Collapse
|
11
|
Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, Karwa S, Prakash G, Subramanian S, Gogoi R, Eke P, Kumar A. Enhancing defense against rice blast disease: Unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathog 2023; 184:106326. [PMID: 37648175 DOI: 10.1016/j.micpath.2023.106326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Rice remains the primary staple for more than half of the world's population, yet its cultivation faces numerous challenges, including both biotic and abiotic stresses. One significant obstacle is the prevalence of rice blast disease, which substantially diminishes productivity and increases cultivation costs due to frequent fungicide applications. Consequently, the presence of fungicide residues in rice raises concerns about compliance with international maximum residue limits (MRLs). While host resistance has proven effective, it often remains vulnerable to new variants of the Magnaporthe oryzae pathogen. Therefore, there is a critical need to explore innovative management strategies that can complement or enhance existing methods. An unexplored avenue involves harnessing endophytic bacterial communities. To this end, the present study investigates the potential of eleven endophytic Bacillus spp. in suppressing Pyricularia oryzae, promoting plant growth, and eliciting a defense response through phyllobacterization. The results indicate that the secreted metabolome and volatilome of seven tested isolates demonstrate inhibitory effects against P.oryzae, ranging from a minimum of 40% to a maximum of 70%. Bacillus siamensis L34, B. amyloliquefaciens RA37, B. velezensis L12, and B. subtilis B18 produce antifungal antibiotics targeting P.oryzae. Additionally, B. subtilis S4 and B. subtilis S6 emerge as excellent inducers of systemic resistance against blast disease, as evidenced by elevated activity of biochemical defense enzymes such as peroxidase, polyphenol oxidase, and total phenol content. However, a balance between primary metabolic activity (e.g., chlorophyll content, chlorophyll fluorescence, and photosynthetic rate) and defense activity is observed. Furthermore, specific endophytic Bacillus spp. significantly stimulates defense-related genes, including OsPAD4, OsFMO1, and OsEDS1. These findings underscore the multifaceted potential of endophytic Bacillus in managing blast disease through antibiosis and induced systemic resistance. In conclusion, this study highlights the promising role of endophytic Bacillus spp. as a viable option for blast disease management. Their ability to inhibit the pathogen and induce systemic resistance makes them a valuable addition to the existing strategies. However, it is crucial to consider the trade-off between primary metabolic activity and defense response when implementing these bacteria-based approaches.
Collapse
Affiliation(s)
| | | | | | - Shanu Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Mohammed Javed
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sourabh Karwa
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Robin Gogoi
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pierre Eke
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
12
|
Kizzie-Hayford N, Abano EE, Akanson J, Dankwa E, Rohm H, Ampofo-Asiama J. Effects of sprouting duration on the nutrient, functional, and phytochemical properties of tiger nut flour, and the sensory properties of bread made thereof. J Food Sci 2023; 88:3681-3693. [PMID: 37548622 DOI: 10.1111/1750-3841.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The influence of sprouting on tiger nut's (TN) nutritional, functional, and phytochemical quality was examined, and the flour used for bread making to evaluate the feasibility as a functional ingredient. TN was sprouted and sampled at 3 days intervals for 12 days, dried and milled into flour and analyzed. Subsequently, 25% of wheat flour (WF) was replaced with the 9 days-sprouted TN flour for bread. Sprouting for 9 days increased the protein content from 9.19 ± 0.04 to 9.79 ± 0.15 g/100 g dry matter (DM), fiber from 6.75 ± 0.16 to 9.27 ± 0.44 g/100 g DM, and ash from 2.34 ± 0.10 to 2.70 ± 0.06 g/100 g DM but decreased fat content from 26.10 ± 0.18 to 23.18 ± 0.43 g/100 g DM and soluble sugar from 33.13 ± 1.25 to 23.75 ± 1.44 °Bx. We observed increases in the polyphenols (94.16 ± 6.43-214.23 ± 6.98 mg GAE/100 g) and ascorbic acid (26.66 ± 0.17-65.13 ± 0.19 mg AE/100 g) and decreases in the cyanogenic glycosides (273.79 ± 0.37-231.54 ± 3.53 mg/100 g) and oxalates (19.04 ± 1.14-5.65 ± 0.93 mg/100 g) contents. Sprouting decreased the particle size and increased the water retention and swelling power of TN flour. WF bread was described as stretchy, sweet, and creamy, whereas sprouted TN bread was brown, nutty, and wheat-like. Consumer acceptance for the sprouted TN bread was comparable to WF bread, showing the possible application in bread making. PRACTICAL APPLICATION: The outcome of the study could help to exploit the nutri-functional and phytochemical benefits of sprouted TN in the baking industry for producing acceptable products. This would enhance the utility of TN for food in regions where TNs grows.
Collapse
Affiliation(s)
- Nazir Kizzie-Hayford
- Department of Biochemistry, School of Biological Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Ekow Abano
- Department of Agricultural Engineering, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joshua Akanson
- Department of Agricultural Engineering, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Esi Dankwa
- Department of Agricultural Engineering, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Harald Rohm
- Chair of Food Engineering, Technische Universitat Dresden, Dresden, Germany
| | - Jerry Ampofo-Asiama
- Department of Biochemistry, School of Biological Science, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
13
|
Sajjad N, Ahmad MS, Mahmood RT, Tariq M, Asad MJ, Irum S, Andleeb A, Riaz A, Ahmed D. Purification and characterization of novel isoforms of the polyphenol oxidase from Malus domestica fruit pulp. PLoS One 2023; 18:e0276041. [PMID: 37624797 PMCID: PMC10456193 DOI: 10.1371/journal.pone.0276041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Polyphenol oxidases (PPOs), belong to the group of oxidoreductases that are copper containing enzymes and are responsible for plant browning. PPOs are extensively distributed in plant kingdom and can oxidize wide range of aromatic compounds of industrial importance. The aim of this study was purification and characterization of PPO isoforms from the fruit pulp of Golden delicious apple. High performance liquid chromatography was used to purify the two novel isoforms of PPO and further their molecular weights (45 and 28 kDa) were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified isoforms have optimum pH (6.5), optimum temperature (40°C), the Vmax (4.45 μM/min) and Km (74.21 mM) with catechol substrate. The N-terminal microsequences of both PPO isoforms were determined using a pulse liquid protein sequencer and found to be AKITFHG (28 kDa) and APGGG (45 kDa). Polyphenol oxidases are efficiently used in the pharmaceutical, paper and pulp, textiles and food industries. Recently, the PPOs have been used for bioremediation and in the development of biosensors.
Collapse
Affiliation(s)
- Naila Sajjad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Raja Tahir Mahmood
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Muhammad Javaid Asad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Shamaila Irum
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Abid Riaz
- Department of Plant Pathology, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Dawood Ahmed
- Department of Medical Laboratory Technology, University of Haripur, Haripur, KP, Pakistan
| |
Collapse
|
14
|
Mikulic-Petkovsek M, Jakljevic K, Veberic R, Hudina M, Rusjan D. Changes in the Fruit Quality Parameters of Medlar Fruit ( Mespilus germanica L.) after Heat Treatment, Storage, Freezing or Hoarfrost. Foods 2023; 12:3077. [PMID: 37628075 PMCID: PMC10453525 DOI: 10.3390/foods12163077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The present study deals with the comparison of traditional fruit processing methods on medlar fruits and their effects on sugar content, organic acids, and phenolic composition in the medlar fruit variety 'Domača nešplja'. The study aimed to analyze which processing methods can be used to make technologically mature medlar fruits that are not yet suitable for consumption edible and to maintain their good chemical quality. The two major sugars in medlars are fructose (59.30 g/kg FW) and glucose (54.43 g/kg FW), and the most abundant organic acids present are malic (8.44 g/kg FW) and quinic acid (8.77 g/kg FW). A total of 38 different phenolic compounds were identified in the medlar fruits: 13 phenolic acids, 9 flavanols, 1 flavone, 3 flavanones, and 12 flavonol glycosides. To explicate: phenolic acids (532.85 mg/kg FW) and flavanols (375.21 mg/kg FW) predominated; neochlorogenic acid had the highest content among phenolic acids; and procyanidins were the most abundant flavanols. The analysis observed statistical differences in metabolite content amongst fruits treated differently (technologically ripe fruits (harvested from the three fruits), edible fruits (technologically ripe fruits stored at 8 °C for 25 days), fruits exposed to the hoarfrost (temperature -1 °C to -4 °C), fruits heated at 60 °C (3 h), and frozen fruits (at -20 °C for 2 months). The lowest levels of fructose (191.77-195.1 g/kg DW) and sorbitol (29.35-31.3 g/kg DW) were detected in the heated and edible fruits. Edible fruits had a 30% lower content of organic acids than technologically ripe fruits and a five times lower content of flavanols, whereas flavonols had an 18.7 times lower content of phenolic acids than technologically ripe fruits. Heating the fruits to 60 °C resulted in a 40% increase in total phenolic compounds in medlars. The results of the study indicate that exposure of medlar fruit to hoarfrost does not significantly affect the chemical quality of the fruit and only minimally alters the composition of sugars, acids, and phenolic compounds. The processing of medlar fruit with hoarfrost, therefore, remains the most suitable method of fruit bletting.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (K.J.); (R.V.); (M.H.); (D.R.)
| | | | | | | | | |
Collapse
|
15
|
Postharvest treatments with MnCl 2 and ZnCl 2 reduce enzymatic browning and enhance antioxidant accumulation in soya bean sprout. Sci Rep 2022; 12:18454. [PMID: 36323864 PMCID: PMC9630537 DOI: 10.1038/s41598-022-23367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Soya bean sprout is a nutrient-abundant vegetable. However, enzymatic browning of soya bean sprouts during storage remains a challenge. In this study, the effects of treatment with MnCl2 or ZnCl2 on the browning index, antioxidant nutrient accumulation, total antioxidant capacity and enzyme activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were investigated in soya bean sprouts after storage at 4 °C and 90% relative humidity for 0, 7, 14 and 21 days. The results showed that postharvest treatment with 1, 2 and 10 mM MnCl2 or ZnCl2 profoundly retarded enzymatic browning in soya bean sprouts to different extents. Compared with the control, the 10 mM MnCl2 and ZnCl2 treatments drastically enhanced ascorbic acid, total thiol and phenolic content, and enhanced FRAP (ferric-reducing ability of plasma) antioxidant capacity in stored soya bean sprouts. Moreover, the MnCl2 and ZnCl2 treatments enhanced SOD, CAT and PAL but decreased PPO and POD activities compared with the control. In addition, the Mn and Zn content in soya bean sprouts significantly increased, by approximately two- to threefold, compared with the control. This study provides a new method for improving the nutrient quality of soya bean sprouts based on postharvest Mn or Zn supplementation.
Collapse
|
16
|
Effects of Naringin on Postharvest Storage Quality of Bean Sprouts. Foods 2022; 11:foods11152294. [PMID: 35954063 PMCID: PMC9368302 DOI: 10.3390/foods11152294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effects of naringin on soybean and mung bean sprouts postharvest quality. It was found that naringin could maintain the appearance and quality of soybean sprouts and mung bean sprouts during a 6-day storage period as well as delay the occurrence of browning in mung bean sprouts and soybean sprouts. The optimal application rate of naringin was 50–100 μg/mL, which could effectively inhibit the activity of polyphenol oxidase (PPO) and peroxidase (POD) in bean sprouts and increase the ascorbic acid content, where this inhibition response to the browning of mung bean sprouts and soybean sprouts was significantly reduced. Naringin treatment increased gallic acid and p-coumaric acid content in mung bean sprouts as well as the daidzin and rutin content in soybean sprouts, which was also reflected in the improvement of antioxidant activity. The binding of naringin with PPO and POD was analyzed with molecular docking, naringin, and PPO had a lower binding energy (−1.09 Kcal/mol). In conclusion, naringin application in postharvest preservation of mung bean sprouts and soybean sprouts can maintain favorable consumer quality.
Collapse
|
17
|
Song R, Tan Y, Ahmed W, Zhou G, Zhao Z. Unraveling the expression of differentially expressed proteins and enzymatic activity in response to Phytophthora nicotianae across different flue-cured tobacco cultivars. BMC Microbiol 2022; 22:112. [PMID: 35461247 PMCID: PMC9034580 DOI: 10.1186/s12866-022-02531-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. RESULTS Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae. We found that 17 proteins induced after inoculation with P. nicotianae, including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14-3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae. CONCLUSION These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.
Collapse
Affiliation(s)
- Ruifang Song
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yujiao Tan
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Waqar Ahmed
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guisu Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengxiong Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
18
|
Mendoza-Wilson AM, Balandrán-Quintana RR, Valdés-Covarrubias MÁ, Cabellos JL. Potential of quercetin in combination with antioxidants of different polarity incorporated in oil-in-water nanoemulsions to control enzymatic browning of apples. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Tarafdar A, Kaur BP. Storage stability of microfluidized sugarcane juice and associated kinetics. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ayon Tarafdar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat 131 028 Haryana
| | | |
Collapse
|
20
|
LIU Y, CHEN Q, LIU D, YANG L, HU W, KUANG L, TENG J, LIU Y. Comparison of the biochemical properties and enzymatic synthesis of theaflavins by soluble and membrane-bound polyphenol oxidases from tea (Camellia sinensis) leaves. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yang LIU
- Jiangxi Agricultural University, China; Jiangxi Agricultural University, China
| | | | | | - Li YANG
- Jiangxi Agricultural University, China
| | - Wei HU
- Jiangxi Agricultural University, China
| | | | - Jie TENG
- Jiangxi Agricultural University, China
| | - Yong LIU
- Jiangxi Agricultural University, China
| |
Collapse
|
21
|
Adeseko CJ, Sanni DM, Lawal OT. Biochemical studies of enzyme-induced browning of African bush mango ( Irvingia gabonensis) fruit pulp. Prep Biochem Biotechnol 2021; 52:835-844. [PMID: 34762005 DOI: 10.1080/10826068.2021.1998113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to examine the biochemical properties of African bush mango (Irvingia gabonensis) pulp PPO. PPO was purified from I. gabonensis fruit pulp in three steps and characterized. A purification fold of 343 with specific activity of 216 U/mg and 13% recovery were obtained as well as molecular weight of 32.67 kDa was observed. The optimum pH and temperature were found to be pH 7.0 and 50 °C respectively while the enzyme showed instability at low pH 2-4 with total inactivation at pH 2 but maximal at pH 5-9 with remaining residual activity of 60-90%, whereas, total enzyme activity inactivation was observed at 90 °C. However, Cu2+, Fe2+ and Mg2+ enhanced the PPO activity but inhibited by Ca2+, Ba2+, K+ and Na+. Notably, purified PPO was inactivated completely by urea at concentration above 10 mM while Km and Vmax values were estimated to be 7.34 mM and 0.36 U/min for catechol, 10.76 mM and 0.30 U/min for L-DOPA, and 14.90 mM and 0.26 U/min for tyrosine, respectively. The activity of PPO in I. gabonensis fruit and its juicy product could be controlled at high temperature in acidified medium.
Collapse
Affiliation(s)
- Catherine Joke Adeseko
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - David Morakinyo Sanni
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Olusola Tosin Lawal
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
22
|
Adeseko CJ, Sanni DM, Salawu SO, Kade IJ, Bamidele SO, Lawal OT. Purification and biochemical characterization of polyphenol oxidase of African bush mango (Irvingia gabonensis) fruit peel. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Torres A, Aguilar-Osorio G, Camacho M, Basurto F, Navarro-Ocana A. Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L. Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives. Food Chem 2021; 356:129709. [PMID: 33823400 DOI: 10.1016/j.foodchem.2021.129709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Biochemical characterization of polyphenol oxidase (PPO) present in purple sweet potato (PSP) is a key step in developing efficient methodologies to control oxidative damage caused by this enzyme to the valuable components of PSP, such as caffeoylquinic acid derivatives and acylated anthocyanins. Thus, this work focused on the assessment of the effects of pH, temperature, and chemical agents on the PPO activity as well as characterization of the PPO substrate specificity towards major phenolic compounds found in PSP. The optimum conditions of enzyme activity were pH 7 and a temperature range of 20-30 °C at which phenolic substrates were oxidized with 72.5-99.8% yield. Zn2+ ions remarkably reduced PPO activity while Cu2+ ions improved enzyme performance. The highest substrate preference was shown for 3,4,5-tri-caffeoylquinic and 3,5-di-caffeoylquinic acid, followed by 5-caffeoylquinic and caffeic acid, 3,4- and 4,5-di-caffeoylquinic acids, peonidin-3-caffeoyl-p-hydroxybenzoyl-sophoroside-5-glucoside. The highest Km values were found for 4,5-feruloyl-caffeoylquinic acid and catechol.
Collapse
Affiliation(s)
- Andrea Torres
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CdMx, Mexico
| | - Guillermo Aguilar-Osorio
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CdMx, Mexico
| | - Michelle Camacho
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CdMx, Mexico
| | - Francisco Basurto
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, C.P. 04510, CdMx, Mexico
| | - Arturo Navarro-Ocana
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CdMx, Mexico.
| |
Collapse
|
24
|
Peñas E, Martínez-Villaluenga C. Advances in Production, Properties and Applications of Sprouted Seeds. Foods 2020; 9:foods9060790. [PMID: 32560116 PMCID: PMC7353599 DOI: 10.3390/foods9060790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Sprouted grains are widely appreciated food ingredients due to their improved, nutritional, functional, organoleptic and textural properties compared with non-germinated grains. In recent years, sprouting has been explored as a promising green food engineering strategy to improve the nutritional value of grains and the formation of secondary metabolites with potential application in the functional foods, nutraceutical, pharmaceutical and cosmetic markets. However, little attention has been paid to the impact of sprouting on the chemical composition, safety aspects, techno-functional and chemopreventive properties of sprouted seeds and their derived flours and by-products. The six articles included in this Special Issue provide insightful findings on the most recent advances regarding new applications of sprouted seeds or products derived thereof, evaluations of the nutritional value and phytochemical composition of sprouts during production or storage and explorations of their microbiological, bioactive and techno-functional properties.
Collapse
|
25
|
Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit Rev Food Sci Nutr 2019; 60:3594-3621. [PMID: 31858810 DOI: 10.1080/10408398.2019.1702500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | |
Collapse
|
26
|
Naik A, Hayes M. Bioprocessing of mussel by-products for value added ingredients. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|