1
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Hu X, Xu H, Bu L, Sun J, Deng J, Song K, Wang L, Pang B. Exploring the wound healing potential of dietary nitrate in diabetic rat model. Front Physiol 2024; 15:1475375. [PMID: 39633648 PMCID: PMC11614883 DOI: 10.3389/fphys.2024.1475375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The wound healing in diabetes is hindered and prolonged due to long-term inflammation, oxidative stress damage, and angiogenesis disorders induced by high glucose status. The management of such difficult-to-treat wounds continues to pose a significant challenge in clinical treatment. Dietary nitrate, commonly found in greens such as beets and spinach, acts as a nutritional supplement and is metabolized in the body through the salivary nitrate-nitrite-NO pathway. This pathway plays a crucial role in various physiological functions, including enhancing blood flow and attenuating inflammation. Methods In this study, we established a diabetic rat wound model. Forty-eight rats were randomly divided into six groups (n = 8): the Con group, the Con + Nitrate group, the STZ group, the STZ + NaCl group, the STZ + rhEGF group, and the STZ + Nitrate group. Skin wound healing was assessed on the day of surgery and on postoperative days 3, 7, 10, and 14. Specimens were taken on days 7 and 14 post-surgery for relevant tests. Results We found that dietary nitrate could accelerate skin wound healing by promoting angiogenesis and increasing blood perfusion. Significantly, dietary nitrate also regulated glucose and lipid metabolism and exhibited anti-inflammatory and antioxidant properties. Discussion These findings provide a novel theoretical basis for managing wounds in diabetic individuals, indicating the broad potential of dietary nitrate in future clinical applications.
Collapse
Affiliation(s)
- Xiaodan Hu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Haoyue Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Lingxue Bu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Jian Sun
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Jiangzhi Deng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Kai Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Baoxing Pang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Radnia MR, Mahdian E, Sani AM, Hesarinejad MA. Comparison of microwave and pulsed electric field methods on extracting antioxidant compounds from Arvaneh plant (Hymenocrater platystegius Rech. F). Sci Rep 2024; 14:25903. [PMID: 39472490 PMCID: PMC11522389 DOI: 10.1038/s41598-024-77380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Improving the quality of extracts derived from medicinal plants is a critical concern due to their extensive use across various industries. The Arvaneh plant (Hymenocrater platystegius Rech. F), a species native to the Khorasan province in Iran and belonging to the mint family, was the focus of this study. We optimized the extraction of Arvaneh plant using both microwave (MW) and pulsed electric field (PEF) techniques. The MW method was tested at different processing times (90, 180, and 270 s) and power levels (180, 540, and 900 W), while the PEF method was evaluated with varying electric field intensities (0.25, 3.25, and 6.25 kV/cm) and pulse numbers (10, 45, and 80) using a central composite design (CCD). The results revealed that extraction efficiency, total phenolic content, and total flavonoid content were significantly higher with the PEF method compared to the MW method (p < 0.05). Moreover, the PEF technique showed superior performance in preserving the antioxidant properties of the extract, as assessed by DPPH and FRAP methods. GC/MS analysis confirmed the presence of 27 bioactive compounds in the Arvaneh extract obtained through PEF-assisted extraction. In conclusion, the PEF method proved to be highly efficient for extracting bioactive compounds from the Arvaneh plant.
Collapse
Affiliation(s)
- Mohammad Reza Radnia
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Elham Mahdian
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Ali Mohammadi Sani
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Mohammad Ali Hesarinejad
- Department of Food Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
5
|
Mirzazadeh N, Bagheri H, Mirzazadeh M, Soleimanimehr S, Rasi F, Akhavan‐Mahdavi S. Comparison of different green extraction methods used for the extraction of anthocyanin from red onion skin. Food Sci Nutr 2024; 12:7347-7357. [PMID: 39479718 PMCID: PMC11521669 DOI: 10.1002/fsn3.4354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 11/02/2024] Open
Abstract
Green extraction primarily emphasizes developing new extraction techniques that consume less energy. It involves using safe, non-toxic alternative solvents and sustainable natural resources to ensure the production of safe and high-quality extracts. Red onion skin is an important source of anthocyanins, a subgroup of phenolic compounds. Anthocyanins are an important group of natural pigments that have attracted a lot of attention due to their health benefits. However, the instability and high sensitivity of these pigments have limited their use in food and cosmetics. Therefore, in this study, various modern green extraction methods were used, including solvent extraction, ultrasound-assisted extraction, subcritical water extraction, microwave-assisted extraction (MAE), pulsed electric field extraction, supercritical fluid extraction (SFE), and high hydrostatic pressure-assisted (HHPAE) extraction, to specifically extract and purify anthocyanins. The extraction efficiency, specifically targeting anthocyanins, showed the highest efficiency with HHPAE (81.84%) and the lowest with MAE (40.01%). Measurement of total anthocyanin content revealed that HHPAE and SFE methods yielded the highest anthocyanin concentrations, with 248.49 and 244.98 mg/L, respectively. Identification of anthocyanin by LC-MS revealed that the main anthocyanidins in red onion peel are pelargonidin, cyanidin, delphinidin, and petunidin. These results indicate that innovative green extraction methods, particularly HHPAE and SFE, can effectively replace conventional techniques due to their superior efficiency and enhanced preservation of anthocyanin compounds.
Collapse
Affiliation(s)
- Nasim Mirzazadeh
- Islamic Azad University Pharmaceutical Sciences BranchTehranIran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari BranchIslamic Azad UniversitySariIran
| | - Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Somaye Soleimanimehr
- Food and Drug Administration (FDA)Kermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Rasi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Sahar Akhavan‐Mahdavi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| |
Collapse
|
6
|
Salee N, Naruenartwongsakul S, Chaiyana W, Yawootti A, Suthapakti K, Simapaisarn P, Chaisan W, Utama-Ang N. Enhancing catechins, antioxidant and sirtuin 1 enzyme stimulation activities in green tea extract through pulse electric field-assisted water extraction: Optimization by response surface methodology approach. Heliyon 2024; 10:e36479. [PMID: 39253176 PMCID: PMC11382074 DOI: 10.1016/j.heliyon.2024.e36479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.
Collapse
Affiliation(s)
- Nuttinee Salee
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering Development Technology, Faculty of Agro-Industry, Chiang Mai University, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Kanyarat Suthapakti
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Piyawan Simapaisarn
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Worrapob Chaisan
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| |
Collapse
|
7
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
8
|
Calleja-Gómez M, Roig P, Rimac Brnčić S, Barba FJ, Castagnini JM. Scanning Electron Microscopy and Triple TOF-LC-MS-MS Analysis of Polyphenols from PEF-Treated Edible Mushrooms ( L. edodes, A. brunnescens, and P. ostreatus). Antioxidants (Basel) 2023; 12:2080. [PMID: 38136201 PMCID: PMC10740608 DOI: 10.3390/antiox12122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Pulsed electric fields (PEF) technology has been used as a sustainable method for extracting antioxidant bioactive compounds from different food matrices. In the present study, the optimal conditions of PEF extraction for mushrooms (2.5 kV/cm, 50 kJ/kg, 6 h) were applied to Lentinula edodes, Agaricus brunnescens, and Pleurotus ostreatus to evaluate the total antioxidant capacity of the extracts, followed by the Triple TOF-LC-MS-MS analysis of the phenolic profile compared to A. bisporus by high-performance liquid chromatography coupled to mass spectrophotometry. In addition, the microporation effect of the technology on the mushroom surface was evaluated using scanning electron microscopy. A comparison was made with a maceration extraction (aqueous stirring for 6 h). The results showed that PEF-assisted extraction enhanced the recovery of antioxidant compounds such as 3,5-dicaffeoylquinic and cinnamic acid with contents up to 236.85 µg/100 g dry weight and 2043.26 µg/100 g dry weight from A. bisporus, respectively. However, mixed results were obtained for certain phenolic compounds, including vanillic acid from L. edodes, ellagic acid from P. ostreatus, and thymol from all mushrooms. These results indicate that the application of PEF technology is effective for the extraction of antioxidant compounds in fungal matrices by creating micropores in cell membranes that allow great recovery in matrices with high content of bioactive compounds.
Collapse
Affiliation(s)
- Mara Calleja-Gómez
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Patricia Roig
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia;
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (M.C.-G.); (P.R.); (J.M.C.)
| |
Collapse
|
9
|
Surma M, Sawicki T, Piskuła M, Wiczkowski W. Relationship between the Consumption of Fermented Red Beetroot Juice and Levels of Perfluoroalkyl Substances in the Human Body's Fluids and Blood Parameters. Int J Mol Sci 2023; 24:13956. [PMID: 37762257 PMCID: PMC10530276 DOI: 10.3390/ijms241813956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated, organic, man-made chemicals; they do not occur naturally in the environment. This study aimed to determine the profile and content of PFASs in the volunteers' blood plasma and urine after the consumption of fermented red beetroot juice and then correlated it with the blood parameters. Over 42 days, 24 healthy volunteers ingested 200 mL/60 kg of body weight of fermented red beetroot juice. PFASs were analyzed using the micro-HPLC-MS/MS method. Five perfluoroalkyl substances were found in the volunteers' body fluids. After consuming the juice, it was discovered that regarding the perfluorocarboxylic acids, a downward trend was observed, while regarding the perfluoroalkane sulfonates, and their plasma content showed a statistically significant upward trend. Analysis of the hematology parameters indicated that the intake of fermented red beetroot juice showed a significant decrease in mean corpuscular volume (MCV), platelets concentration, mean platelet volume (MPV), platelet large cell ratio (P-LCR) at the significance level p < 0.01, and hematocrit (p < 0.05). On the other hand, the dietary intervention also indicated a significant (p < 0.01) increase in corpuscular/cellular hemoglobin concentration (MCHC). In the case of blood biochemistry, no significant change was observed in the blood samples after the intake of the fermented beetroot juice. However, a decreasing tendency of total cholesterol and low-density lipoprotein concentration (LDL-C) was observed. Based on the presented results, there is a need to analyze and monitor health-promoting food regarding undesirable substances and their impact on consumer health.
Collapse
Affiliation(s)
- Magdalena Surma
- Malopolska Centre of Food Monitoring, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F St., 10-719 Olsztyn, Poland
| | - Mariusz Piskuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10 St., 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10 St., 10-748 Olsztyn, Poland
| |
Collapse
|
10
|
Pereira TM, Bonatto CC, Silva LP. Rapid and Versatile Biosensing of Liposome Encapsulation Efficiency Using Electrical Conductivity Sensor. BIOSENSORS 2023; 13:878. [PMID: 37754112 PMCID: PMC10526778 DOI: 10.3390/bios13090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Liposomes are prominent nanosystems for drug delivery, with potential extending beyond isolated drugs. Ethanol-aqueous plant extracts can be encapsulated within liposomes to protect bioactive compounds (secondary metabolites) from rapid oxidation and enable sustained release. Determining which compound classes are present in each extract and the encapsulation efficiency (EE) of these extracts in liposomes is crucial for nanocarrier functionality. This involves assessing the ratio of bioactive substances within liposomes to the total content. However, quantifying EE for non-isolated compounds poses challenges due to the need for advanced analytical equipment and biosensing approaches. This study introduces an innovative method for EE quantification, using a conductivity electrode (k = 0.842/cm) to establish an EE biosensing technology. By correlating dynamic light scattering (DLS), zeta potential (ZP), and electrical conductivity (Cnd) data with the conductivity meter's calibration curve, a robust relationship between the free extract concentration and Cnd (r2 ≥ 0.950) was established. Lavender-loaded liposomes demonstrated an EE of 56.33%, while wormwood and oregano formulations exhibited high EEs of 94.33% and 91.70%, respectively. In contrast, sage-loaded liposomes exhibited an inadequate EE, encapsulating only approximately 0.57% of the extract. The straightforward quantification of the free extract within liposome formulations, compared to more complex approaches, could facilitate EE determination and support future characterizations.
Collapse
Grants
- 001 and 23038.019088/2009- 58 Coordenação de Aperfeicoamento de Pessoal de Nível Superior
- 311825/2021-4, 307853/2018-7, 408857/2016-1, 306413/2014-0, and 563802/2010-3 National Council for Scientific and Technological Development
- 193.001.392/2016 Foundation for Research Support of the Federal District
- 10.20.03.009.00.00, 23.17.00.069.00.02, 13.17.00.037.00.00, 21.14.03.001.03.05, 13.14.03.010.00.02, 12.16.04.010.00.06, 22.16.05.016.00.04, and 11.13.06.001.06.03 Brazilian Agricultural Research Corporation
Collapse
Affiliation(s)
- Tatiane Melo Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Life Sciences (Molecular Biology), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Cínthia Caetano Bonatto
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Botanical Garden, Curitiba 80210-170, PR, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Nanobiotecnologia (LNANO), Parque Estação Biológica, Final W5 Norte, Brasília 70770-917, DF, Brazil; (T.M.P.); (C.C.B.)
- Postgraduate Program in Life Sciences (Molecular Biology), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Botanical Garden, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
11
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
12
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
13
|
Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, Olmedilla-Alonso B. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chem 2023; 398:133908. [DOI: 10.1016/j.foodchem.2022.133908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
14
|
SALEE N, NARUENARTWONGSAKUL S, CHAIYANA W, YAWOOTTI A, HUNSAKUL K, TINPOVONG B, UTAMA-ANG N. Comparison of pulse electric field, microwave and ultrasonic pretreatment prior to black rice extraction on antioxidant and sirtuin1 enzyme stimulating activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Red beetroot juice fermented by water kefir grains: physicochemical, antioxidant profile and anticancer activity. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Adeyi O, Okolo BI, Oke EO, Adeyi AJ, Otolorin JA, Olalere OA, Taiwo AE, Okhale S, Gbadamosi B, Onu PN, Aremu OS, Qwebani-Ogunleye T. Preliminary techno-economic assessment and uncertainty analysis of scaled-up integrated process for bioactive extracts production from Senna alata (L.) leaves. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Bocker R, Silva EK. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem X 2022; 15:100398. [PMID: 36211728 PMCID: PMC9532718 DOI: 10.1016/j.fochx.2022.100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pulsed electric field (PEF) technology enables the extraction of food pigments at lower temperatures. PEF process intensification may reduce the extraction yield depending on the plant matrix. Coupling PEF with other emerging technologies is a smart strategy to extract natural pigments. The application of PEF technology in natural food pigment extraction still requires further studies.
Coloring compounds are widely applied to manufacturing foods and beverages. The worldwide food market is replacing artificial colorants with natural alternatives, given the increased consumer demand for natural products. However, these substitutes are still an issue due to their high production cost and low chemical and physical stability. Furthermore, natural pigments are highly sensitive to processes applied in conventional extraction techniques, such as thermal, mechanical, and chemical stresses. In this regard, pulsed electric field (PEF) technology has emerged as a promising non-thermal alternative for recovering and producing natural colorings from food matrices. Its action mechanism on cell structures through the electroporation effect is a smart alternative to overcoming the challenging issues associated with producing natural colorants. In this scenario, this review provides an overview of the PEF assisted extraction of natural pigments and colorants, such as anthocyanins (red-blue-purple), betalains (red), carotenoids (yellow-orange-red), and chlorophylls (green) from plant sources. Moreover, the potential and limitations of this emerging technology to integrate the extraction process of natural colorants were discussed.
Collapse
|
18
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
19
|
Calva-Estrada S, Jiménez-Fernández M, Lugo-Cervantes E. Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100089. [PMID: 35415668 PMCID: PMC8991513 DOI: 10.1016/j.fochms.2022.100089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
Abstract
Betalains are water-soluble nitrogenous pigments with coloring properties and antioxidant activities, which is why they have been incorporated into several foods. However, their use is limited by their instability in response to different factors, such as, pH, oxygen, water activity, light, metals, among others. In this work, a review of up-to-date and relevant information is presented on the primary natural sources of betalains. Additionally, the advantages and disadvantages of the primary betalain extraction techniques are discussed and compared. The results of these studies were focused on the stability of betalains when incorporated into foods, either in pure or encapsulated form, and they are discussed through different technologies. Lastly, the most relevant information related to their stability and a projection of their promising future applications within the food industry is presented.
Collapse
Affiliation(s)
- S.J. Calva-Estrada
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan, Jalisco C.P. 45019, Mexico
| | - M. Jiménez-Fernández
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Doctor Luis Castelazo, Industrial Las Animas, Xalapa Enríquez, Veracruz C.P. 91190, Mexico
| | - E. Lugo-Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan, Jalisco C.P. 45019, Mexico
| |
Collapse
|
20
|
Kantala C, Supasin S, Intra P, Rattanadecho P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods 2022; 11:foods11081102. [PMID: 35454689 PMCID: PMC9031134 DOI: 10.3390/foods11081102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
A pulsed electric field (PEF) is a technology used for microbial inactivation in food and beverages. This study aimed to examine the effect of PEF treatment on microbial inactivation and quality parameters in Thai orange juice (TOJ). The results showed that PEF and conventional thermal pasteurization (CTP) can be performed for inactivation of Staphylococcus aureus and Escherichia coli in TOJ. A 5-log reduction was obtained after 10 pulses of PEF treatment when using and electrical field strength of 30 kV cm−1, and the microbial inactivation by the PEF treatment resulted from the electroporation more than the temperature. Moreover, PEF treatment affects the quality parameters less than CTP. Moreover, PEF treatment did not affect the TOJ quality parameters such as pH, commission international de l’eclairage (CIE), viscosity, and total soluble solid (TSS), but saved vitamin C and all sugar and all mineral (sucrose, glucose, fructose, sodium, lithium, potassium, magnesium, and calcium) values more than CTP treatment.
Collapse
Affiliation(s)
- Chatchawan Kantala
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
| | - Supakiat Supasin
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
| | - Panich Intra
- Research Unit of Applied Electric Field in Engineering (RUEE), College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50220, Thailand;
| | - Phadungsak Rattanadecho
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
- Correspondence:
| |
Collapse
|
21
|
Adeyi O, Oke EO, Okolo BI, Adeyi AJ, Otolorin JA, Nwosu-Obieogu K, Adeyanju JA, Dzarma GW, Okhale S, Ogu D, Onu PN. Process optimization, scale-up studies, economic analysis and risk assessment of phenolic rich bioactive extracts production from Carica papaya L. leaves via heat-assisted extraction technology. Heliyon 2022; 8:e09216. [PMID: 35399389 PMCID: PMC8991258 DOI: 10.1016/j.heliyon.2022.e09216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
This work investigated the influence of process variables of extraction temperature (35–55 °C), solid to liquid ratio (1:20–1:50 g/mL) and time (100–200 min) on the total phenolic content (TPC) and yield (EY) of Carica papaya leaves (CPL) extracts using Box-Behnken experimental design available in Design Expert software. Bi-objective process optimization was also carried out using the desirability function algorithm. The optimum process variables were later used to design an integrated process for the production of CPL extracts with the assistance of SuperPro Designer software. Scale-up studies and economic analysis for CPL extracts production were investigated in the range of 0.638–20.431 × 103 kg CPL extracts/y to determine the most economically feasible production capacity based on the minimum unit production cost (UPC) of CPL extracts. The risk and sensitivity analyses of the most economically feasible production scale were carried out using the Monte Carlo simulation in Oracle Crystal Ball software. Process variables had notable influences on the TPC and EY of CPL extracts. The extraction temperature of 35 °C, solid to liquid ratio of 40.25 g/mL and time of 100 min gave the optimum TPC of 74.65 mg GAE/g d.b and EY of 18.76 % (w/w). HPLC results indicated that CPL extracts were rich in gallic, betulinic, chlorogenic, ellagic, ferulic and caffeic acids. The designed integrated process showed similar behavior with the laboratory scale of 0.18758 g CPL extracts/batch. The preliminary techno-economic analysis indicated that plant capacity has a strong dependence on the material & energy demands and process economics. Plant capacity of 19.857 × 103 kg CPL extracts/y possessed the least UPC and was selected as the most economically feasible scale. The certainty of obtaining base case UPC value of 525.21 US$/kg CPL extracts was 75.20%. Sensitivity analysis showed that extracts recovery, CPL/water, centrifuge purchase cost, extraction time, extractor purchase cost and extraction temperature contributed -5.3 %, +42.8%, +4.0%, +47.1%, +0.1%, and +0.5%, respectively to the variance in UPC of CPL extracts. Carica papaya leaves (CPL) extracts are rich in polyphenols. Heat assisted extraction technology was capable of recovering CPL extracts. Industrial extracts scale-ups were achievable using SuperPro Designer software. Plant capacity of 19.857 × 103 kg extracts/y was selected most economical scale. The 525.21 US$/kg extracts unit production cost base case certainty was 75.20%.
Collapse
Affiliation(s)
- Oladayo Adeyi
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
- Corresponding author.
| | - Emmanuel O. Oke
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Bernard I. Okolo
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Abiola J. Adeyi
- Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
- Forest Research Institute of Nigeria, PMB 5054, Jericho Ibadan, Oyo State, Nigeria
| | - John A. Otolorin
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Kenechi Nwosu-Obieogu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - James A. Adeyanju
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Goziya William Dzarma
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Samuel Okhale
- Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria
| | - Denilson Ogu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| | - Precious N. Onu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria
| |
Collapse
|
22
|
Punia Bangar S, Singh A, Chaudhary V, Sharma N, Lorenzo JM. Beetroot as a novel ingredient for its versatile food applications. Crit Rev Food Sci Nutr 2022; 63:8403-8427. [PMID: 35333666 DOI: 10.1080/10408398.2022.2055529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Beta vulgaris, also known as Beetroot, is a member of a family of Chenopodiaceae and is widely used as a natural food colorant. It gets its distinctive color due to nitrogen-containing water-soluble pigments betalains. Beetroot is an exquisite cradle of nutrients, including proteins, sucrose, carbohydrates, vitamins (B complex and vitamin C), minerals, fiber. They also contain an appreciable amount of phenolic compounds and antioxidants such as coumarins, carotenoids, sesquiterpenoids, triterpenes, flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Recent studies evidenced that beetroot consumption had favorable physiological benefits, leading to improved cardiovascular diseases, hypertension, diabetes, cancer, hepatic steatosis, liver damage, etc. This review gives insights into developing beetroot as a potential and novel ingredient for versatile food applications and the latest research conducted worldwide. The phytochemical diversity of beetroot makes them potential sources of nutraceutical compounds from which functional foods can be obtained. The article aimed to comprehensively collate some of the vital information published on beetroot incurred in the agri-food sector and a comprehensive review detailing the potentiality of tapping bioactive compounds in the entire agriculture-based food sector.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
23
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar Drugs 2021; 19:md19120662. [PMID: 34940661 PMCID: PMC8704373 DOI: 10.3390/md19120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.
Collapse
|
25
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
26
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
27
|
A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021; 26:molecules26164893. [PMID: 34443475 PMCID: PMC8400384 DOI: 10.3390/molecules26164893] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
Collapse
|
28
|
Khadhraoui B, Ummat V, Tiwari BK, Fabiano-Tixier AS, Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. ULTRASONICS SONOCHEMISTRY 2021; 76:105625. [PMID: 34147916 PMCID: PMC8225985 DOI: 10.1016/j.ultsonch.2021.105625] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Ultrasound has a significant effect on the rate of various processes in food, perfume, cosmetic, pharmaceutical, bio-fuel, materials, or fine chemical industries, despite some shortcomings. Combination with other conventional or innovative techniques can overcome these limitations, enhance energy, momentum and mass transfer, and has been successfully demonstrated in many recent studies. Various ultrasound combined hybrid and innovative techniques are systematically summarized in this review for the first time. Ultrasound can be combined with diverse conventional techniques including Soxhlet, Clevenger, enzyme, hydrotropes, ionic liquids, Deep Eutectic Solvents (DES) or Natural Deep Eutectic Solvents (NADES), to enhance mixing and micro-mixing, reduced thermal and concentration gradients, and selective extraction. Moreover, combinations of ultrasound with other innovative techniques such as microwave, extrusion, supercritical fluid, subcritical and pressure liquids, Instant controlled pressure drop (DIC), Pulsed Electric Field (PEF), Ultra-Violet (UV) or Infra-Red (IR) radiations, Counter-current chromatography (CCC), or centrifugal partition chromatographs (CPC) can enable reduced equipment size, faster response to process control, faster start-up, increased production, and elimination of process steps. The theories and applications of these ultrasound combined hybrid and innovative techniques as well as their advantages and limitations are compared, and further perspectives are proposed. This review provides new insights into advances in ultrasound combined techniques and their application at research, educational, and industrial level in modern food and plant-based chemistry.
Collapse
Affiliation(s)
- B Khadhraoui
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - V Ummat
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - B K Tiwari
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland.
| | - A S Fabiano-Tixier
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - F Chemat
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France.
| |
Collapse
|
29
|
Wani FA, Rashid R, Jabeen A, Brochier B, Yadav S, Aijaz T, Makroo HA, Dar BN. Valorisation of food wastes to produce natural pigments using non‐thermal novel extraction methods: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faiqa A. Wani
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Rukhsana Rashid
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir 190 025 India
| | - Bethania Brochier
- Escola Politécnica UNISINOS Avenida Unisinos, 950 São Leopoldo RS 93022‐750 Brazil
| | | | - Thameed Aijaz
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir 192122 India
| |
Collapse
|
30
|
Domínguez R, Pateiro M, Munekata PES, McClements DJ, Lorenzo JM. Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules 2021; 26:3984. [PMID: 34210093 PMCID: PMC8272106 DOI: 10.3390/molecules26133984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/01/2022] Open
Abstract
The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 100 Holdsworth Way, Amherst, MA 01003, USA
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
31
|
Janiszewska-Turak E, Rybak K, Grzybowska E, Konopka E, Witrowa-Rajchert D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021; 26:3683. [PMID: 34208715 PMCID: PMC8235720 DOI: 10.3390/molecules26123683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (E.G.); (E.K.); (D.W.-R.)
| | | | | | | | | |
Collapse
|
32
|
Mousakhani-Ganjeh A, Amiri A, Nasrollahzadeh F, Wiktor A, Nilghaz A, Pratap-Singh A, Mousavi Khaneghah A. Electro-based technologies in food drying - A comprehensive review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Ammelt D, Lammerskitten A, Wiktor A, Barba FJ, Toepfl S, Parniakov O. The impact of pulsed electric fields on quality parameters of freeze‐dried red beets and pineapples. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dagmar Ammelt
- Elea Vertriebs‐ und Vermarktungsgesellschaft mbH Prof.‐von‐Klitzing Str. 9 QuakenbrückD‐49610Germany
| | - Alica Lammerskitten
- Elea Vertriebs‐ und Vermarktungsgesellschaft mbH Prof.‐von‐Klitzing Str. 9 QuakenbrückD‐49610Germany
| | - Artur Wiktor
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (WULS‐SGGW) Warszawa02‐787Poland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department Faculty of Pharmacy Universitat de València Avda. Vicent Andrés Estellés, s/n Burjassot, València46100Spain
| | - Stefan Toepfl
- Elea Vertriebs‐ und Vermarktungsgesellschaft mbH Prof.‐von‐Klitzing Str. 9 QuakenbrückD‐49610Germany
| | - Oleksii Parniakov
- Elea Vertriebs‐ und Vermarktungsgesellschaft mbH Prof.‐von‐Klitzing Str. 9 QuakenbrückD‐49610Germany
| |
Collapse
|
34
|
Nirmal NP, Mereddy R, Maqsood S. Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chem 2021; 356:129611. [PMID: 33838608 DOI: 10.1016/j.foodchem.2021.129611] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Beetroot is well known for its deep red-purple colouring pigments called betalains. Betalains also found its application in the preparation of functional foods and drinks. Therefore, extraction of pigments with higher recovery and stability is the prime need for the industry. Conventional extraction techniques such as maceration, grinding or pressing have reported low yield of betalains and required large volume of solvent and energy. On the other hand, emerging technologies such as ultrasound, microwave and pulse electric field techniques are highly efficient processes and can achieve higher recovery. In this regard, this review provides an in-depth discussion on the various extraction methods and factors affecting the stability of betalains using conventional and emerging technologies. The recent applications of pigments in various food systems are also presented. Finally, challenges and future prospects of extraction and application of beetroot pigment have been identified and discussed.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, salaya, Nakhon Pathom 73170, Thailand
| | - Ram Mereddy
- Queensland Department of Agriculture and Fisheries, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
35
|
Kovačić Đ, Rupčić S, Kralik D, Jovičić D, Spajić R, Tišma M. Pulsed electric field: An emerging pretreatment technology in a biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:467-483. [PMID: 33139189 DOI: 10.1016/j.wasman.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
This review focuses on current status of pulsed electric field (PEF) technology and its implementation in biogas production. First, basic principles of PEF and a schematic overview of typical PEF processing system were provided. Thereafter, lab- and pilot-scale PEF pretreatments of sludge with subsequent anaerobic digestion (AD) were provided. Furthermore, PEF technology, as an emerging technology for the lignocellulose (LC) pretreatment in biogas production which is still predominantly used at lab-scale, was outlined. Eventually, conclusion together with future perspectives and challenges were outlined.
Collapse
Affiliation(s)
- Đurđica Kovačić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia.
| | - Slavko Rupčić
- J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, HR - 31000 Osijek, Croatia
| | - Davor Kralik
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Daria Jovičić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Robert Spajić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Marina Tišma
- J. J. Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 18, HR - 31000 Osijek, Croatia
| |
Collapse
|
36
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
37
|
Rybak K, Wiktor A, Witrowa-Rajchert D, Parniakov O, Nowacka M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021; 10:foods10020226. [PMID: 33499383 PMCID: PMC7911373 DOI: 10.3390/foods10020226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
It has been demonstrated previously in the literature that utilization of PEF or a combination of a pulsed electric field (PEF) and ultrasounds (US) can facilitate dehydration processes and improve the quality of dried products even better than the application of thermal methods such as blanching. The aim of the study was to evaluate the quality of red bell pepper subjected to freeze-drying preceded by blanching or PEF or US treatment applied in a single and combined mode. Furthermore, the freeze-drying was preceded by shock freezing or vacuum freezing performed inside the freeze-dryer as a result of pressure drop during the first stage of freeze-drying. All of the analyzed technological variants enhanced the drying kinetics when compared to the intact material. Freeze-dried bell pepper subjected to non-thermal pretreatment exhibited higher vitamin C, total phenolic and carotenoids content than blanched material despite the fact that blanching reduced drying time the most compared to all other analyzed methods.
Collapse
Affiliation(s)
- Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.W.); (D.W.-R.); (M.N.)
- Correspondence: ; Tel.: +48-22-593-7574
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.W.); (D.W.-R.); (M.N.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.W.); (D.W.-R.); (M.N.)
| | - Oleksii Parniakov
- Elea Vertriebs- und Vermarktungsgesellschaft mbH, Prof. von Klitzing Str. 9, 49610 Quakenbrück, Germany;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (A.W.); (D.W.-R.); (M.N.)
| |
Collapse
|
38
|
Neri L, Giancaterino M, Rocchi R, Tylewicz U, Valbonetti L, Faieta M, Pittia P. Pulsed electric fields (PEF) as hot air drying pre-treatment: Effect on quality and functional properties of saffron (Crocus sativus L.). INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Lammerskitten A, Wiktor A, Mykhailyk V, Samborska K, Gondek E, Witrowa-Rajchert D, Toepfl S, Parniakov O. Pulsed electric field pre-treatment improves microstructure and crunchiness of freeze-dried plant materials: Case of strawberry. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238340] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Currently, the food industry is looking for alternatives to synthetic additives in processed food products, so research investigating new sources of compounds with high biological activity is worthwhile and becoming more common. There are many different types of vegetables that contain bioactive compounds, and additional features of some vegetables include uses as natural colorants and antioxidants. In this sense, and due to the special composition of beetroot, the use of this vegetable allows for the extraction of a large number of compounds with special interest to the meat industry. This includes colorants (betalains), antioxidants (betalains and phenolic compounds), and preservatives (nitrates), which can be applied for the reformulation of meat products, thus limiting the number and quantity of synthetic additives added to these foods and, at the same time, increase their shelf-life. Despite all these benefits, the application of beetroot or its products (extracts, juice, powder, etc.) in the meat industry is very limited, and the body of available research on beetroot as an ingredient is scarce. Therefore, in this review, the main biologically active compounds present in beetroot, the implications and benefits that their consumption has for human health, as well as studies investigating the use beetroot in the reformulation of meat and meat products are presented in a comprehensible manner.
Collapse
|
41
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
42
|
dos S. Baião D, da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel) 2020; 9:E960. [PMID: 33049969 PMCID: PMC7600128 DOI: 10.3390/antiox9100960] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cardioprotective effects of dietary nitrate from beetroot in healthy and hypertensive individuals are undeniable and irrefutable. Nitrate and nitrate-derived nitrite are precursors for nitric oxide synthesis exhibiting an effect on cardiomyocytes and myocardial ischemia/reperfusion, improving endothelial function, reducing arterial stiffness and stimulating smooth muscle relaxation, decreasing systolic and diastolic blood pressures. Beetroot phytochemicals like betanin, saponins, polyphenols, and organic acids can resist simulated gastrointestinal digestion, raising the hypothesis that the cardioprotective effects of beetroots result from the combination of nitrate/nitrite and bioactive compounds that limit the generation of reactive oxygen species and modulate gene expression. Nitrate and phytochemical concentrations can be adjusted in beet formulations to fulfill requirements for acute or long-term supplementations, enhancing patient adherence to beet intervention. Based on in vitro, in vivo, and clinical trials, beet nitrate and its bioactive phytochemicals are promising as a novel supportive therapy to ameliorate cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Vania M. F. Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (D.V.T.d.S.)
| |
Collapse
|
43
|
Enhancement of the Antioxidant, Anti-Tyrosinase, and Anti-Hyaluronidase Activity of Morus alba L. Leaf Extract by Pulsed Electric Field Extraction. Molecules 2020; 25:molecules25092212. [PMID: 32397313 PMCID: PMC7249078 DOI: 10.3390/molecules25092212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
In this study we aimed to compare the chemical composition and biological activity between Morus alba L. leaf extract obtained with 95% v/v ethanol using a pulsed electric field (PEF) and the conventional maceration method. Extracts of M. alba leaves collected from Chiang Mai (CM), Sakon Nakon (SK), and Buriram (BR), Thailand, were investigated for 1-deoxynojirimycin content by high-performance liquid chromatography and for total phenolic content by the Folin–Ciocalteu method. Antioxidant activity was investigated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS), and ferric reducing antioxidant power (FRAP) assay. Anti-tyrosinase and anti-hyaluronidase activity was investigated by in vitro spectrophotometry. The results show that this is the first study to indicate PEF as a novel method for enhancing the phenolic content and antioxidant, anti-tyrosinase, and anti-hyaluronidase activity of M. alba leaf extract (P < 0.05). PEF extract of M. alba leaves collected from BR had comparable ABTS•+ scavenging activity to l-ascorbic acid and comparable anti-tyrosinase activity to kojic acid (P > 0.05). On the other hand, PEF extract of M. alba leaves collected from SK exhibited significantly high anti-hyaluronidase activity, comparable to that of oleanolic acid (P > 0.05). Therefore, PEF is suggested for further M. alba leaf extraction in the production of natural whitening and anti-aging cosmetic ingredients.
Collapse
|
44
|
Comuzzo P, Voce S, Grazioli C, Tubaro F, Marconi M, Zanella G, Querzè M. Pulsed Electric Field Processing of Red Grapes (cv. Rondinella): Modifications of Phenolic Fraction and Effects on Wine Evolution. Foods 2020; 9:E414. [PMID: 32252247 PMCID: PMC7230476 DOI: 10.3390/foods9040414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric field (PEF) is a non-thermal technology able to promote color and polyphenols extraction from grape skins. Most of the publications about PEF in winemaking report data concerning international varieties, poorly considering minor cultivars and the medium/long-term effects of the treatment on wine composition during storage. PEF was applied at different specific energies (2, 10, and 20 kJ kg-1) on grapes of the low-color red cv. Rondinella, after crushing-destemming. Pressing yield, the evolution of color, and total phenolic index (TPI) were measured during skin maceration. Moreover, the wines were characterized for basic compositional parameters, color, anthocyanin profile, phenolic composition (glories indices), metal content (Fe, Cr, and Ni), and sensory characters, two and twelve months after the processing, in comparison with untreated samples and pectolytic enzymes (PE). PEF did not affect fermentation evolution, nor did it modify wine basic composition or metal content. Treatments at 10 and 20 kJ kg-1 led to higher color and TPI in wines, in comparison to PE, because of increased content of anthocyanins and tannins. The sensory evaluation confirmed these findings. Modifications remained stable in wines after twelve months. Glories indices and vitisin A content highlighted greater potential stability of wine color in PEF-treated wines.
Collapse
Affiliation(s)
- Piergiorgio Comuzzo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Sabrina Voce
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Cristian Grazioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Franco Tubaro
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy; (S.V.); (C.G.); (F.T.)
| | - Marco Marconi
- JU.CLA.S. S.r.l., Vason Group, via Mirandola 49/A, 37026 Settimo di Pescantina (VR), Italy;
| | - Gianmaria Zanella
- Enologica Vason S.p.A., Vason Group, via Nassar 37, 37029 San Pietro in Cariano (VR), Italy;
| | - Marco Querzè
- Alintel S.r.l., via Mascarino 12/N, 40066 Pieve di Cento (BO), Italy;
| |
Collapse
|
45
|
Safety, Quality, and Processing of Fruits and Vegetables. Foods 2019; 8:foods8110569. [PMID: 31766141 PMCID: PMC6915616 DOI: 10.3390/foods8110569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
Nowadays, one of the main objectives of the fruit and vegetable industry is to develop innovative novel products with high quality, safety, and optimal nutritional characteristics in order to respond with efficiency to the increasing consumer expectations. Various emerging, unconventional technologies (e.g., pulsed electric field, pulsed light, ultrasound, high pressure, and microwave drying) enable the processing of fruits and vegetables, increasing their stability while preserving their thermolabile nutrients, flavour, texture, and overall quality. Some of these technologies can also be used for waste and by-product valorisation. The application of fast noninvasive methods for process control is of great importance for the fruit and vegetable industry. The following Special Issue “Safety, Quality, and Processing of Fruits and Vegetables” consists of 11 papers, which provide a high-value contribution to the existing knowledge on safety aspects, quality evaluation, and emerging processing technologies for fruits and vegetables.
Collapse
|