1
|
Guo Y, Lin K, Wang Y, Dong P, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Investigation on the interfacial and emulsion stabilized behavior of dextran/ferritin/resveratrol composite nanoparticles. Int J Biol Macromol 2024; 283:137533. [PMID: 39542338 DOI: 10.1016/j.ijbiomac.2024.137533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Glycation of ferritin provides a viable approach to enhance its physicochemical and functional properties. However, there is limited research on the interfacial adsorption properties of glycated ferritin-based colloidal particles. Therefore, this study selected recombinant human H-chain ferritin (rHuHF), rHuHF encapsulated with resveratrol (rHuHF-Res), and rHuHF-dextran glycoconjugates loaded with resveratrol (Dex-rHuHF-Res) as emulsifiers to investigate their interfacial adsorption properties. The results revealed that Dex-rHuHF-Res exhibited superior emulsifying properties and rheological behavior. It also increased the hydrophobicity of the microenvironment around Tyr and Trp residues, while hydrogen bonds, hydrophobic force, and salt bridge were identified as the most important intermolecular interactions. Dex-rHuHF-Res exhibited the biggest contact angle and lowest interface tension, which further reduced the diffusion (Kdiff) from the aqueous phase to the interface but promoted the penetration (Kp) and rearrangement (Kr) rates at the interface. Meanwhile, the emulsion stabilized by Dex-rHuHF-Res displayed excellent freeze-thaw stability, and Dex-rHuHF-Res can be more densely accumulated at the O/W interface to form an interface layer. These findings highlight the promising application of glycated ferritin in stabilizing Pickering emulsions, and deepen our understanding of the interplay among particle interaction, interface adsorption properties, and emulsion stability.
Collapse
Affiliation(s)
- Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
Li Y, Yu X, Liu R, Liu X, Yin F, Li D, Jiang P, Zhou D. Application of resveratrol on oxidative stability of protein-based Antarctic krill oil high internal phase emulsion. Food Chem X 2024; 23:101727. [PMID: 39253012 PMCID: PMC11381618 DOI: 10.1016/j.fochx.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Antarctic krill oil (KO) is known for its poor oxidative stability, especially in emulsion systems. In this experiment, a complex of scallop water-soluble protein-resveratrol (SWPs-RES) was mixed with KO to create high internal phase emulsions (HIPEs) with varying RES ratios. The addition of RES led to noticeable conformational changes in SWPs, including fluorescence bursts, alterations in secondary structure, and modifications in binding motifs. The SWPs-RES complex (1:0.2) demonstrated the most effective free radical scavenging activities (HO: 38.61%, DPPH: 72.49%, ABTS: 85.66%), while the SWPs-RES complex (1:0.025) exhibited the highest emulsifying capacity. Furthermore, HIPEs containing the SWPs-RES complex (1:0.2) displayed improved rheological properties, physical stability, and enhanced oxidative stability against lipid oxidation during storage and simulated in vitro digestion. This study lays a scientific foundation for the utilization of scallop protein and Antarctic krill oil in the food industry.
Collapse
Affiliation(s)
- Yang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuening Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Rui Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Pengfei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Zhang W, Jing H, Niu Q, Wu Z, Sun Y, Duan Y, Wang X. Sprayable, thermosensitive hydrogels for promoting wound healing based on hollow, porous and pH-sensitive ZnO microspheres. J Mater Chem B 2024; 12:7519-7531. [PMID: 38919121 DOI: 10.1039/d4tb00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A solvothermal method and the subsequent heat treatment process were developed to fabricate hollow ZnO particles with hierarchical pores on a large scale. The as-obtained hollow, porous ZnO microspheres with tunable sizes, high specific surface areas, pH sensitivity, antibacterial properties, and high adsorption capacities showed significant advantages for drug delivery. Sprayable hydrogels containing hollow, porous ZnO microspheres and curcumin nanoparticles (CNPs) were prepared to accelerate wound healing. The water-dispersed CNPs promoted both the migration of fibroblasts and angiogenesis and an aqueous solution of Pluronic F127 (a temperature-sensitive phase-change hydrogel material) was shown to be an effective choice for medical dressings. The experimental data suggest that hollow, porous ZnO microspheres can be loaded with additional CNPs to achieve continuous long-term therapeutic effects.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, P. R. China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Qiang Niu
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Xianwen Wang
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
4
|
Promden W, Chanvorachote P, Viriyabancha W, Sintupachee S, De-Eknamkul W. Maclura cochinchinensis (Lour.) Corner Heartwood Extracts Containing Resveratrol and Oxyresveratrol Inhibit Melanogenesis in B16F10 Melanoma Cells. Molecules 2024; 29:2473. [PMID: 38893349 PMCID: PMC11173867 DOI: 10.3390/molecules29112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to isolate and purify resveratrol and oxyresveratrol from the heartwoods of Maclura cochinchinensis, and to evaluate their inhibitory effects on melanogenesis in B16F10 murine melanoma cells. A methanol maceration process yielded a crude extract comprising 24.86% of the initial mass, which was subsequently analyzed through HPTLC, HPLC, and LC-MS/MS. These analyses revealed the presence of resveratrol and oxyresveratrol at concentrations of 4.32 mg/g and 33.6 mg/g in the extract, respectively. Initial purification employing food-grade silica gel column chromatography separated the extract into two fractions: FA, exhibiting potent inhibition of both tyrosinase activity and melanogenesis, and FM, showing no such inhibitory activity. Further purification processes led to the isolation of fractions Y11 and Gn12 with enhanced concentrations of resveratrol (94.9 and 110.21 mg/g, respectively) and fractions Gn15 and Gn16 with elevated levels of oxyresveratrol (321.93 and 274.59 mg/g, respectively), all of which significantly reduced melanin synthesis. These outcomes affirm the substantial presence of resveratrol and oxyresveratrol in the heartwood of M. cochinchinensis, indicating their promising role as natural agents for skin lightening.
Collapse
Affiliation(s)
- Worrawat Promden
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram 31000, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wittawat Viriyabancha
- Medicines Regulation Division, Food and Drug Administration, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Siriluk Sintupachee
- Program in Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand;
- Specialized Research Unit for Insects and Herbs, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Wanchai De-Eknamkul
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
5
|
Jiang T, Chen Y, Gu X, Miao M, Hu D, Zhou H, Chen J, Teichmann AT, Yang Y. Review of the Potential Therapeutic Effects and Molecular Mechanisms of Resveratrol on Endometriosis. Int J Womens Health 2023; 15:741-763. [PMID: 37200624 PMCID: PMC10187648 DOI: 10.2147/ijwh.s404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/08/2023] [Indexed: 05/20/2023] Open
Abstract
Endometriosis is a hormone-dependent inflammatory disease characterized by the existence of endometrial tissues outside the uterine cavity. Pharmacotherapy and surgery are the current dominant management options for endometriosis. The greater incidence of recurrence and reoperation after surgical treatment as well as the adverse effects of medical approaches predispose patients to potential limitations for their long-term usage. Consequently, it is essential to explore novel supplementary and alternative drugs to ameliorate the therapeutic outcomes of endometriotic patients. Resveratrol is a phenolic compound that has attracted increasing interest from many researchers due to its pleiotropic biological activities. Here, we review the possible therapeutic efficacies and molecular mechanisms of resveratrol against endometriosis based on in vitro, animal, and clinical studies. The potential mechanisms of resveratrol include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-oxidative stress, anti-invasive and anti-adhesive effects, thereby suggesting that resveratrol is a promising candidate for endometriosis. Because most studies have investigated the effectiveness of resveratrol on endometriosis via in vitro trials and/or experimental animal models, further high-quality clinical trials should be undertaken to comprehensively estimate the clinical application feasibility of resveratrol on endometriosis.
Collapse
Affiliation(s)
- Tao Jiang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuan Chen
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Chen
- Reproductive Medicine Center, The Second People’s Hospital of Yibin, Yibin, 644000, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Correspondence: Alexander Tobias Teichmann; Youzhe Yang, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People’s Republic of China, Email ;
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
6
|
Enzymes and Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes, also known as biocatalysts, are proteins produced by living cells and found in a wide range of species, including animals, plants, and microorganisms [...]
Collapse
|
7
|
SHIMOGA G, KIM SY. Makgeolli - The Traditional Choice of Korean Fermented Beverage from Cereal: An Overview on its Composition and Health Benefits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ganesh SHIMOGA
- Korea University of Technology and Education, Republic of Korea
| | - Sang-Youn KIM
- Korea University of Technology and Education, Republic of Korea
| |
Collapse
|
8
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Enzyme-Assisted Aqueous Extraction of Cobia Liver Oil and Protein Hydrolysates with Antioxidant Activity. Catalysts 2020. [DOI: 10.3390/catal10111323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cobia, Rachycentron canadum, is a medium-size marine fish with emerging global potential for offshore aquaculture. The processing waste, cobia liver, is a raw material rich in polyunsaturated fatty acid oils. In this study, an environmentally friendly green process, aqueous extraction (AE), was used to extract the cobia liver oil. The effect of cooking time and substrate water ratio on the oil extractability was investigated herein. The cooking time of 15 min, and substrate water ratio of 1:2 obtained the highest extraction efficiency. However, the oil extractability was only 18.8%. Thus, enzyme-assisted aqueous extraction (EAAE) was used to increase oil extractability and recovery of protein hydrolysates. The commercial proteases—including alcalase, papain, trypsin, and pepsin—were employed in pretreated cobia liver in order to increase oil release during AE. The EAAE results showed that maximum oil extractability was 38% by papain pretreatment. EAAE greatly improved the extraction efficiency; the oil extractability was double than that of AE (18.8%). The fatty acid profiles revealed that ω-3 polyunsaturated fatty acid contents of extracted oil obtained from AE and EAAE were 21.3% and 19.5%, respectively. Besides, the cobia liver hydrolysates obtained from EAAE by alcalase, papain, pepsin, and trypsin pretreatment showed scavenge DPPH radical activity with EC50 values of 0.92, 1.03, 0.83, and 0.53 mg, respectively. After in vitro simulated gastrointestinal digestion, the protein hydrolysates exhibited scavenge DPPH radical activity with EC50 values of 1.15, 1.55, 0.98, and 0.76 mg for alcalase, papain, pepsin, and trypsin, respectively. The study showed that the EAAE process can be used for extracting fish oil from fish waste while simultaneously obtaining the protein hydrolysates with antioxidant activity.
Collapse
|
10
|
Abstract
Biocatalysis refers to the use of microorganisms and enzymes in chemical reactions, has become increasingly popular and is frequently used in industrial applications due to the high efficiency and selectivity of biocatalysts [...]
Collapse
|
11
|
Contreras MDM, Castro E. Extraction Strategies to Recover Bioactive Compounds, Incorporation into Food and Health Benefits: Current Works and Future Challenges. Foods 2020; 9:foods9040393. [PMID: 32235420 PMCID: PMC7230246 DOI: 10.3390/foods9040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
There are numerous studies in the literature about bioactive products (extracts, essential oils, oleoresins, hydrolysates, etc [...].
Collapse
Affiliation(s)
- María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Correspondence: or or (M.d.M.C.); (E.C.)
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Correspondence: or or (M.d.M.C.); (E.C.)
| |
Collapse
|