1
|
Gong F, Meng J, Xu H, Zhou X. The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. Int J Mol Sci 2024; 25:13383. [PMID: 39769148 PMCID: PMC11677096 DOI: 10.3390/ijms252413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids. The v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) may participate in a plant's response to UV-B damage through its regulation of flavonoid biosynthesis. In this study, we discovered that the photosynthetic activity of Rhododendron chrysanthum Pall. (R. chrysanthum) decreased when assessing parameters of chlorophyll (PSII) fluorescence parameters under UV-B stress. Concurrently, antioxidant system enzyme expression increased under UV-B exposure. A multi-omics data analysis revealed that acetylation at the K68 site of the RcTRP5 (telomeric repeat binding protein of Rhododendron chrysanthum Pall.) transcription factor was upregulated. This acetylation modification of RcTRP5 activates the antioxidant enzyme system, leading to elevated expression levels of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Upregulation is also observed at the K95 site of the chalcone isomerase (CHI) enzyme and the K178 site of the anthocyanidin synthase (ANS) enzyme. We hypothesize that RcTRP5 influences acetylation modifications of CHI and ANS in flavonoid biosynthesis, thereby indirectly regulating flavonoid production. This study demonstrates that R. chrysanthum can be protected from UV-B stress by accumulating flavonoids. This could serve as a useful strategy for enhancing the plant's flavonoid content and provide a valuable reference for research on the metabolic regulation mechanisms of other secondary substances.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| |
Collapse
|
2
|
Gong F, Yu W, Zeng Q, Dong J, Cao K, Xu H, Zhou X. Rhododendron chrysanthum's Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation. Biomolecules 2023; 13:1700. [PMID: 38136571 PMCID: PMC10742171 DOI: 10.3390/biom13121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Scandola S, Mehta D, Castillo B, Boyce N, Uhrig RG. Systems-level proteomics and metabolomics reveals the diel molecular landscape of diverse kale cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1170448. [PMID: 37575922 PMCID: PMC10421703 DOI: 10.3389/fpls.2023.1170448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Kale is a group of diverse Brassicaceae species that are nutritious leafy greens consumed for their abundance of vitamins and micronutrients. Typified by their curly, serrated and/or wavy leaves, kale varieties have been primarily defined based on their leaf morphology and geographic origin, despite having complex genetic backgrounds. Kale is a very promising crop for vertical farming due to its high nutritional content; however, being a non-model organism, foundational, systems-level analyses of kale are lacking. Previous studies in kale have shown that time-of-day harvesting can affect its nutritional composition. Therefore, to gain a systems-level diel understanding of kale across its wide-ranging and diverse genetic landscape, we selected nine publicly available and commercially grown kale cultivars for growth under near-sunlight LED light conditions ideal for vertical farming. We then analyzed changes in morphology, growth and nutrition using a combination of plant phenotyping, proteomics and metabolomics. As the diel molecular activities of plants drive their daily growth and development, ultimately determining their productivity as a crop, we harvested kale leaf tissue at both end-of-day (ED) and end-of-night (EN) time-points for all molecular analyses. Our results reveal that diel proteome and metabolome signatures divide the selected kale cultivars into two groups defined by their amino acid and sugar content, along with significant proteome differences involving carbon and nitrogen metabolism, mRNA splicing, protein translation and light harvesting. Together, our multi-cultivar, multi-omic analysis provides new insights into the molecular underpinnings of the diel growth and development landscape of kale, advancing our fundamental understanding of this nutritious leafy green super-food for horticulture/vertical farming applications.
Collapse
Affiliation(s)
| | | | | | | | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Ebrahimi P, Shokramraji Z, Tavakkoli S, Mihaylova D, Lante A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1533. [PMID: 37050159 PMCID: PMC10096697 DOI: 10.3390/plants12071533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chlorophylls are a group of naturally occurring pigments that are responsible for the green color in plants. This pigment group could have numerous health benefits due to its high antioxidant activity, including anti-inflammatory, anti-cancer, and anti-obesity properties. Many food by-products contain a high level of chlorophyll content. These by-products are discarded and considered environmental pollutants if not used as a source of bioactive compounds. The recovery of chlorophylls from food by-products is an interesting approach for increasing the sustainability of food production. This paper provides insight into the properties of chlorophylls and the effect of different treatments on their stability, and then reviews the latest research on the extraction of chlorophylls from a sustainable perspective.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Zahra Shokramraji
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Setareh Tavakkoli
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria;
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| |
Collapse
|
5
|
Cosson A, Meudec E, Ginies C, Danel A, Lieben P, Descamps N, Cheynier V, Saint-Eve A, Souchon I. Identification and quantification of key phytochemicals in peas - Linking compounds with sensory attributes. Food Chem 2022; 385:132615. [PMID: 35290955 DOI: 10.1016/j.foodchem.2022.132615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
Pea protein isolates contain high-quality plant protein. However, they have sensory drawbacks, notably bitterness and astringency, that have limited their use in commercial foods. This study's aim was thus to identify the main phytochemicals in pea-based samples and to examine associations with sensory attributes. The phytochemical profiles of pea flour, pea protein isolates, and pea protein isolate fractions were characterized via UHPLC-DAD-MS. A total of 48 phytochemicals have been revealed: 6 phenolic acids, 5 flavonoids, and 1 saponin were identified and quantified, while another 9 phenolic acids, 10 flavonoids, and 6 saponins were tentatively identified. The impacts of protein extraction and fractionation were studied. These processes appear to have caused some compound degradation. It was found that 29 compounds were correlated with perceived bitterness and/or astringency. Therefore, these results show that certain phytochemicals can lead to negative sensory attributes in pea-protein-based products.
Collapse
Affiliation(s)
- A Cosson
- Univ Paris Saclay, UMR SayFood, AgroParisTech, INRAE, F-78850 Thiverval Grignon, France; Roquette Frères, 10 rue haute loge, F-62136 Lestrem, France
| | - E Meudec
- SPO, INRAE, Univ Montpellier, Institut Agro Montpellier Supagro, Montpellier, France; INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, Montpellier, France
| | - C Ginies
- UMR SQPOV, INRAE, Avignon Université, F-84000 Avignon, France
| | - A Danel
- Univ Paris Saclay, UMR SayFood, AgroParisTech, INRAE, F-78850 Thiverval Grignon, France
| | - P Lieben
- Univ Paris Saclay, UMR SayFood, AgroParisTech, INRAE, F-78850 Thiverval Grignon, France
| | - N Descamps
- Roquette Frères, 10 rue haute loge, F-62136 Lestrem, France
| | - V Cheynier
- SPO, INRAE, Univ Montpellier, Institut Agro Montpellier Supagro, Montpellier, France; INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, Montpellier, France
| | - A Saint-Eve
- Univ Paris Saclay, UMR SayFood, AgroParisTech, INRAE, F-78850 Thiverval Grignon, France
| | - I Souchon
- UMR SQPOV, INRAE, Avignon Université, F-84000 Avignon, France.
| |
Collapse
|
6
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|
7
|
Ortega-Hernández E, Antunes-Ricardo M, Jacobo-Velázquez DA. Improving the Health-Benefits of Kales ( Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2629. [PMID: 34961097 PMCID: PMC8706317 DOI: 10.3390/plants10122629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco C.P. 45138, Mexico
| |
Collapse
|
8
|
Wiesner-Reinhold M, Dutra Gomes JV, Herz C, Tran HTT, Baldermann S, Neugart S, Filler T, Glaab J, Einfeldt S, Schreiner M, Lamy E. Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|