1
|
Yu J, Naseem S, Park S, Hur S, Choi Y, Lee T, Li X, Choi S. FASN, SCD, and PLAG1 Gene Polymorphism and Association with Carcass Traits and Fatty Acid Profile in Hanwoo Cattle. Animals (Basel) 2025; 15:897. [PMID: 40150426 PMCID: PMC11939486 DOI: 10.3390/ani15060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Genetic polymorphisms have a great impact on enhancing quantitative traits in cattle. In this study, Fatty acid synthase (FASN) g. 16024 (A>G), Stearoyl-CoA desaturase (SCD) g. 10329 (C>T), and pleomorphic adenoma gene (PLAG1) g. 25003338 (C>G) genotypic and allelic polymorphisms were evaluated, along with their associations with fatty acid composition, adipogenic gene expression, and carcass characteristics (carcass weight, yield grade, backfat thickness, and marbling score) in Hanwoo steers. A total of 128 Hanwoo steers were selected for this study and the Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to identify polymorphism of these genes. The AG genotype and G allele in FASN g. 16024 (A>G), CT genotype and T allele in SCD g. 10329 (C>T), and GG genotype and G allele in PLAG1 g. 25003338 (C>G) showed higher frequency and positively correlated with carcass traits, yield, and quality grades. Fatty acid composition results indicate that C18:3n-6, C20:1, and C20:2n-6 were significantly higher in the AA genotype of FASN gene, C14:1 and C18:3n-6 in the CC genotype, and C16:1 in the TT genotype of SCD gene. C12:0, C14:0, C16:1, C18:0, and C20:0 were higher in the CC genotype of PLAG1 gene. Furthermore, RT-qPCR analysis of adipogenesis-related genes (AMP-activated protein kinase-α (AMPKα), Carnitine palmitoyl transferase-1β (CPT1), G-coupled protein receptor-43 (GPR43), and SCD) across different SNP genotypes suggests a systemic interaction between genetic factors and adipogenesis in beef cattle. This study emphasizes the significance of FASN g. 16024 (A>G), SCD g. 10329 (C>T), and PLAG1 g. 25003338 (C>G) SNPs for genetic selection to enhance beef quality and elucidate lipid metabolic pathways in Hanwoo cattle.
Collapse
Affiliation(s)
- Jia Yu
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.); (Y.C.); (T.L.)
| | - Sajida Naseem
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China;
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Sunjin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Yoonbin Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.); (Y.C.); (T.L.)
| | - Teahyung Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.); (Y.C.); (T.L.)
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation Ministry of Education, Department of Animal Science, Yanbian University, Yanji 133002, China;
| | - Seongho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.); (Y.C.); (T.L.)
| |
Collapse
|
2
|
Wang J, Ni J, Jia X, Sun W, Lai S. Multi-Omic Analysis of the Differences in Growth and Metabolic Mechanisms Between Chinese Domestic Cattle and Simmental Crossbred Cattle. Int J Mol Sci 2025; 26:1547. [PMID: 40004011 PMCID: PMC11855754 DOI: 10.3390/ijms26041547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In livestock production, deeply understanding the molecular mechanisms of growth and metabolic differences in different breeds of cattle is of great significance for optimizing breeding strategies, improving meat quality, and promoting sustainable development. This study aims to comprehensively reveal the molecular-level differences between Chinese domestic cattle and Simmental crossbred cattle through multi-omics analysis, and further provide a theoretical basis for the efficient development of the beef cattle industry. The domestic cattle in China are a unique genetic breed resource. They have characteristics like small size, strong adaptability, and distinctive meat quality. There are significant differences in the growth rate and meat production between these domestic cattle and Simmental hybrid cattle. However, the specific molecular-level differences between them are still unclear. This study conducted a comprehensive comparison between the domestic cattle in China and Simmental crossbred cattle, focusing on microbiology, short-chain fatty acids, blood metabolome, and transcriptome. The results revealed notable differences in the microbial Simpson index between the domestic and Simmental crossbred cattle. The differential strain Akkermansia was found to be highly negatively correlated with the differential short-chain fatty acid isocaproic acid, suggesting that Akkermansia may play a key role in the differences observed in isocaproic acid levels or phenotypes. Furthermore, the transcriptional metabolomics analysis indicated that the differentially expressed genes and metabolites were co-enriched in pathways related to insulin secretion, thyroid hormone synthesis, bile secretion, aldosterone synthesis and secretion, and Cyclic Adenosine Monophosphate (cAMP) signaling pathways. Key genes such as ADCY8 and 1-oleoyl-sn-glycero-3-phosphocholine emerged as crucial regulators of growth and metabolism in beef cattle.
Collapse
Affiliation(s)
| | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.N.); (X.J.); (W.S.)
| |
Collapse
|
3
|
Qiu J, Ma Z, Hong Z, Yin X, Chen Y, Ahmed HQ, Zan L, Li A. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. BMC Genomics 2025; 26:32. [PMID: 39810084 PMCID: PMC11731550 DOI: 10.1186/s12864-025-11223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear. RESULTS In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle. The results of functional enrichment analysis showed that DEMs, DELs, DECs and DEmiRs were enriched in biological processes related to development and function of muscle and fat deposition, including skeletal muscle contraction, muscle organ development, PPAR signaling pathway, fatty acid metabolism and MAPK signaling pathway. Based on the competing endogenous RNA (ceRNA) regulatory mechanism, we constructed a lncRNA/circRNA-miRNA-mRNA network consisting of 6 circRNAs, 5 lncRNAs, 6 miRNAs and 27 mRNAs. Among them, 55 ceRNA axes were involved, including circRNA12990 - bta-miR-133a_L-1R + 1 - MYO6/ZEB2, circRNA2893/MSTRG.28538.1/MSTRG.11613.4 - pma-miR-145-5p_R + 2 - EYA4 and MSTRG.26982.1 - bta-let-7e_R + 1 - RBM40. CONCLUSIONS This study identified a group of differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs between muscle and adipose tissue and constructed a potential ceRNA regulatory network, which may serve as a foundation for studying the differential regulatory roles of ncRNAs in the development and function of muscle and adipose tissue.
Collapse
Affiliation(s)
- Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zheng Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhipeng Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xu Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yun Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Hafiz Qadeer Ahmed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
- Shaanxi Modern Cattle Industry Engineering Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
4
|
Gamedze NP, Mthiyane DMN, Kgaswane KS, Mavengahama S, Onwudiwe DC. Growth, physiological responses, and meat quality of feedlot-finished Bonsmara steers offered unprocessed Mucuna pruriens utilis seed meal with or without conventional and green zinc oxide nanoparticles. Trop Anim Health Prod 2024; 56:379. [PMID: 39528872 PMCID: PMC11554737 DOI: 10.1007/s11250-024-04226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Feedlot finishing of beef cattle on commercial nutrient-dense diets based on expensive corn (maize), soybean meal (SBM) and other commonly used protein-rich ingredients is economically unsustainable, especially for smallholder farmers. Rich in energy and proteins, Mucuna pruriens utilis seed meal (MSM) could replace corn and protein-rich ingredients in beef cattle diets provided its problems of antinutritional factors (ANFs) and high fiber content that compromise animal growth performance are resolved. The objective of this study was, therefore, to investigate the effects of incorporation of conventional (C-Nano-ZnO) versus green (G-Nano-ZnO) zinc oxide (ZnO) nanoparticles in the diets of feedlot-finished Bonsmara steers supplemented with 20% MSM (dry matter basis). In a completely randomized design, 28 Bonsmara steers were randomly allocated to 4 experimental diets [i.e., Control diet without MSM (C); C with 20% MSM replacing corn (partially) and the common protein-rich ingredients (CM); CM with 25 mg/kg C-Nano-ZnO (CM-C); and CM with 25 mg/kg G-Nano-ZnO (CM-G)] each with seven replicates for 98 days. Performance variables, carcass traits, hemato-biochemistry, and meat quality were then measured. All data were analyzed with SAS using one-way ANOVA applying the GLM procedure, with diet as the independent variable, except for growth performance data that were analyzed as repeated measures. Results showed that while dietary MSM did not affect (P > 0.05) meat quality and serum biochemistry, it decreased body weight gain (BWG; P < 0.01), feed intake (FI; P = 0.001), feed conversion efficiency (FCE; P < 0.01), carcass fatness (P = 0.05), hot carcass weight (HCW; P < 0.05), cold carcass weight (CCW; P = 0.05), blood MCV (P < 0.05), MCH (P < 0.01), and neutrophils (P < 0.01) as it increased blood lymphocytes (P < 0.001). Interestingly, the harmful effects of MSM were attenuated by C-Nano-ZnO and worsened by G-Nano-ZnO. In conclusion, feeding of high dietary unprocessed MSM did not affect Bonsmara beef meat quality and serum biochemistry but compromised their growth performance, carcass traits, and some hematology responses, and these were alleviated by C-Nano-ZnO and deteriorated by G-Nano-ZnO incorporation. We recommend feeding commercial diets supplemented with 20% MSM, replacing corn and commonly used protein-rich ingredients, plus 25 mg/kg of C-Nano-ZnO to feedlot-finishing beef cattle.
Collapse
Affiliation(s)
- Nozipho Phila Gamedze
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| | - Khomotso Sherdina Kgaswane
- North West Department of Agriculture and Rural Development, Private Bag X 804, Potchefstroom, 2530, South Africa
| | - Sydney Mavengahama
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
- Department of Crop Sciences, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, South Africa
| | - Damian Chinedu Onwudiwe
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, South Africa
| |
Collapse
|
5
|
Zhang Y, Wei Y, Lu G, Yang Y, Pan Y, Fu C, Tian F, Qiu Q, Zhao X, Li Y, Chen L, Wang W, Ouyang K. Study on the Carcass Traits, Meat Quality, and Nutritional Attributes of Six Kinds of Jiangxi Local Breeds Cattle. Animals (Basel) 2024; 14:3053. [PMID: 39518776 PMCID: PMC11544827 DOI: 10.3390/ani14213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this study is to explore the carcass traits, meat quality, and nutritional attributes of local yellow cattle (Guangfeng, Ji'an, and Jinjiang) and buffalo (Poyanghu, Xiajiang, and Xinfeng mountain) in Jiangxi Province, and compare the differences among different breeds. The results showed that the dressing percentage, net meat percentage, and meat-bone ratio of Jinjiang cattle were highest, and that Jinjiang cattle had the best meat production performance. Regarding meat quality, the pH24h value of all breeds was at normal level, and no dark-cutting beef was produced. Poyanghu buffalo and Xinfeng mountain buffalo had higher redness (a*) values, and Guangfeng cattle had the best water retention and tenderness. The intermuscular fat of yellow cattle breeds was higher than that of buffalo breeds; Poyanghu buffalo had the highest crude protein content. The composition of amino acids and fatty acids was different among breeds, and the composition of Jiangxi breeds was healthy. The muscle fibers of buffalo breeds are generally smaller and denser than those of yellow cattle breeds. The MyHC-Ⅰ, MyHC-Ⅱa, and MyHC-Ⅱx were the main types of muscle fibers of Jiangxi local breeds, and the proportion varied with different breeds. This work elucidated the carcass characteristics, meat quality, and nutritional attributes of Jiangxi breed cattle to provide a theoretical basis for optimizing the development of beef cattle industry.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Yuting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Guwei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Youxiang Yang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Yuting Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Chuanpei Fu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Fazhan Tian
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| | - Lingli Chen
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenjun Wang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (Y.W.); (G.L.); (Y.Y.); (Y.P.); (C.F.); (F.T.); (X.Z.); (Y.L.)
| |
Collapse
|
6
|
Wang P, Xiao H, Wu T, Fu Q, Song X, Zhao Y, Li Y, Huang J, Song Z. Activation of skeletal carbohydrate-response element binding protein (ChREBP)-mediated de novo lipogenesis increases intramuscular fat content in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:107-118. [PMID: 39091296 PMCID: PMC11292260 DOI: 10.1016/j.aninu.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
The intracellular lipids in muscle cells of farm animals play a crucial role in determining the overall intramuscular fat (IMF) content, which has a positive impact on meat quality. However, the mechanisms underlying the deposition of lipids in muscle cells of farm animals are not yet fully understood. The purpose of this study was to determine the roles of carbohydrate-response element binding protein (ChREBP) and fructose in IMF deposition of chickens. For virus-mediated ChREBP overexpression in tibialis anterior (TA) muscle of chickens, seven 5-d-old male yellow-feather chickens were used. At 10 d after virus injection, the chickens were slaughtered to obtain TA muscles for analysis. For fructose administration trial, sixty 9-wk-old male yellow-feather chickens were randomly divided into 2 groups, with 6 replicates per group and 5 chickens per replicate. The chickens were fed either a basal diet or a basal diet supplemented with 10% fructose (purity ≥ 99%). At 4 wk later, the chickens were slaughtered, and breast and thigh muscles were collected for analysis. The results showed that the skeletal ChREBP mRNA levels were positively associated with IMF content in multiple species, including the chickens, pigs, and mice (P < 0.05). ChREBP overexpression increased lipid accumulation in both muscle cells in vitro and the TA muscles of mice and chickens in vivo (P < 0.05), by activation of the de novo lipogenesis (DNL) pathway. Moreover, activation of ChREBP by dietary fructose administration also resulted in increased IMF content in mice and notably chickens (P < 0.05). Furthermore, the lipidomics analysis revealed that ChREBP activation altered the lipid composition of chicken IMF and tented to improve the flavor profile of the meat. In conclusion, this study found that ChREBP plays a pivotal role in mediating the deposition of fat in chicken muscles in response to fructose-rich diets, which provides a novel strategy for improving meat quality in the livestock industry.
Collapse
Affiliation(s)
- Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Tian Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinghua Fu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yameng Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
7
|
Benito-Díaz A, Sarmiento-García A, García-García JJ, Vieira C, Domínguez E, Bodas Rodríguez R, Gómez-Gordo L, Vicente-Galindo P. Statistical approaches for assessing meat quality and heifer rumen histology based on dietary forage. Front Vet Sci 2024; 11:1416365. [PMID: 39170637 PMCID: PMC11337225 DOI: 10.3389/fvets.2024.1416365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Feeding local forages to ruminants is a promising strategy for enhancing metabolic processes, promoting sustainable farming, and improving product quality. However, studies comparing the effects of different forages on rumen histology and meat attributes of heifers are limited and variable. Material and methods This study evaluated the benefits of incorporating local forages into heifer diets by comparing barley straw (BS) and oat hay (OH) on heifer attributes focusing on meat quality (MQ) and rumen status (RS). Sixteen crossbred (Charolais x Limousin) female heifers (7 months of age, 263 ± 10.50 kg) were randomly assigned to two dietary treatments (BS or OH) over 120 days. Results and discussion Heifers fed OH showed enhanced RS (p < 0.05), characterized by improved intestinal epithelial integrity and a lower percentage of hyperpigmented cells, suggesting a potential reduction in inflammatory processes compared to BS, which may indicate a lower risk of metabolic diseases. Despite this, no significant differences (p > 0.05) were found in animal performance, chemical composition, and technological properties of the meat between the dietary groups, while lower levels (p < 0.05) of certain saturated fatty acids (C12:0, C15:0, and C22:0) were found in the meat from heifers fed OH. Principal component analysis (PCA) reduced the variables and demonstrated that all variables assessed can be condensed into four new variables explaining 75.06% of the variability. Moreover, biplot analysis reveals that the OH diet could be discriminated from BS. Our findings suggest that OH is a valuable fiber source, positively influencing certain heifer attributes, and supporting sustainable animal agriculture practices.
Collapse
Affiliation(s)
- Alberto Benito-Díaz
- Línea de Investigación en Rumiantes, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Ainhoa Sarmiento-García
- Área de Producción Animal, Departamento de Construcción y Agronomía, Facultad de Agricultura y Ciencias Ambientales, Universidad de Salamanca, Salamanca, Spain
- Estación Tecnológica de la Carne, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Salamanca, Spain
| | - Juan José García-García
- Línea de Investigación en Rumiantes, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Ceferina Vieira
- Estación Tecnológica de la Carne, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Salamanca, Spain
| | - Esperanza Domínguez
- Línea de Investigación en Rumiantes, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Raúl Bodas Rodríguez
- Línea de Investigación en Rumiantes, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Luis Gómez-Gordo
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | |
Collapse
|
8
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
9
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Muscle biopsy long-chain omega-3 polyunsaturated fatty acid compositions, IMF and FMP in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. BMC Vet Res 2024; 20:95. [PMID: 38461255 PMCID: PMC10924329 DOI: 10.1186/s12917-024-03906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We investigated breed and gender variations in the compositions of long-chain (≥ C20) omega-3 polyunsaturated fatty acids (LC omega-3 PUFA), fat melting point (FMP) and intramuscular fat (IMF) contents in biopsy samples of the M. longissimus dorsi muscle of grazing beef cattle. The hypothesis that biopsy compositions of health-beneficial LC omega-3 PUFA, FMP and IMF in a pasture-based production system will vary with breed, was tested. Muscle biopsies were taken from 127 yearling pasture-based Angus, Hereford, and Wagyu heifers and young bulls exclusive to the Australian Bowen Genetics Forest Pastoral breeding stud averaging 12 ± 2.43 months of age and under the same management routine. RESULTS Breed had a significant influence on IMF, FMP, and the compositions of oleic acid, α-linolenic acid (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA), docosapentaenoic (DPA), and total EPA + DHA + DPA in the M. longissimus dorsi muscle biopsies (P ≤ 0.03). The Wagyu breed had the highest (11.1%) and Hereford the lowest (5.9%) IMF (P = 0.03). The reverse trend was observed in FMP values where the Hereford breed had the highest (55 °C), Angus intermediate (46.5 °C), and Wagyu the lowest (33 °C) FMP. The Wagyu and Angus breeds had similar oleic fatty acid (18:1n-9) content, while the Hereford breed had the lowest (P < 0.01). The highest ALA, DPA, total EPA + DHA, total EPA + DHA + DPA and total ALA + EPA + DHA + DPA contents were detected in the Wagyu breed (P ≤ 0.03). The Hereford had similar EPA and DPA contents to the Angus (P ≥ 0.46). Total EPA + DHA + DPA contents in Wagyu, Angus, and Hereford were 28.8, 21.5, and 22.1 mg/100g tissue (P = 0.01), respectively. Sex was an important source of variation that influenced LC omega-3 PUFA composition, FMP and IMF, where yearling heifers had higher IMF (11.9% vs 5.3%), lower FMP (33°C vs 37°C), and higher LC omega-3 PUFA than bulls. CONCLUSION All the results taken together indicate that the Wagyu breed at 28.8 mg/100g tissue, was the closest to meeting the Australia and New Zealand recommended source level threshold of 30 mg/100g tissue of health-beneficial ≥ C20 omega-3 FA content. Since gender was a significant determinant of LC omega-3 PUFA composition, IMF content and FMP, it should be factored into enhancement strategies of healthy meat eating quality traits in grazing cattle. These findings also suggest that the Bowen Genetics Forest Pastoral beef cattle studs are important sources of LC omega-3 PUFA that can be used to cover the deficit in these health claimable fatty acids in Western diets.
Collapse
Affiliation(s)
- John Roger Otto
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Felista Waithira Mwangi
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shedrach Benjamin Pewan
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Jos, Plateau State, Nigeria
| | | | - Aduli Enoch Othniel Malau-Aduli
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
10
|
Ramírez-López CJ, Barros E, Vidigal PM, Okano DS, Gomes LL, Carvalho RPR, de Castro AG, Baracat-Pereira MC, Guimarães SEF, Guimarães JD. Oxidative stress associated with proteomic and fatty acid profiles of sperm from Nellore bulls at rest†. Biol Reprod 2023; 109:878-891. [PMID: 37702320 DOI: 10.1093/biolre/ioad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Sexual rest is a transient condition, which compromises conception rates, characterized by large volumes of ejaculate with high percentages of dead sperm observed in bulls. The biochemical mechanisms leading to this ejaculate pattern are not fully understood. Six adult resting Nellore bulls were submitted to Breeding Soundness Evaluation by four consecutive semen collections through the electroejaculation method during a 30 min period. Each ejaculate had its semen phenotypic parameters; morphology and physical aspects were evaluated. To assess enzymatic activity (superoxide dismutase, catalase, and glutathione S-transferase), lipid peroxidation (concentrations of malondialdehyde and nitric oxide), fatty acid, and proteomic profile aliquots of spermatozoa from the first and fourth ejaculates were used. All sperm parameters differed between the first and fourth ejaculates. Spermatozoa from the first ejaculate showed lower enzymatic activity and a higher concentration of lipid peroxidation markers. Among the 19 identified fatty acids, 52.7% are polyunsaturated. Relative abundance analysis showed that C12:0 and C18:0 fatty acids differed between the first and fourth ejaculates, being the fourth ejaculate richer in spermatozoa. The proteomics analysis identified a total of 974 proteins in both sample groups (first and fourth ejaculates). The majority of identified proteins are related to cellular processes and signaling. Quantitative proteomics showed 36 differentially abundant proteins, 6 up-regulated proteins in the first ejaculate, and 30 up-regulated proteins in the fourth ejaculate. Spermatozoa from bulls at sexual rest have less antioxidant capacity, causing changes in their fatty acid composition and protein profile, which generates the observed sperm pattern and lower fertilization capacity.
Collapse
Affiliation(s)
- Camilo José Ramírez-López
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Structural Biology Laboratory, Department of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerai, Brazil
| | - Edvaldo Barros
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Brazil
| | | | - Denise Silva Okano
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lidiany Lopes Gomes
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Alex Gazolla de Castro
- Biotechnology and Biodiversity for the Environment Laboratory, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Cristina Baracat-Pereira
- Proteomics and Protein Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simone Eliza Facioni Guimarães
- LABTEC-Animal Biotechnology Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Domingos Guimarães
- Animal Reproduction Laboratory, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Pereira AA, Daher LCC, Freitas CS, Monteiro SDN, Araújo JC, de Sousa MAP, Miranda ADS, Rodrigues TCGDC, da Silva JAR, de Lima ACS, Silva AGME, Lourenço-Júnior JDB. Performance, carcass characteristics and non-carcass components of Santa Ines and crossbred (Santa Ines x Dorper) lambs finished in different confinement strategies. PLoS One 2023; 18:e0293819. [PMID: 37943781 PMCID: PMC10635475 DOI: 10.1371/journal.pone.0293819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Genetic group, age at entry into confinement and at slaughter, are characteristics that have an important influence on lamb performance and carcass. The aim of this study was to evaluate the performance, carcass characteristics and non-carcass components from different genetic groups (Santa Inês and ½ Dorper x ½ Santa Inês) sheep, submitted to different feedlot entry and exit strategies. Were used 72 lambs males and castrated; 36 Santa Inês (SI) and 36 crossbred (Dorper x Santa Inês-DSI), with 6 months of average initial age. The groups were established in a completely randomized experimental design, in a 2x3x4 factorial arrangement, from the combination of genetic groups (GG), body weight at the beginning of confinement (WBC) and length of stay in confinement (LSC). The body weight classes at the beginning of confinement were: light (25 kg), intermediate (28 kg) and heavy (31 kg), for Santa Inês and crossbreeds, respectively. Slaughters were carried out every 28 days of confinement, in four LSC: 0, 28, 56 and 84 days. The GG did not influence performance, carcass and non-carcass component traits of lambs (p > 0.05). There was an effect of the WBC on the weights: final (FW), metabolic (MW), body at slaughter (BWS), empty body (EBW), hot carcass (HCY) and cold (CCW), loin, shoulder, leg musculature; loin eye area (LEA) and loin fat (p < 0.05). There was also an effect on LSC, for FW, average daily weight gain (ADG), MW, weight and yield of body components, weight of cuts and tissue ratio components of cuts (p < 0.05). In non-carcass components, effect on full and empty weight of: omasum, rumen-reticulum, small intestine; empty large intestine, liver and kidneys, paws and skin, and perirenal, pelvic and inguinal fat (p < 0.05). Interaction double effect on the tissue muscle/fat:bone ratio (MF:B) and for the full omasal component (p < 0.05). And triple interaction effect for ADG, full omasum and perirenal fat (p < 0.05). Weight at the beginning of confinement and confinement time are the characteristics that most influence performance, quantitative characteristics of carcass and non-carcass components. Regardless of the genetic group and age class, the animals reach the same weight after 84 days of confinement. Thus, the confinement of heavier lambs (31 kg) can be a profitable alternative, as they presented the highest weights for the most commercially valued cuts (shank and loin). The confinement strategy must adapt to market situations.
Collapse
Affiliation(s)
| | | | | | | | - Jonas Carneiro Araújo
- Department of Animal Science, Federal Rural University of Amazonia, Belém, Pará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Xue Z, Yan H, Zhen L. For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production-Consumption Balance Perspective. Foods 2023; 12:3231. [PMID: 37685164 PMCID: PMC10487039 DOI: 10.3390/foods12173231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The growing population, the transition dietary towards animal-based products, and the preference for the brand of grass-feeding livestock are bringing increasing pressure on natural grasslands, especially for dry-land areas. The Xilingol League of China is famous for its free-range livestock product, however, overgrazing and herders' benefits damage are always serious issues for this semi-arid grassland region. This study focuses on the relationship between the supply of natural grassland and the consumption of free-range livestock in the Xilingol League, and this study employed the grassland carrying capacity as the index to judge the sustainability states and its trends of the local grass-feeding system. Satellite data production of net primary production was used for grassland production, statistical livestock data and the consumption model were used for actual forage consumption, and empirical key informant interview data were used to obtain a more comprehensive understanding. The results show that: (1) the natural grassland carrying capacity of the Xilingol League fluctuated, showing improvement from 2000 to 2021; (2) the grassland management needs to be more diversified in different regions with different natural conditions; and (3) while the demand for free-range, high-quality beef is increasing, attention should be paid to the carrying capacity of natural pastures and more consideration should be taken of the benefits of balancing the livelihood of herders, policy strategies, and the customers' preferences. Potential ways of doing this include employing technologies to improve livestock production, and further exploring and promoting the economic value of the free-range livestock and the geographical indication to get the economic-ecological win-win situation. The research framework and results would be beneficial to reveal the potential threats in pastoral areas and provide support for the optimization of the regional grass-feeding breeding system, especially in middle-income countries.
Collapse
Affiliation(s)
- Zhichao Xue
- School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China;
| | - Huimin Yan
- Institute of Geographic Resources and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhen
- Institute of Geographic Resources and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Duwalage KI, Wynn MT, Mengersen K, Nyholt D, Perrin D, Robert PF. Predicting Carcass Weight of Grass-Fed Beef Cattle before Slaughter Using Statistical Modelling. Animals (Basel) 2023; 13:1968. [PMID: 37370478 DOI: 10.3390/ani13121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Gaining insights into the utilization of farm-level data for decision-making within the beef industry is vital for improving production and profitability. In this study, we present a statistical model to predict the carcass weight (CW) of grass-fed beef cattle at different stages before slaughter using historical cattle data. Models were developed using two approaches: boosted regression trees and multiple linear regression. A sample of 2995 grass-fed beef cattle from 3 major properties in Northern Australia was used in the modeling. Four timespans prior to the slaughter, i.e., 1 month, 3 months, 9-10 months, and at weaning, were considered in the predictive modelling. Seven predictors, i.e., weaning weight, weight gain since weaning to each stage before slaughter, time since weaning to each stage before slaughter, breed, sex, weaning season (wet and dry), and property, were used as the potential predictors of the CW. To assess the predictive performance in each scenario, a test set which was not used to train the models was utilized. The results showed that the CW of the cattle was strongly associated with the animal's body weight at each stage before slaughter. The results showed that the CW can be predicted with a mean absolute percentage error (MAPE) of 4% (~12-16 kg) at three months before slaughter. The predictive error increased gradually when moving away from the slaughter date, e.g., the prediction error at weaning was ~8% (~20-25 kg). The overall predictive performances of the two statistical approaches was approximately similar, and neither of the models substantially outperformed each other. Predicting the CW in advance of slaughter may allow farmers to adequately prepare for forthcoming needs at the farm level, such as changing husbandry practices, control inventory, and estimate price return, thus allowing them to maximize the profitability of the industry.
Collapse
Affiliation(s)
| | - Moe Thandar Wynn
- Centre for Data Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Kerrie Mengersen
- Centre for Data Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Dale Nyholt
- Centre for Data Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Dimitri Perrin
- Centre for Data Science, Queensland University of Technology, Brisbane 4000, Australia
| | | |
Collapse
|
14
|
Zhou Z, Xu X, Luo D, Zhou Z, Zhang S, He R, An T, Sun Q. Effect of Dietary Supplementation of Lactiplantibacillus plantarum N-1 and Its Synergies with Oligomeric Isomaltose on the Growth Performance and Meat Quality in Hu Sheep. Foods 2023; 12:foods12091858. [PMID: 37174396 PMCID: PMC10178320 DOI: 10.3390/foods12091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics' promotion on the growth and reproduction of probiotics. The objective of this study was to investigate the influence of Lactiplantibacillus plantarum N-1 and its synbiotic with oligomeric isomaltose on the growth performance and meat quality of Hu sheep. Hu sheep (0-3 days old) were fed with water, probiotics of N-1, or synbiotics (N-1 and oligomeric isomaltose) daily in three pens for 60 days and regularly evaluated to measure growth performance and collect serum (five lambs per group). Longissimus thoracis (LT) and biceps brachii (BB) muscle tissues were collected for the analysis of pH value, color, texture, nutrients, mineral elements, amino acids, volatile compounds, and antioxidant capacity. The results showed that dietary supplementation of N-1 tended to improve growth performance and meat quality of Hu sheep, while the synergism of N-1 with oligomeric isomaltose significantly improved their growth performance and meat quality (p < 0.05). Both the dietary supplementation of N-1 and synbiotics (p < 0.05) increased the body weight and body size of Hu sheep. Synbiotic treatment reduced serum cholesterol and improved LT fat content by increasing the transcription level of fatty acid synthase to enhance fat deposition in LT, as determined via RT-qPCR analysis. Moreover, synbiotics increased zinc content and improved LT tenderness by decreasing shear force and significantly increased the levels of certain essential (Thr, Phe, and Met) and non-essential (Asp, Ser, and Tyr) amino acids of LT (p < 0.05). Additionally, synbiotics inhibited the production of carbonyl groups and TBARS in LT and thus maintained antioxidant stability. In conclusion, it is recommended that the use of synbiotics in livestock breeding be promoted to improve sheep production and meat quality.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xinyi Xu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dongmei Luo
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Senlin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ruipeng He
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Qun Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Mekonen T, Tolera A, Nurfeta A, Bradford BJ, Yigrem S. Effects of substituting noug seed cake with pigeon pea leaves or desmodium hay on performance of male dairy calves. Trop Anim Health Prod 2023; 55:155. [PMID: 37041315 DOI: 10.1007/s11250-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
This experiment was conducted to evaluate the effects of substituting 50% of noug seed cake (NSC) in a concentrate mixture with pigeon pea leaves (PPL) or desmodium hay (DH) on feed intake, digestibility, body weight gain, carcass composition, and meat quality of crossbred male dairy calves. Twenty-seven male dairy calves at 7-8 months of age with an average initial body weight of 150 ± 31 kg (mean ± SD) were assigned to 3 treatments in a randomized complete block design with 9 replications. Calves were blocked based on their initial body weight and assigned to the 3 treatments. All calves were fed native pasture hay ad libitum (at ⁓10% refusal) supplemented with a concentrate containing 24% NSC (treatment 1) or supplemented with a concentrate where 50% of NSC was replaced with PPL (treatment 2) or a concentrate where 50% of NSC was replaced with DH (treatment 3). Feed and nutrient intake, apparent nutrient digestibility, body weight gain, feed conversion ratio, carcass composition, and meat quality (except texture) were similar (P > 0.05) among treatments. Treatments 2 and 3 had more (P < 0.05) tender loin and rib meat than treatment 1. It can be concluded that 50% of NSC in the concentrate mixture can be replaced with either PPL or DH in growing male crossbred dairy calves to achieve similar growth performance and carcass characteristics. Since the substitution of 50% NSC either with PPL or DH resulted in similar outcomes in almost all responses measured, it is recommended to evaluate the complete substitution of NSC either with PPL or DH on the performance of calves.
Collapse
Affiliation(s)
- Tefera Mekonen
- Hawassa University, P. O. Box 5, Hawassa, Ethiopia.
- Debre-Birhan Agricultural Research Center, P. O. Box 112, Debre Birhan, Ethiopia.
| | | | | | | | | |
Collapse
|
16
|
Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon. Animals (Basel) 2023; 13:ani13050934. [PMID: 36899791 PMCID: PMC10000219 DOI: 10.3390/ani13050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 03/08/2023] Open
Abstract
The objective was to evaluate the effects of palm kernel cake (PKC) supplementation on voluntary feed intake, in situ rumen degradability and performance in the wettest (WS-January to June) and less rainy seasons (LR-July to December) in the eastern Amazon. A total of 52 crossbred buffaloes that were neither lactating nor gestating were used, with 24 for the LR, aged 34 ± 04 months and an initial average weight of 503 ± 48 kg, and 24 for the WS aged 40 ± 04 months with an average weight of 605 ± 56 kg. The four treatments (levels of PKC in relation to body weight) were distributed in a completely randomized design, with 0% (PKC0), 0.25% (PKC0.2), 0.5% (PKC0.5) and 1% (PKC1) with six repetitions. The animals were housed in Marandu grass paddocks, intermittently, with access to water and mineral mixture ad libitum. Degradability was evaluated by the in situ bag technique in four other crossbred buffaloes with rumen cannulae, in a 4 × 4 Latin square (four periods and four treatments). The inclusion of PKC increased supplement consumption and production of ether extracts and reduced the intake of forage and non-fibrous carbohydrates. The dry matter degradability of Marandu grass was not affected; however, the fermentation kinetics in neutral detergent fiber (NDF) differed between the treatments. The co-product dry matter colonization time was greater in PKC1 and the highest effective degradability rates were from PKC0, but the productive performance of the animals was not influenced. Supplementation of buffaloes with PKC is recommended for up to 1% of body weight.
Collapse
|
17
|
Ma X, Yang X, Zhang D, Zhang W, Wang X, Xie K, He J, Mei C, Zan L. RNA-seq analysis reveals the critical role of the novel lncRNA BIANCR in intramuscular adipogenesis through the ERK1/2 signaling pathway. J Anim Sci Biotechnol 2023; 14:21. [PMID: 36732836 PMCID: PMC9896758 DOI: 10.1186/s40104-022-00820-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/08/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) regulate numerous biological processes, including adipogenesis. Research on adipogenesis will assist in the treatment of human metabolic diseases and improve meat quality in livestock, such as the content of intramuscular fat (IMF). However, the significance of lncRNAs in intramuscular adipogenesis remains unclear. This research aimed to reveal the lncRNAs transcriptomic profiles in the process of bovine intramuscular adipogenesis and to identify the lncRNAs involved in the adipogenesis of bovine intramuscular adipocytes. RESULTS In this research, a landscape of lncRNAs was identified with RNA-seq in bovine intramuscular adipocytes at four adipogenesis stages (0 d, 3 d, 6 d, and 9 d after differentiation). A total of 7035 lncRNAs were detected, including 3396 novel lncRNAs. Based on the results of differential analysis, co-expression analysis, and functional prediction, we focused on the bovine intramuscular adipogenesis-associated long non-coding RNA (BIANCR), a novel lncRNA that may have an important regulatory function. The knockdown of BIANCR inhibited proliferation and promoted apoptosis of intramuscular preadipocytes. Moreover, BIANCR knockdown inhibited intramuscular adipogenesis by regulating the ERK1/2 signaling pathway. CONCLUSION This study obtained the landscape of lncRNAs during adipogenesis in bovine intramuscular adipocytes. BIANCR plays a crucial role in adipogenesis through the ERK1/2 signaling pathway. The results are noteworthy for improving beef meat quality, molecular breeding, and metabolic disease research.
Collapse
Affiliation(s)
- Xinhao Ma
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xinran Yang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Dianqi Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Wenzhen Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xiaoyu Wang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Kuncheng Xie
- Xi’an Dairy Cow Breeding Center, Xi’an Agriculture and Rural Bureau, Xi’an, Shaanxi 712100 People’s Republic of China
| | - Jie He
- Xi’an Dairy Cow Breeding Center, Xi’an Agriculture and Rural Bureau, Xi’an, Shaanxi 712100 People’s Republic of China
| | - Chugang Mei
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China ,grid.144022.10000 0004 1760 4150National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Linsen Zan
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China ,grid.144022.10000 0004 1760 4150National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| |
Collapse
|
18
|
Long-Term Dietary Supplementation with Betaine Improves Growth Performance, Meat Quality and Intramuscular Fat Deposition in Growing-Finishing Pigs. Foods 2023; 12:foods12030494. [PMID: 36766024 PMCID: PMC9914383 DOI: 10.3390/foods12030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
This study was designed to investigate the effects of dietary betaine supplementation on growth performance, meat quality and muscle lipid metabolism of growing-finishing pigs. Thirty-six crossbred pigs weighing 24.68 ± 0.97 kg were randomly allotted into two treatments consisting of a basal diet supplemented with 0 or 1200 mg/kg betaine. Each treatment included six replications of three pigs per pen. Following 119 days of feeding trial, dietary betaine supplementation significantly enhanced average daily gain (ADG) (p < 0.05) and tended to improve average daily feed intake (ADFI) (p = 0.08) and decreased the feed intake to gain ratio (F/G) (p = 0.09) in pigs during 100~125 kg. Furthermore, a tendency to increase ADG (p = 0.09) and finial body weight (p = 0.09) of pigs over the whole period was observed in the betaine diet group. Betaine supplementation significantly increased a*45 min and marbling and decreased b*24 h and cooking loss in longissimus lumborum (p < 0.05), tended to increase intramuscular fat (IMF) content (p = 0.08), however had no significant influence on carcass characteristics (p > 0.05). Betaine supplementation influenced the lipid metabolism of pigs, evidenced by a lower serum concentration of low-density lipoprotein cholesterol (p < 0.05), an up-regulation of mRNA abundance of fatty acid synthase and acetyl-CoA carboxylase (p < 0.05), and a down-regulation of mRNA abundance of lipolysis-related genes, including the silent information regulators of transcription 1 (p = 0.08), peroxisome proliferator-activated receptorα (p < 0.05), peroxisome proliferator-activated receptor gamma coactivator-1α (p = 0.07) and carnitine palmitoyl transferase 1 (p < 0.05) in longissimus lumborum. Moreover, betaine markedly improved the expression of microRNA-181a (miR-181a) (p < 0.05) and tended to enhance miR-370 (p = 0.08). Overall, betaine supplementation at 1200 mg/kg could increase the growth performance of growing-finishing pigs. Furthermore, betaine had a trend to improve meat quality and IMF content via increasing lipogenesis and down-regulating the abundance of genes associated with lipolysis, respectively, which was associated with the regulation of miR-181a and miR-370 expression by betaine.
Collapse
|
19
|
Cooke AS, Le-Grice P, McAuliffe GA, Lee MRF, Rivero MJ. Rethinking efficiency: Growth curves as a proxy for inputs and impacts in finishing beef systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116418. [PMID: 36352719 DOI: 10.1016/j.jenvman.2022.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Quantifying and improving efficiency within beef systems is essential for economic and environmental sustainability. The industry standard for assessing efficiency is liveweight gain per day, however, this metric is limited in that it values each day of a growing animal's life as equally costly, despite the increasing maintenance requirements, inputs, and emissions associated with increasing liveweight. Quantifying the area under the growth curve (AUC) considers both time and liveweight as a cost and therefore may hold potential as a better estimate of cost, impact, and efficiency in beef systems. Liveweight data was taken from 439 finishing beef cattle split across three herds grazing on different pastures, known as 'farmlets'. Analysis was conducted in three parts: [1] Validation of AUC as a proxy for costs using data from a sub-set of 87 animals that had been part of a previous life cycle assessment (LCA) study in which dry matter intake (DMI), methane emissions (CH4), and nitrous oxide emissions (N2O) were calculated. [2] Calculation of AUC relative to liveweight gain (LWG AUC-1) and comparison of that metric against the industry standard of liveweight gain per day (LWG day-1). [3] Assessment of how LWG AUC-1 varied with breed, sex, and management. When comparing to LCA results, AUC correlated significantly with DMI (r = 0.886), CH4 (r = 0.788) and N2O (r = 0.575) emissions. Over the full dataset, there was a negative non-linear relationship between LWG AUC-1 and slaughter age (r = -0.809). There was a significant difference in LWG AUC-1 between breeds (p = 0.046) and farmlets (p = 0.028), but not sex (p = 0.388). LWG AUC-1 has the potential to act as a proxy for feed intake and emissions. In that regard it is superior to LWG day-1, whilst requiring no additional data. Results highlighted the decreasing efficiency of beef cattle over time and the potential benefits of earlier slaughter. The use of LWG AUC-1 could allow farmers to improve their understanding of efficiency within their herds, aiding informed management decision making.
Collapse
Affiliation(s)
- Andrew S Cooke
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK; School of Life Sciences, College of Science, University of Lincoln, Lincoln, LN6 7TS, UK.
| | - Phil Le-Grice
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| | - Graham A McAuliffe
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| | - Michael R F Lee
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK; Harper Adams University, Edgmond, Newport, TF10 8NB, UK; Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, UK
| | - M Jordana Rivero
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK.
| |
Collapse
|
20
|
Salt MPF, da Silva FF, de Carvalho GGP, Santos LV, de Souza SO, Vieira VA, Paixão TR, Silva JWD, de Lima Júnior DM, Silva RR. Inclusion of palm kernel cake in the supplement reduces nutrient digestibility but does not interfere with the performance of steers finished on tropical pasture. Trop Anim Health Prod 2022; 54:406. [DOI: 10.1007/s11250-022-03407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
|
21
|
Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals (Basel) 2022; 12:ani12212976. [PMID: 36359100 PMCID: PMC9654910 DOI: 10.3390/ani12212976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary A bibliometric analysis was carried out to know the evolution of research on genes associated with meat tenderness, of interest for the development of selection programs. Since 1993, studies have been limited to a few researchers in high-income countries due to the costs associated with the techniques. The main findings showed that the scientific production had a discontinuous growth because science experienced a significant change since approximately 2010. Marker-assisted selection was widely used, evaluating mainly CAPN (calpain) and CAST (calpastatin) genes for their contribution to meat tenderness, especially in cattle. However, the effects are small; therefore, genomic selection was implemented by genotyping thousands of single nucleotide polymorphisms (SNPs) for further explanation of genetic variation. The results shown are important for scholars to identify emerging methodologies and gaps in the literature and to know who the prolific authors and institutions in the field for possible collaborations, etc., are. Abstract Tenderness is one of the main characteristics of meat because it determines its price and acceptability. This is the first bibliometric study on the trend of research on the role of genes in meat tenderness. A total of 175 original and English-language articles published up to 2021 were retrieved from Scopus. The bibliometric analysis was carried out with VOSviewer (version 1.6.18, Eck and Waltman, Leiden, Netherlands) and complemented with the Analyze search results service from Scopus. Erroneous and duplicate data were eliminated, and incomplete information was added to standardize the results. Scientific production was evaluated by means of quantity, quality and structure indicators. As a first glance, 8.816% of authors have published more than 50% of papers mainly related to genes encoding the calpain (CAPN)-calpastatin (CAST) system and single nucleotide polymorphisms (SNPs). Among other findings, a strong link was found between the contribution of the main countries (led by the United States with) and their institutions (led by the USDA Agricultural Research Service with) to their gross domestic product. Most studies on the topic are published in the Journal of Animal Science, and other journals with high impact according to the number of citations and different metrics. Finally, when evaluating the most cited articles, the occurrence and association of the main keywords, it was confirmed that research is focused on the role of CAPN and CAST genes and of SNPs in beef tenderness. The change in science was emphasized; although marker-assisted selection is still used, genes have an infinitesimal effect on complex traits. Therefore, since about 2010, new research groups adopted genomic selection to evaluate dense panels of SNPs and better explain genetic variation in meat tenderness.
Collapse
|
22
|
Mekonen T, Tolera A, Nurfeta A, Bradford B, Yigrem S, Vipham J. Effects of pigeon pea leaves and concentrate mixture on feed intake, milk yield, and composition of crossbred dairy cows fed native pasture hay. Animal 2022; 16:100632. [PMID: 36155278 DOI: 10.1016/j.animal.2022.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Protein supplements are expensive and not easily accessible under small-scale livestock production systems in Ethiopia and other developing countries, which necessitates investigating the alternative protein sources for cost-effective livestock production. Pigeon pea (Cajanus cajan L. Millsp) leaves (PPLs) are rich in protein and are well-suited for feeding small ruminants; however, the effect of inclusion of PPL in the concentrate mixture (CM) on the performance of dairy cows was not well documented. This experiment was conducted to evaluate the effect of supplementation of PPL and CM to native pasture hay-based rations on feed intake, milk yield and composition, and blood metabolites of crossbred dairy cows (Holstein × Zebu). A 4 × 4 Latin square design with three replications, balanced for carryover effects, was used for this study. The treatments included native pasture hay provided ad libitum as a basal diet, supplemented with a CM alone (T1), the inclusion of 10% of PPL in the CM (T2), 20% PPL in the CM (T3), or 30% PPL in the CM (T4). Supplements were isocaloric and isonitrogenous. Total DM intake (hay + supplement intake) was similar (P > 0.05) among treatments. Hay intake was greater (P = 0.05) for T1 and T2 than for T4, while supplement intake was the least for T1 (P < 0.05). The treatment groups T2, T3, and T4, where PPL was included, had similar (P > 0.05) supplement intake. Feed intake, milk yield and composition, feed conversion efficiency, body condition score, serum total protein, albumin, globulin, glucose, triglyceride, urea N, creatinine, and cholesterol were similar (P > 0.05) among treatments. The inclusion of up to 30% of PPL in the CM resulted in a comparable performance of crossbred dairy cows as supplementation with CM under the conditions of the current experiment. Therefore, further study is required to evaluate the effect of the inclusion of a higher level of PPL in the concentrate mixture on the performance of lactating crossbred dairy cows.
Collapse
Affiliation(s)
- Tefera Mekonen
- School of Animal and Range Science, Hawassa University, Hawassa, P.O. Box 5, Ethiopia; Livestock Research Directorate, Debre Birhan Agricultural Research Center, Debre Birhan, P.O. Box 112, Ethiopia
| | - Adugna Tolera
- School of Animal and Range Science, Hawassa University, Hawassa, P.O. Box 5, Ethiopia
| | - Ajebu Nurfeta
- School of Animal and Range Science, Hawassa University, Hawassa, P.O. Box 5, Ethiopia
| | - Barry Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| | - Sintayehu Yigrem
- School of Animal and Range Science, Hawassa University, Hawassa, P.O. Box 5, Ethiopia
| | - Jessie Vipham
- Animal Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
23
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
24
|
Towards Sustainable Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids in Northern Australian Tropical Crossbred Beef Steers through Single Nucleotide Polymorphisms in Lipogenic Genes for Meat Eating Quality. SUSTAINABILITY 2022. [DOI: 10.3390/su14148409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to identify single nucleotide polymorphisms (SNP) in lipogenic genes of northern Australian tropically adapted crossbred beef cattle and to evaluate associations with healthy lipid traits of the Longissimus dorsi (loin eye) muscle. The hypothesis tested was that there are significant associations between SNP loci encoding for the fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD) and fatty acid synthase (FASN) genes and human health beneficial omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA) within the loin eye muscle of northern Australian crossbred beef cattle. Brahman, Charbray, and Droughtmaster crossbred steers were fed on Rhodes grass hay augmented with desmanthus, lucerne, or both, for 140 days and the loin eye muscle sampled for intramuscular fat (IMF), fat melting point (FMP), and fatty acid composition. Polymorphisms in FABP4, SCD, and FASN genes with significant effects on lipid traits were identified with next-generation sequencing. The GG genotype at the FABP4 g.44677239C>G locus was associated with higher proportion of linoleic acid than the CC and CG genotypes (p < 0.05). Multiple comparisons of genotypes at the SCD g.21266629G>T locus indicated that the TT genotype had significantly higher eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids than GG genotype (p < 0.05). Significant correlations (p < 0.05) between FASN SNP and IMF, saturated and monounsaturated fatty acids were observed. These results provide insights into the contribution of lipogenic genes to intramuscular fat deposition and SNP marker-assisted selection for improvement of meat-eating quality, with emphasis on alternate and sustainable sources of ω3 LC-PUFA, in northern Australian tropical crossbred beef cattle, hence an acceptance of the tested hypothesis.
Collapse
|
25
|
Khongpradit A, Boonsaen P, Homwong N, Matsuba K, Kobayashi Y, Sawanon S. Evaluation of pineapple stem starch as a substitute for corn grain or ground cassava in a cattle feedlot for 206 or 344 days: feedlot performance, carcass characteristics, meat quality, and economic evaluation. Trop Anim Health Prod 2022; 54:226. [PMID: 35796806 DOI: 10.1007/s11250-022-03223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
The pineapple stem starch substituted for ground cassava or corn as a carbohydrate source in the concentrate diet. The experiment used 36 Holstein crossbred steers (aged 22 months) with an average initial body weight of 453.0 ± 35.3 kg. The experimental units were randomly assigned to three different starch sources of concentrate diets: ground corn (GC), ground cassava (CA), or pineapple stem starch (PS) with two different feeding periods: (1) period 1 for 206 days or (2) period 2 for 344 days with six replicates per treatment (two steers per replication), arranged in a completely randomized design. The animals were slaughtered at the end of the experimental periods. After that, the feedlot performance, carcass characteristics, meat quality, and economic return were evaluated. The results showed that the steers fed PS had a greater weight gain, average daily gain, and lower feed: gain ratio when fed for 206 days than when fed for 344 days, but dry matter intake, carcass characteristics, meat quality, and fatty acids profile did not differ between treatments in both periods of feeding except C14:1 and C18:0. The steers fed PS showed the greatest economic return. As a substitute for cassava or corn, pineapple stem starch had no negative impact on the feedlot performance, carcass characteristics, and meat quality. These results indicate that pineapple stem starch could be a useful feedstuff for the feedlot steers diets as an alternative starch source.
Collapse
Affiliation(s)
- Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Phoompong Boonsaen
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Keiji Matsuba
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Suriya Sawanon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
26
|
Variants of the SCD gene and their association with fatty acid composition in Awassi sheep. Mol Biol Rep 2022; 49:7807-7813. [PMID: 35652978 DOI: 10.1007/s11033-022-07606-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Genetic factors affect the variability of fatty acid composition in ruminant products. Thus, this study aimed to investigate the association between the variations of the SCD gene and fatty acid composition in Awassi sheep. METHODS AND RESULTS A total of 100 Awassi rams between the ages of one and two and a half years old were used in this study. Blood samples were taken at abattoirs in Babylon, and from each animal, longissimus dorsi (LD) muscle samples were taken to measure the fatty acid composition. DNA samples were isolated from each blood sample, then PCR-single strand conformation polymorphism (PCR-SSCP) experiments were conducted for genotyping followed by sequencing reactions. The study identified two genotypes (TT and TA) of the SCD gene (exon 3). Several novel variants were discovered in the amplified fragments of the SCD gene. CONCLUSIONS The TA genotype resulted in increased intramuscular fat and monounsaturated fatty acids compared to the TT genotype. Breeding for the TA genotype could be used for producing meat containing less saturated fatty acids and more monounsaturated fatty acids, making meat more favorable for human consumption.
Collapse
|
27
|
Omontese BO, Sharma AK, Davison S, Jacobson E, DiConstanzo A, Webb MJ, Gomez A. Microbiome network traits in the rumen predict average daily gain in beef cattle under different backgrounding systems. Anim Microbiome 2022; 4:25. [PMID: 35346381 PMCID: PMC8961956 DOI: 10.1186/s42523-022-00175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Backgrounding (BKG), the stage between weaning and finishing, significantly impacts feedlot performance in beef cattle; however, the contributions of the rumen microbiome to this growth stage remain unexplored. A longitudinal study was designed to assess how BKG affects rumen bacterial communities and average daily gain (ADG) in beef cattle. At weaning, 38 calves were randomly assigned to three BKG systems for 55 days (d): a high roughage diet within a dry lot (DL, n = 13); annual cover crop within a strip plot (CC, n = 13); and perennial pasture vegetation within rotational paddocks (PP, n = 12), as before weaning. After BKG, all calves were placed in a feedlot for 142 d and finished with a high energy ration. Calves were weighed periodically from weaning to finishing to determine ADG. Rumen bacterial communities were profiled by collecting fluid samples via oral probe and sequencing the V4 region of the 16S rRNA bacterial gene, at weaning, during BKG and finishing. RESULTS Rumen bacterial communities diverged drastically among calves once they were placed in each BKG system, including sharp decreases in alpha diversity for CC and DL calves only (P < 0.001). During BKG, DL calves showed a substantial increase of Proteobacteria (Succinivibrionaceae family) (P < 0.001), which also corresponded with greater ADG (P < 0.05). At the finishing stage, Proteobacteria bloomed for all calves, with no previous alpha or beta diversity differences being retained between groups. However, at finishing, PP calves showed a compensatory ADG, particularly greater than that in calves coming from DL BKG (P = 0.02). Microbiome network traits such as lower average shortest path length, and increased neighbor connectivity, degree, number and strength of bacterial interactions between rumen bacteria better predicted ADG during BKG and finishing than variation in specific taxonomic profiles. CONCLUSIONS Bacterial co-abundance interactions, as measured by network theory approaches, better predicted growth performance in beef cattle during BKG and finishing, than the abundance of specific taxa. These findings underscore the importance of early post weaning stages as potential targets for feeding interventions that can enhance metabolic interactions between rumen bacteria, to increase productive performance in beef cattle.
Collapse
Affiliation(s)
- Bobwealth O Omontese
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Food and Animal Sciences, Alabama A&M University, Normal, AL, 35762, USA
| | - Ashok K Sharma
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Samuel Davison
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Emily Jacobson
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Alfredo DiConstanzo
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Megan J Webb
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
- Community Engagement and Partnerships, Eastern West Virginia Community and Technical College, Moorefield, WV, 26836, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
28
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
29
|
Huerta-Leidenz N, Jerez-Timaure N, Rodas-González A, Sarturi JO, Brashears MM, Miller MF, Brashears MT. The Effects of Castration, Implant Protocol, and Supplementation of Bos indicus-Influenced Beef Cattle under Tropical Savanna Conditions on Growth Performance, Carcass Characteristics, and Meat Quality. Animals (Basel) 2022; 12:ani12030366. [PMID: 35158689 PMCID: PMC8833375 DOI: 10.3390/ani12030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
The effects of castration, supplementation, and implant protocol (IP) on growth, carcass characteristics, and meat quality of grass-fed cattle were evaluated. Two experiments followed a two-way ANOVA and a 2 × 2 factorial arrangement. Experiment-I, 99 bulls were evaluated for: (a) supplementation (mineral (MS) or strategic protein-energy supplementation (SS)), and (b) IP (repeated (day-0 and day-90) Zeranol-72 mg implantation (Zeranol–Zeranol) or Trenbolone Acetate-140 mg/Estradiol-20 mg (day-0) followed by Zeranol-72 mg (day-90) (TBA/E2–Zeranol)). Experiment II, 50 animals were evaluated for: (a) IP (like Experiment-I), and (b) male class (steers vs. bulls). In Experiment-I, SS bulls had greater growth rate, carcass yield, and yield of high-valued boneless lean cuts than MS bulls, while decreasing (p < 0.05) time to harvest. Steaks from SS-bulls on TBA/E2–Zeranol IP were more (p = 0.05) tender than SS/Zeranol–Zeranol counterparts. Experiment-II bulls had greater growth than steers, but decreased (p < 0.05) carcass quality aspects. Zeranol–Zeranol increased (p < 0.01) meat tenderness of steers. Interactions (p < 0.05) affected cutability (Experiment-II) and meat sensory traits (Experiment-I/II). The SS improved growth, carcass yield, and shortened days until harvest of bulls, while TBA/E2–Zeranol IP positively affected tenderness in bull meat only. Castration improved carcass quality while the implant effects on cutability and tenderness were male-class dependent.
Collapse
Affiliation(s)
- Nelson Huerta-Leidenz
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA; (N.H.-L.); (J.O.S.); (M.M.B.); (M.F.M.); (M.T.B.)
- Facultad de Agronomía, Departamento de Zootecnia, Universidad del Zulia, Maracaibo 4005, Venezuela
| | - Nancy Jerez-Timaure
- Facultad de Agronomía, Departamento de Zootecnia, Universidad del Zulia, Maracaibo 4005, Venezuela
- Facultad de Ciencias Veterinarias, Instituto de Ciencia Animal, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-9-53567344
| | - Argenis Rodas-González
- Department of Animal Science, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Jhones Onorino Sarturi
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA; (N.H.-L.); (J.O.S.); (M.M.B.); (M.F.M.); (M.T.B.)
| | - Mindy M. Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA; (N.H.-L.); (J.O.S.); (M.M.B.); (M.F.M.); (M.T.B.)
| | - Markus F. Miller
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA; (N.H.-L.); (J.O.S.); (M.M.B.); (M.F.M.); (M.T.B.)
| | - Michel Todd Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409-214, USA; (N.H.-L.); (J.O.S.); (M.M.B.); (M.F.M.); (M.T.B.)
| |
Collapse
|
30
|
Logan BG, Hopkins DL, Schmidtke LM, Fowler SM. Assessing chemometric models developed using Raman spectroscopy and fatty acid data for Northern and Southern Australian beef production systems. Meat Sci 2022; 187:108753. [DOI: 10.1016/j.meatsci.2022.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
31
|
Zhang T, Niu Q, Wang T, Zheng X, Li H, Gao X, Chen Y, Gao H, Zhang L, Liu GE, Li J, Xu L. Comparative Transcriptomic Analysis Reveals Diverse Expression Pattern Underlying Fatty Acid Composition among Different Beef Cuts. Foods 2022; 11:foods11010117. [PMID: 35010243 PMCID: PMC8750426 DOI: 10.3390/foods11010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Beef is an important dietary source of quality animal proteins and amino acids in human nutrition. The fatty acid composition is one of the indispensable indicators affecting nutritional value of beef. However, a comprehensive understanding of the expression changes underlying fatty acid composition in representative beef cuts is needed in cattle. This study aimed to characterize the dynamics of fatty acid composition using comparative transcriptomic analysis in five different type of beef cuts. We identified 7545 differentially expressed genes (DEGs) among 10 pair-wise comparisons. Co-expression gene network analysis identified two modules, which were significantly correlated with 2 and 20 fatty acid composition, respectively. We also identified 38 candidate genes, and functional enrichment showed that these genes were involved in fatty acid biosynthetic process and degradation, PPAR, and AMPK signaling pathway. Moreover, we observed a cluster of DEGs (e.g., SCD, LPL, FABP3, and PPARD) which were involved in the regulation of lipid metabolism and adipocyte differentiation. Our results provide some valuable insights into understanding the transcriptome regulation of candidate genes on fatty acid composition of beef cuts, and our findings may facilitate the designs of genetic selection program for beneficial fatty acid composition in beef cattle.
Collapse
Affiliation(s)
- Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Qunhao Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Tianzhen Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Xu Zheng
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Haipeng Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD 20705, USA;
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (Q.N.); (T.W.); (X.Z.); (H.L.); (X.G.); (Y.C.); (H.G.); (L.Z.); (J.L.)
- Correspondence:
| |
Collapse
|
32
|
Han Y, Liang C, Manthari RK, Yu Y, Zhang J, Wang J, Cao J. Distribution characteristics and regulation of amino acids and fatty acids in muscle and adipose tissues of sheep grown in natural grazing environment. Anim Sci J 2022; 93:e13769. [PMID: 36127314 DOI: 10.1111/asj.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022]
Abstract
The composition of amino acid and fatty acid has a vital function on meat quality and animal health. However, the underlying mechanism of amino acid and fatty acid metabolism in sheep during different grazing periods is still unclear. In this study, a total of 12 sheep were employed in different grazing periods. Our results showed that the composition of amino acids and fatty acids in muscle and adipose tissues was significantly altered between dry grass (DG) period and green grass (GG) period. Changes in the activities of the metabolism-related enzymes including BCKD, BCAT2, ACC, SCD, HSL, GSK3β, p-GSK3β, and FABP4 were observed in muscle and adipose during different grazing periods. In addition, the mRNA expression levels of ACC, FAS, SCD, HSL, LPL, and DGAT1 in muscle and adipose tissue were changed markedly in different grazing periods. Furthermore, the expression levels of mTOR and β-catenin/PPARγ/C/EBPα pathway-related proteins were predominantly altered in muscle and adipose among DG and GG. Taken together, all investigations simplified the process of amino acid and fatty acid metabolism disorders caused by different grazing periods, and the mTOR and β-catenin/PPARγ/C/EBPα play the essential role in this process, which provided an underlying mechanism of metabolism and meat quality.
Collapse
Affiliation(s)
- Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, India
| | - Yuxiang Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China.,College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
33
|
Bulut E, Ivanek R. Comparison of different biomass methodologies to adjust sales data on veterinary antimicrobials in the USA. J Antimicrob Chemother 2021; 77:827-842. [PMID: 34941994 PMCID: PMC8865012 DOI: 10.1093/jac/dkab441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives The United States (US) FDA, European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), Public Health Agency of Canada (PHAC) and World Organisation for Animal Health (OIE) established methodologies that characterize antimicrobial sales for use in food animals by adjusting the sales by animal biomass. Our aim was to review and compare these methodologies on US-specific data. Methods Annual antimicrobial sales for cattle, swine, chickens and turkeys in the USA between 2016 and 2018 were adjusted by the FDA, ESVAC, PHAC and OIE methodologies. To better understand the advantages and disadvantages of the four methodologies, their biomass denominators were compared regarding the level of detail accounted for in the estimated US livestock biomass, their ability to observe temporal trends in animal biomass within a country and practicality in biomass estimation for comparing antimicrobial sales across countries. Results The four methodologies resulted in substantially different estimates of biomass-adjusted antimicrobial sales for use in US food animals. The 2018 estimates were the highest with the ESVAC methodology (314.7 mg of active antimicrobial ingredient/kg of animal biomass), followed by PHAC (191.5 mg/kg), FDA (127.6 mg/kg) and OIE (111.5 mg/kg). The animal weight parameters used in each methodology had the most impact on the biomass-adjusted sales estimates. Conclusions In regard to the estimation of the animal biomass, no methodology was found to be perfect; however, the FDA methodology had the best resolution in characterizing the US livestock biomass while the OIE methodology was best for biomass estimation for global monitoring of antimicrobial sales for use in food animals.
Collapse
Affiliation(s)
- Ece Bulut
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Maciel ICF, Schweihofer JP, Fenton JI, Hodbod J, McKendree MGS, Cassida K, Rowntree JE. Influence of beef genotypes on animal performance, carcass traits, meat quality, and sensory characteristics in grazing or feedlot-finished steers. Transl Anim Sci 2021; 5:txab214. [PMID: 34888490 PMCID: PMC8651173 DOI: 10.1093/tas/txab214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
A 2-yr study was conducted to evaluate the effects of beef genotypes and feeding systems on performance, carcass traits, meat quality, and sensory attributes. A 2×2 factorial experiment was used to randomly allocate 60 steers in year 1 (YR1) and 44 steers in year 2 (YR2). The two beef genotypes evaluated were Red Angus (RA), and RA x Akaushi (AK) crossbreed. The steers were allotted to two finishing feeding systems: grazing, a multi-species forage mixture (GRASS) and feedlot finishing, conventional total mixed ration (GRAIN). All steers were slaughtered on the same day, at 26 and 18 mo of age (GRASS and GRAIN, respectively), and carcass data were collected 48 h postmortem. Growth and slaughter characteristics were significantly impacted by the finishing system (P < 0.01), with the best results presented by GRAIN. Beef genotype affected dressing percent (P < 0.01), ribeye area (P = 0.04), and marbling score (P = 0.01). The AK steers had a tendency (P = 0.09) for lower total gain; however, carcass quality scores were greater compared to RA. There was a genotype by system interaction for USDA yield grade (P < 0.01), where it was lower in GRASS compared to GRAIN in both genotypes, and no difference was observed between the two genotypes for any GRASS or GRAIN systems. There was no difference in meat quality or sensory attributes (P > 0.10) between the two genotypes, except that steaks from AK tended to be juicier than RA (P = 0.06). Thawing loss and color variables were impacted by the finishing system (P < 0.01). L* (lightness) and hue angle presented greater values while a* (redness), b* (yellowness), and chroma presented lower values in GRAIN compared to GRASS. Sensory attributes were scored better in GRAIN than GRASS beef (P < 0.01). There was a genotype by system interaction for flavor (P = 0.02), where beef from RA had a lower flavor rating in GRASS than in GRAIN, and no difference was observed for AK. Within each system, no difference was observed for flavor between RA and AK. Beef from steers in GRASS had greater (P < 0.01) WBSF than those from GRAIN. These results indicate that steers from GRAIN had superior performance and carcass merit and that AK enhanced these traits to a greater degree compared to RA. Furthermore, the beef finishing system had a marked impact on the steaks’ sensory attributes and consumer acceptability. The favorable results for texture and juiciness in GRAIN, which likely impacted overall acceptability, may be related to high marbling.
Collapse
Affiliation(s)
- Isabella C F Maciel
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - J P Schweihofer
- Michigan State University Extension, Port Huron, MI 48060, USA
| | - J I Fenton
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - J Hodbod
- Department of Community Sustainability, Michigan State University, East Lansing, MI 48824, USA
| | - M G S McKendree
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI 48824, USA
| | - K Cassida
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - J E Rowntree
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
36
|
Antonelo D, Beline M, Silva SL, Gómez JFM, Ferreira C, Zhang X, Pavan B, Koulicoff L, Rosa A, Goulart R, Gerrard DE, Suman SP, Schilling W, Balieiro JC. Variations in intramuscular fat content and profile in Angus x Nellore steers under different feeding strategies contribute to color and tenderness development in longissimus thoracis. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Muscle from cattle reared under different finishing regime (grain vs. forage) and growth rate may have divergent metabolic signatures that are reflective of their inherent differences in biochemical processes that may impact its subsequent transformation into high quality beef. Differences in muscle lipid profiles were characterized in Angus x Nellore crossbred steers, using multiple reaction monitoring (MRM)-profiling, to identify potential metabolic signatures correlated to beef color and tenderness in the longissimus thoracis muscle of cattle fed in either a feedlot- or pasture-based system programmed to achieve either a high or low growth rate. A total of 440 MRMs were significant, which were related mainly to triglycerides and phosphatidylcholine lipids. Distinct clusters between feeding strategies for the lipid dataset were revealed, which affected glycerolipid metabolism (P = 0.004), phospholipid metabolism (P = 0.009), sphingolipid metabolism (P = 0.050) and mitochondrial beta-oxidation of long chain saturated fatty acids (P = 0.073) pathways. Lipid content and profile differed to feeding strategies, which were related to L*, a*, and tenderness. These findings provide a comprehensive and in-depth understanding of lipidomic profiling of beef cattle finished under different feeding strategies and provides a basis for the relationship between lipid content and profiles and beef quality development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| | | |
Collapse
|
37
|
Kaneko G. Impact of Pre-Mortem Factors on Meat Quality: An Update. Foods 2021; 10:foods10112749. [PMID: 34829030 PMCID: PMC8623910 DOI: 10.3390/foods10112749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gen Kaneko
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| |
Collapse
|
38
|
Zhang Z, Yang L, He Y, Luo X, Zhao S, Jia X. Composition of Fecal Microbiota in Grazing and Feedlot Angus Beef Cattle. Animals (Basel) 2021; 11:ani11113167. [PMID: 34827898 PMCID: PMC8614352 DOI: 10.3390/ani11113167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This study is to investigate the difference of bovine fecal microbiota between grazing and feedlot Angus cattle. The fecal bacterial community was analyzed by high-throughput sequencing of 16S rRNA gene from six Angus cattle grazed on grassland and six Angus cattle fed on a feedlot. A total of 775 OTUs were taxonomically assigned to bacterial 12 phyla, 19 classes, 25 orders, 54 families, 141 genera, and 145 species. The dominant phyla were Firmicutes and Bacteroidetes. There was similar species richness between grazing and feedlot Angus beef, while species diversity was higher in feedlot Angus beef. The relative abundance of Firmicutes, Cyanobacteria, Elusimicrobia and Patescibacteria was significantly different between grazing and feedlot Angus beef (p < 0.05). At the genus level, five microbiotas were significantly different microbiotas between the two groups and all belonged to the Firmicutes phylum. These significant differences in microbiota composition between grazing and feedlot Angus beef may have an impact on the meat quality of Angus beef. Abstract This study is to investigate the difference in bovine fecal microbiota between grazing and feedlot Angus cattle. Fecal samples were collected from six Angus cattle grazed on grassland and six Angus cattle fed on a feedlot. The fecal bacterial community was analyzed by high-throughput sequencing of 16S rRNA gene. Sequencing of the V3–V4 region totally produced 1,113,170 effective tages that were computationally clustered into 775 operational taxonomic units (OTUs). These 775 OTUs were taxonomically assigned to bacterial 12 phyla, 19 classes, 25 orders, 54 families, 141 genera, and 145 species. The dominant phyla were Firmicutes and Bacteroidetes. There was similar species richness between grazing and feedlot Angus beef, while higher species diversity was observed in feedlot Angus beef. The relative abundance of Firmicutes, Cyanobacteria, Elusimicrobia and Patescibacteria was significantly different between grazing and feedlot Angus beef (p < 0.05). At a genus level, five microbiotas were significantly different between the two groups and all belonged to the Firmicutes phylum. These significant differences in microbiota composition between grazing and feedlot Angus beef may have an impact on the meat quality of Angus beef.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Animal Science, Xichang University, Xichang 615000, China;
| | - Li Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (Y.H.); (X.L.); (S.Z.)
| | - Yang He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (Y.H.); (X.L.); (S.Z.)
| | - Xinmao Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (Y.H.); (X.L.); (S.Z.)
| | - Shaokang Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (Y.H.); (X.L.); (S.Z.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (L.Y.); (Y.H.); (X.L.); (S.Z.)
- Correspondence:
| |
Collapse
|
39
|
Mohd Azmi AF, Mat Amin F, Ahmad H, Mohd Nor N, Meng GY, Zamri Saad M, Abu Bakar MZ, Abdullah P, Irawan A, Jayanegara A, Abu Hassim H. Effects of Bypass Fat on Buffalo Carcass Characteristics, Meat Nutrient Contents and Profitability. Animals (Basel) 2021; 11:ani11113042. [PMID: 34827775 PMCID: PMC8614549 DOI: 10.3390/ani11113042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The deposition and distribution of buffalo body fats play a vital role in the quality of the buffalo carcass and are of great commercial value, since the carcass quality influences the profitability and consumer acceptability of ruminant meat. The current study examined the effect a mixture of 4% bypass fat and 26% concentrate supplementations in buffalo basal diet had on both the carcass characteristics and the proximate and fatty acid composition in longissimus thoracis et lumborum (LTL), supraspinatus (SS) and semitendinosus (ST) muscles of Murrah cross and swamp buffaloes. In addition, profit and loss analyses were performed to determine the profitability. This study employed a completely randomized 2 × 2 factorial arrangement with two diets, two breeds and four replicates per treatment. A total of sixteen buffaloes (eight buffaloes per breed, bodyweight 98.64 ± 1.93 kg) were randomly assigned into two dietary groups. The first group was given Diet A, which consisted of 70% Brachiaria decumbens + 30% concentrate, whereas the second group was given Diet B, which consisted of 70% Brachiaria decumbens + 26% concentrate + 4% bypass fat. The buffaloes were fed for 730 days before slaughter. The results showed that supplemented bypass fat significantly (p < 0.05) increased the pre-slaughter weight, hot and cold carcass weights, meat:fat ratio, pH at 24 h, moisture and crude protein of LTL, ST and SS, the ether extract of LTL and ST and the meat fatty acid of C16:0, C16:1, C18:1, PUFA n-6/n-3 and total MUFA. The carcass yield and carcass fat percentages, the ash content in ST, the EE in the SS muscle and the meat fatty acid of C18:3, total PUFA n-3, UFA/SFA and PUFA/SFA were significantly (p < 0.05) decreased. Furthermore, Murrah cross showed a significantly (p < 0.05) higher pre-slaughter weight, hot and cold carcass weights, carcass bone percentage and total fatty acid, but a lower (p < 0.05) meat:bone ratio, ash of LTL and CP of LTL and ST when compared to swamp buffaloes. No significant changes were found in the proximate composition of different types of muscle, but the ST muscle revealed significantly high C14:0, C16:0 and C18:1, and the SS muscle had high C18:2 and total fatty acid (p < 0.05). Supplementing using bypass fat increased the cost of buffalo feeding but resulted in a higher revenue and net profit. In conclusion, the concentrate and bypass fat supplementations in the buffalo diet could alter the nutrient compositions of buffalo meat without a detrimental effect on carcass characteristics, leading to a higher profit.
Collapse
Affiliation(s)
- Amirul Faiz Mohd Azmi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Fhaisol Mat Amin
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Norhariani Mohd Nor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Mohd Zamri Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Md Zuki Abu Bakar
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
| | - Punimin Abdullah
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia;
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97333, USA
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia;
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia;
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.F.M.A.); (F.M.A.); (H.A.); (N.M.N.); (G.Y.M.); (M.Z.A.B.)
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia;
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-9769-3417
| |
Collapse
|
40
|
Bing S, Zang Y, Li Y, Zhang B, Mo Q, Zhao X, Yang C. A combined approach using slightly acidic electrolyzed water and tea polyphenols to inhibit lipid oxidation and ensure microbiological safety during beef preservation. Meat Sci 2021; 183:108643. [PMID: 34390897 DOI: 10.1016/j.meatsci.2021.108643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
Slightly acidic electrolyzed water (SAEW) is often used as a disinfectant in beef preservation to ensure microbiological safety. However, it ineffectively inhibit lipid oxidation. Therefore, the combination of SAEW and tea polyphenols (TPs) was tested to inhibit lipid oxidation and microbial growth in beef preservation. SAEW and TPs were selected as the optimum sanitizer and antioxidant, respectively. Then, the inactivation efficacies of different combination treatments of SAEW and TPs of Salmonella enteritidis in beef were compared and treatment of SAEW-TPs (SAEW immersion at an available chlorine concentration of 30 mg/L for 2.5 min, followed by the TPs immersion at a 0.1% concentration for 2.5 min) was selected. Finally, the effectiveness of SAEW-TPs on the microbiological and physicochemical properties of beef during storage was evaluated. The results revealed that the required quality standard of beef treated with SAEW-TPs was prolonged by approximately 9 d at 4 °C, and this treatment had greater antimicrobial and antioxidant effects than did the single treatment.
Collapse
Affiliation(s)
- Shan Bing
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Yitian Zang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China.
| | - Yanjiao Li
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Beibei Zhang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Qingnan Mo
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xianghui Zhao
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Chen Yang
- Key Laboratory of Animal Health and Safety in Nanchang, Jiangxi Agricultural University, Jiangxi 330045, China
| |
Collapse
|
41
|
Zhang R, Wang J, Xiao Z, Zou C, An Q, Li H, Zhou X, Wu Z, Shi D, Deng Y, Yang S, Wei Y. The Expression Profiles of mRNAs and lncRNAs in Buffalo Muscle Stem Cells Driving Myogenic Differentiation. Front Genet 2021; 12:643497. [PMID: 34306003 PMCID: PMC8294193 DOI: 10.3389/fgene.2021.643497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Buffalo breeding has become an important branch of the beef cattle industry. Hence, it is of great significance to study buffalo meat production and meat quality. However, the expression profiles of mRNA and long non-coding RNAs (lncRNA) molecules in muscle stem cells (MuSCs) development in buffalo have not been explored fully. We, therefore, performed mRNA and lncRNA expression profiling analysis during the proliferation and differentiation phases of MuSCs in buffalo. The results showed that there were 4,820 differentially expressed genes as well as 12,227 mRNAs and 1,352 lncRNAs. These genes were shown to be enriched in essential biological processes such as cell cycle, p53 signaling pathway, RNA transport and calcium signaling pathway. We also identified a number of functionally important genes, such as MCMC4, SERDINE1, ISLR, LOC102394806, and LOC102403551, and found that interference with MYLPF expression significantly inhibited the differentiation of MuSCs. In conclusion, our research revealed the characteristics of mRNA and lncRNA expression during the differentiation of buffalo MuSCs. This study can be used as an important reference for the study of RNA regulation during muscle development in buffalo.
Collapse
Affiliation(s)
- Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Zhengzhong Xiao
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Chaoxia Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiang An
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoqing Zhou
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Zhuyue Wu
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, China
| | - Yingming Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
42
|
Kott ML, Pancini S, Speckhart SL, Kimble LN, White RR, Stewart JL, Johnson SE, Ealy AD. Effects of mid-gestational l-citrulline supplementation to twin-bearing ewes on umbilical blood flow, placental development, and lamb production traits. Transl Anim Sci 2021; 5:txab102. [PMID: 34222828 PMCID: PMC8252048 DOI: 10.1093/tas/txab102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The objective of the study was to examine how l-citrulline supplementation to ewes during mid-gestation influences placental activity, placental blood flow, lamb body weight, and carcass characteristics. Two studies were completed. A pharmacokinetic study to compare circulating plasma amino acid concentrations after a single intravenous injection of 155 µmol/kg BW l-citrulline or after an isonitrogenous amount of l-alanine (control; 465 µmol/kg BW). Increases (P < 0.05) in circulating citrulline concentrations were detected for 8 h after l-citrulline injection versus the control. Similarly, increases (P < 0.05) in circulating arginine concentrations were detected for 24 h after l-citrulline treatment. The second study used 12 ewes with twin pregnancies. Daily intravenous injections of either l-citrulline or l-alanine were administered for 39 d from d 42–45 to 81–84 of gestation. Ewes were limit-fed at 85% daily energy requirements during the injection period. A decrease (P < 0.0001) in body weight was observed in both treatment groups during this period. No treatment differences were observed in circulating pregnancy-specific protein B concentrations or placental blood flow during the treatment and post-treatment gestational period. No treatment differences were observed in lamb survival nor in lamb birth, weaning and slaughter weights. Treatment did not influence lamb carcass composition or organ weights. However, there was a tendency (P = 0.10) for an increase in antral follicle numbers in ovaries from ewe lambs derived from ewes treated with l-citrulline. In summary, a daily l-citrulline injection increased both circulating citrulline and arginine concentrations in ewes, but daily l-citrulline injections during mid-gestation did not produce any detectable changes in placental activity and blood flow, neonatal and postnatal lamb development, and lamb carcass composition at slaughter. In conclusion, no benefits in placental function and lamb development were observed after providing l-citrulline during mid-gestation in ewes exposed to a mild energy restriction, but there was an indication that follicle numbers in ewe lambs were positively influenced by l-citrulline treatment during fetal development.
Collapse
Affiliation(s)
- Michelle L Kott
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Stefania Pancini
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lauren N Kimble
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Robin R White
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jamie L Stewart
- Department of Large Animal Clinical Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- Department of Animal & Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Feeding strategies impact animal growth and beef color and tenderness. Meat Sci 2021; 183:108599. [PMID: 34365253 DOI: 10.1016/j.meatsci.2021.108599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
The impact of growth rate (GR) and finishing regime (FR) on growth and meat quality traits of Angus x Nellore crossbred steers, harvested at a constant body weight (530 ± 20 kg) or time on feed (140 days), was evaluated. Treatments were: 1) feedlot, high GR; 2) feedlot, low GR; 3) pasture, high GR and 4) pasture, low GR. Live body composition, carcass and meat quality traits were evaluated. High GR had greater impact on muscle and fat deposition in feedlot-finished, but not in pasture-finished animals. Feedlot animals had higher Longissimus muscle area, backfat thickness, meat luminosity and tenderness when compared to pasture groups. Moreover, pasture- and feedlot-finished animals with similar GR did not differ in the chromatic attributes of non-aged meat, regardless of endpoint. Thus, GR appeared to be the main factor driving beef chromatic parameters, while FR had a major impact on achromatic attributes and tenderness of meat.
Collapse
|
44
|
Dahl GE, Connor EE. Grand Challenges to Livestock Physiology and Management. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.689345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Hong H, Baatar D, Hwang SG. The difference of castration timing of Korean Hanwoo bulls does not significantly affect the carcass characteristics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:426-439. [PMID: 33987616 PMCID: PMC8071752 DOI: 10.5187/jast.2021.e26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
It is already well known that castration improves marbling quality but exact timing of castration is still highly debated in beef cattle production industry. After castration, blood hormonal changes occur in steer and objective of this study was to investigate the effects of growth hormone (GH) levels on adipocyte differentiation in stromal vascular cells (SVCs) and transdifferentiation into adipocytes in C2C12 myoblasts. Total GH concentrations were measured via enzyme-linked immunosorbent assay (ELISA) in 24 male calves and 4 female calves. Cell proliferation, cellular triglyceride (TG) accumulation, and the cell's lipolytic capability were measured in C2C12 myoblasts and SVCs. Myogenic, adipogenic, and brown adipocyte-specific gene expression was measured via real-time polymerase chain reaction (PCR) using SYBR green. Serum GH levels were the highest in late-castrated calves. Treatment with 5 ng/mL GH resulted in greater TG accumulation as well as increased CCAAT-enhancer-binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ expression compared to that after treatment with 15 ng/mL GH. Treatment with 5 ng/mL GH also resulted in lower myogenin (myo)G and myoD expression compared to that after treatment with 15 ng/mL GH. The expression of bone morphogenetic protein (BMP) 7 after treatment with 5 ng/mL GH was higher than that after treatment with 15 ng/mL GH. But carcass characteristics data showed no significant difference between early and late castrated steers. Therefore, our results indicate that castration timing does not seem to be inevitable determinate of carcass qualities, particularly carcass weight and marbling score in Hanwoo beef cattle.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of
Biology, Peace Avenue, Bayanzurkh District, Ulaanbaatar 13330,
Mongolia
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
| | - Seong-Gu Hwang
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
46
|
Does the Effect of Replacing Cottonseed Meal with Dried Distiller's Grains on Nellore Bulls Finishing Phase Vary between Pasture and Feedlot? Animals (Basel) 2021; 11:ani11010085. [PMID: 33466432 PMCID: PMC7824892 DOI: 10.3390/ani11010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The use of less costly products that are not consumed by humans in animal feed has gained increasing attention in the context of sustainable production. Dried distiller’s grains (DDG), a co-product of the production of ethanol from corn, stands out for being efficient in the nutrition of ruminants, meeting both the energy and protein demands of the diets, when the cattle are kept in the pasture or feedlot. The study aimed to evaluate the effect of replacing cottonseed meal (CM) by DDG in two levels (50% (50DDG) and 100% (100DDG)), in terms of efficiency in the productive aspects of cattle finishing phase comparing pasture versus feedlot. The effect of replacing CM by DDG on dry matter, nutrients intake and nutrients digestibility depends on finishing system. While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture. Animal performance and final body weight were higher in the feedlot. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment. Abstract The study aimed to evaluate the effect of replacing cottonseed meal by dried distiller’s grains (DDG) in terms of efficiency in the productive aspects of beef cattle finishing in pasture versus feedlot. The experiment was conducted in a completely randomized design in a 2 × 3 factorial arrangement, with two production systems (pasture versus feedlot) and three supplements: CM, conventional supplement with cottonseed meal (CM) as a protein source; 50DDG: supplement with 50% replacement of CM by DDG; and 100DDG: 100% replacement. The effect of replacing CM by DDG on dry matter and nutrients intake and nutrients digestibility depends on the finishing system (p < 0.05). While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture (p < 0.05). Animal performance and final body weight were higher in the feedlot (p < 0.0001), with averages of 1.57 kg/d and 566 kg of final body weight (FBW) for feedlot, and 0.99 kg/d and 504 kg FBW for pasture. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment.
Collapse
|
47
|
Bakare AG, Cawaki P, Ledua I, Bautista-Jimenez V, Kour G, Sharma AC, Tamani E. Quality evaluation of breast meat from chickens fed cassava leaf meal-based diets. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Feed supply is an important constraint for poultry production in South Pacific island nations. The use of non-conventional feed resources, such as cassava leaves, could partly fill the gap in the feed supply and reduce feed production costs. Cassava leaves are locally available in South Pacific island nations, but the effects of including these in the diet of chickens are not known.
Aim
It was hypothesised that cassava leaf meal (CLM) at levels of 0%, 10%, 20% and 30% in diets of broiler chickens did not affect the chemical and sensory attributes of breast meat.
Methods
A total of 80 Cobb 500 female broilers were fed treatment diets with CLM included at levels of 0%, 10%, 20% and 30% DM from the age of 21 days to 49 days. Twenty chickens were subjected to each treatment diet. Samples of pectoralis major muscles (breast meat) from chickens fed the treatment diets were removed and analysed for chemical and sensory parameters.
Key results
Ash, crude fat and carbohydrate content were low in breast meat of chickens fed diets with higher inclusion levels of CLM (30%) compared with breast meat of chickens fed other treatment diets (P < 0.05). There was a quadratic relationship between ash content of breast meat and inclusion levels of CLM in the diets of chickens (P < 0.05). No relationships were observed between sensory attributes of breast meat and inclusion levels of CLM in the diets of chickens. Principal component analysis showed the first four principal components (PC) with an eigenvalue >1 account for 77.1% of the total variance for quality parameters of breast meat from chicken fed CLM-based diets. The two main components (PC1 vs PC2) together explained 52.46% of the variation. The data on panellists generated by PC1 versus PC2 plot suggests that the roasted breast meat could be separated by different treatment groups.
Conclusion
The results show that CLM inclusion in the diets of chickens does not affect the sensory qualities of chicken breast meat. Chemical attributes of breast meat were, however, affected when broiler chickens were fed CLM-based diets
Implication
Further exploration of the fatty acid profile and oxidative stability of breast meat from chickens fed CLM-based diets is essential for human clinical application and the meat processing industry.
Collapse
|
48
|
Moreno Díaz MJ, Domenech García V, Avilés Ramírez C, Peña Blanco F, Requena Domenech F, Martínez Marín AL. Effects of A Concentrate Rich in Agro-Industrial By-Products on Productivity Results, Carcass Characteristics and Meat Quality Traits of Finishing Heifers. Animals (Basel) 2020; 10:ani10081311. [PMID: 32751551 PMCID: PMC7459957 DOI: 10.3390/ani10081311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Finishing diets in intensive beef production systems are mainly based on cereals, which does not take advantage of the capacity of the ruminant digestive system to digest fibrous feeds, cannot be considered sustainable and does not contribute to the circular bioeconomy. Our aim was to investigate the effects of an alternative concentrate rich in agro-industrial by-products for finishing crossbred Limousine heifers. Four pens with 12 heifers and four pens with 13 heifers were randomly allocated to one of two treatments: control (CON), a commercial concentrate with a 43.3% cereal composition, and alternative (ALT), a concentrate with a composition of 26% cereals and up to 73.5% agro-industrial by-products. Growth performance data were collected along the 91 days of the experimental period. Carcass characteristics were collected after slaughter and 24 h later. Vacuum-packaged samples from longissimus muscle were aged for 7, 21 or 28 days to study meat quality traits. Feed intake was higher and feed conversion rate was lower in the ALT treatment, but no differences were found in average daily gain and feeding costs. Treatment had no effects on any of the measured carcass traits (grading, hot and cold carcass weight, dressing out, chilling losses, subcutaneous fat depth, pH, temperature and lean and fat colour) nor on the meat quality traits (drip loss, cooking loss, shear force, oxidative stability, chromatic indices and pigment contents). Ageing time decreased drip loss and shear force, increased lightness and did not affect redness or surface colour stability. In conclusion, feeding crossbred Limousine heifers a finishing diet rich in agro-industrial by-products did not have any negative effects on performance, carcass and meat quality traits, which might be considered positive from the point of view of sustainability of beef production. Under the conditions assayed, ageing for 21 and 28 days improved tenderness of meat, without detrimental effects on oxidative stability or traits related to visual acceptability.
Collapse
|
49
|
Effect of Dietary Olive Cake Supplementation on Performance, Carcass Characteristics, and Meat Quality of Beef Cattle. Animals (Basel) 2020; 10:ani10071176. [PMID: 32664412 PMCID: PMC7401520 DOI: 10.3390/ani10071176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The consumer’s liking of meat is measured in relation to color, intramuscular fat content, healthy composition of fatty acids, tenderness, juiciness, flavor, and aroma; these qualitative characteristics, influencing the consumer’s choice, guide the market whose objective is to provide safe beef with high food characteristics. The use of agro-industrial co-products, containing appreciable amounts of vegetable oils, could be a feasible strategy to influence the quality of meat. In this study, the effect of the partially destoned olive cake supplementation on the performance, carcass characteristics, and meat quality of beef cattle was evaluated. The experiment was carried out on 45 Limousin bulls divided into three homogenous groups, fed with a diet containing 0%, 7.5%, and 15.0% of the olive cake. Results show that the olive cake supplementation influenced the animal performance, increased the tenderness of meat, the intramuscular fat content and unsaturated fatty acids (oleic acid and essential fatty acids), affecting the meat quality indices and suggesting olive cake as a strategy for the sustainability of the animal food chain, rural economies, and environment, providing healthy animal products. Abstract Dietary partially destoned olive cake supplementation on performance, carcass traits and meat quality of intensively finished bulls was evaluated. Forty-five Limousin bulls, divided into three homogenous groups, received a diet with no supplementation (Control-CTR), 7.5% (Low Olive Cake-LOC), and 15.0% of olive cake supplementation (High Olive Cake-HOC). The trial was realized for 150 days; all bulls were individually weighed at the beginning, middle, and end of the trial, to calculate the individual average daily gain (ADG). At slaughtering, on each carcass, hot weight was recorded and, after 7 days, the pH and temperature were measured. On Longissimus lumborum muscle, color, cooking loss, and shear force of the cooked sample were determined. The chemical composition and the fatty acid content of muscle were determined. Olive cake inclusions (7.5% and 15.0%) increased (p < 0.05) the body weight, ADG, slaughter traits and intramuscular fat content and influenced (p < 0.05) the quality indices. The 15.0% of the inclusion reduced (p < 0.05) the cooking loss and shear force, and increased the unsaturated fatty acid content. The olive cake can be considered as a functional component in beef production and, in substitution to a quote of cereals into the diet of bulls, could be an opportunity to improve agriculture sustainability.
Collapse
|
50
|
Shafey HI, Mahrous KF, Hassan AAM, Rushdi HE, Ibrahim MAEAM. Single-nucleotide polymorphisms in FABP4 gene associated with growth traits in Egyptian sheep. Vet World 2020; 13:1126-1132. [PMID: 32801563 PMCID: PMC7396335 DOI: 10.14202/vetworld.2020.1126-1132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
Aim: The present study was performed to assess the association of single-nucleotide polymorphisms (SNPs) in the fatty acid-binding protein 4 (FABP4) gene with birth weight (BW), final weight (FW), and average daily gain (ADG) in three Egyptian sheep breeds. Materials and Methods: Genomic DNA was extracted from the blood samples of 50 male and female individuals representing Ossimi, Rahmani, and Barki sheep breeds. A 407 bp nucleotide (nt) segment from the first intron of FABP4 was amplified by polymerase chain reaction, sequenced, and analyzed in the different samples. Results: Sequence analysis of the determined segment (407 bp) revealed four SNPs (all transition types) at nt position 372 (CP011894.1:g.57605471) A>G, nt position 211 (CP011894.1:g.57605632) A>G, nt position 143 (CP011894.1:g.57605700) T>C, and nt position 111 (CP011894.1:g.57605732) T>C. The allelic and genotypic frequencies for the identified SNPs in the sheep breeds were calculated. At nt positions 372 and 211, two alleles were identified (A and G). Only two genotypes were present at nt position 372 (AA and AG), while three genotypes were present at nt position 211 (AA, AG, and GG). Two alleles (T and C) and three identified genotypes (TT, TC, and CC) were detected at nt positions 143 and 111. Analysis of the results revealed that AA genotype at nt position 372 is associated with higher estimates for BW, FW, and ADG when compared to all the other genotypes. Very high correlation coefficients were found between the genotypes 143-TT and 111-TT and also between 143-TC and 111-TC. The genotypes 372-AG, 211-GG, 211-AA, 143-TT, 143-CC, 111-TT, 111-TC, and 111-CC were associated with negative effects on BW, FW, and ADG. Conclusion: The detection of four SNPs in a partial sequence of the Egyptian ovine FABP4 gene intron 1 reflected that this gene harbors substantial diversity. In addition, a novel SNP at nt position 372 (CP011894.1:g.57605471) A>G was associated with higher estimates for BW, FW, and ADG.
Collapse
Affiliation(s)
- Heba Ibrahim Shafey
- Department of Cell Biology, National Research Centre, Dokki, 12622 Giza, Egypt
| | | | | | - Hossam Eldin Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | | |
Collapse
|