1
|
Brindisi LJ, O'Brien R, Hayes BK, Kotwal S, Wu Q, Simon JE, Tepper BJ. Relationship between sensory perceptions and volatile and phenolic compounds of fresh basil (Ocimum basilicum L.) evaluated by multivariate statistics. J Food Sci 2025; 90:e70194. [PMID: 40205794 DOI: 10.1111/1750-3841.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/11/2025]
Abstract
Sensory and phytochemical analyses were conducted on sweet basil (Ocimum basilicum L.) to investigate the impact of volatile and phenolic compounds on aroma, taste, and flavor by mouth. A trained panel evaluated seven accessions, including 'Aroma 2', 'Nufar', 'CB19', and four breeding lines developed by Rutgers for downy mildew resistance (DMR). The basils selected for this study displayed unique sensory profiles that were chemically characterized with 21 volatile and 15 phenolic compounds using GC/MS and LC/MS, respectively. Principal component analysis revealed a two-factor model. Factor 1 described cinnamon, floral, ginger, lemon, and musty aromas, clustering with eucalyptol and many minor aromatic compounds. 'Rutgers Thunderstruck-DMR' closely aligned with these attributes. Factor 2 described an axis with clove aroma/flavor and bitter taste on one end and anise and sweet aroma/taste on the opposite end. Anise aroma/flavor was closely associated with methyl chavicol and sweet aroma/flavor. Eugenol and several phenolic acids clustered near bitter taste. However, not all phenolic acids contributed to bitterness or astringency, suggesting diverse roles in sensory perception. 'Aroma 2', 'Rutgers Passion DMR', and 'Rutgers Obsession DMR' were aligned with the clove/spicy/bitter pole of Factor 2, whereas 'CB19' was oppositely aligned with the anise/sweet pole. 'Nufar' and 'Rutgers Devotion DMR' occupied the center of the plot and were characterized as moderate in their sensory/phytochemical profiles. In conclusion, this study reveals that new varieties can be distinguished by their sensory/phytochemical profiles and compared to commercial cultivars. Further, the inclusion of phenolic compounds led to more precise sensory/phytochemical descriptions of these varieties. PRACTICAL APPLICATION: This research provides valuable insights into the aroma, flavor, and underlying phytochemistry of fresh basil, which can help improve its taste and quality for culinary use. Sensory scientists and breeders can use the tools presented in this study as a means of selecting basil varieties to identify 'off types' and enhance aroma and flavor profiles.
Collapse
Affiliation(s)
- Lara J Brindisi
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Regina O'Brien
- Center for Sensory Science & Innovation, Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Bernadette K Hayes
- Center for Sensory Science & Innovation, Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shashikant Kotwal
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Sensory Science & Innovation, Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Center for Sensory Science & Innovation, Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Beverly J Tepper
- Center for Sensory Science & Innovation, Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Yuan X, Wang H, Yan L, Huang X, Tang S. Comparison of key floral components between two Tilia species and among different processing technologies as revealed by widely targeted metabolomic profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40007479 DOI: 10.1002/jsfa.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Tilia has a long history of cultivation and holds high ornamental and economic value. The volatile aroma compounds of Tilia flowers have significant characteristics that contribute to their ornamental appeal, and affect the flavor of floral tea. Here, widely targeted metabolomic analyses were conducted to investigate the aroma active compounds in the fresh inflorescences of Tilia cordata Mill. (Tc) and Tilia miqueliana Maxim. (Tm), and in samples prepared by freeze drying, air drying, and oven drying. RESULTS We identified 442 volatile organic compounds by headspace solid-phase microextraction gas chromatography-mass spectrometry. Terpenoids were the most abundant and diverse group, while heterocyclic compounds were the main contributors to the aroma profile. Notably, 46 aroma compounds were identified as primary contributors to the characteristic aroma of Tilia, including abhexon, 2-isobutyl-3-methoxypyrazine, (Z)-6-nonenal, methyl benzoate, (E)-2-hexenal, 1-hexanol, 2-thiophenemethanethiol, p-cymene, furaneol, and (Z)-4-heptenal. The concentration of volatile organic compounds was higher in Tc than in Tm, indicating a more pronounced aroma character of Tc. For both Tc and Tm, the aroma compounds were better preserved and present at higher concentrations in freeze-dried samples than in air-dried and oven-dried samples. CONCLUSION These results provide a foundation for further research on the molecular mechanisms of aroma formation in Tilia flowers and on aroma as a cue for insect pollination. Furthermore, the results provide a basis for the development and commercialization of Tilia floral teas and other related products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanli Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Lingjun Yan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Xi Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| |
Collapse
|
3
|
Kassa MG, Teferi DA. Impact of ripening stages and drying techniques on the physicochemical and sensory attributes of apple mango chips. J Food Sci 2025; 90:e17585. [PMID: 39801225 PMCID: PMC11726004 DOI: 10.1111/1750-3841.17585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025]
Abstract
Mangoes (Mangifera indica L.) are valued for their rich nutrients, including vitamins A, B, C, carotenoids, and phenolic compounds. However, high moisture content and seasonal availability contribute to post-harvest losses of up to 50%. To reduce these losses and extend shelf life, drying methods like solar, convective, and freeze-drying are used, each impacting dried mango quality differently. This study examines how ripening stages and drying methods affect the physicochemical and sensory qualities of apple mango chips, analyzing attributes such as moisture (7.81%-11.50%), protein (2.49%-2.89%), fat (0.78%-1.11%), pH, total soluble solids, and color parameters (L* and a* values). Results show that solar drying, especially for fully ripe mangoes, enhances color and sensory qualities, with fully ripe, solar-dried mango chips receiving the highest ratings for color, taste, flavor, and aroma. This emphasizes the importance of optimizing ripeness and drying techniques to improve dried mango quality. Although solar drying is cost-effective and preserves sensory qualities, limitations include nutrient loss and limited access to advanced drying technologies like freeze-drying, especially in developing regions. The study's focus on apple mangoes and a small, non-trained sensory panel may limit generalizability, suggesting that future research could explore additional drying methods across more mango varieties. Larger sensory panels with trained evaluators may provide broader insights. This study offers valuable strategies for enhancing dried mango production and marketability. By optimizing ripening stages and drying techniques, industry professionals and researchers can improve product quality, meet consumer preferences, and support sustainability, benefiting local farmers and global markets.
Collapse
Affiliation(s)
| | - Desye Alemu Teferi
- College of Agriculture, Food, Climate ScienceInjibara UniversityInjibaraEthiopia
| |
Collapse
|
4
|
Pan S, Liu X, Zheng X, Wu J, Tan M, Cao N, Zhao X, Wu M, Han Y, Yan X, Song Y. Impact of Long-Term Cold Storage on the Physicochemical Properties, Volatile Composition, and Sensory Attributes of Dried Jujube ( Zizyphus jujuba Mill.). Foods 2024; 14:50. [PMID: 39796340 PMCID: PMC11720545 DOI: 10.3390/foods14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Grey jujube (Zizyphus jujuba Mill. cv. Huizao), a prominent cultivar from Xinjiang, China, is well known for its high nutritional value and medicinal benefits. This study investigates the effects of long-term storage on the quality attributes of grey jujube, focusing on color, texture, physicochemical properties, bioactive ingredients, amino acid profiles, sensory characteristics, and volatile compounds. Over a three-year storage period, significant changes were observed, including a decline in lightness and redness of the peel, accompanied by textural modifications such as increased hardness and chewiness, primarily attributed to moisture loss. Physicochemical analyses revealed significant reductions in moisture content, sugars (particularly reducing sugars), and bioactive compounds such as vitamin C, total flavonoids, and cyclic adenosine monophosphate (cAMP). In contrast, total acidity showed a significant increase over time. Sensory evaluation indicated a substantial loss of fresh aroma and flavor, with the development of off-flavors over time. Additionally, a comprehensive analysis of volatile compounds highlighted significant transformations in aroma profiles, with notable reductions in desirable esters and increases in acetic acid concentrations. This study investigates the quality changes of grey jujubes during storage from sensory and physicochemical perspectives, aiming to provide a novel approach for differentiating between newly harvested and aged grey jujubes. Furthermore, these findings provide theoretical support for improving and optimizing storage conditions. Future research should focus on elucidating the underlying mechanisms of these changes, identifying key markers for quality control during grey jujube storage, and providing a scientific basis for distinguishing between newly harvested and aged grey jujubes, while improving storage quality.
Collapse
Affiliation(s)
- Shaoxiang Pan
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Xuemei Liu
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Xiaodong Zheng
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengnan Tan
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Ning Cao
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Xinyu Zhao
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Maoyu Wu
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Yu Han
- Shandong Institute of Metrology, Jinan 250102, China
| | - Xinhuan Yan
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| | - Ye Song
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-Operatives, Jinan 250014, China; (S.P.)
| |
Collapse
|
5
|
Tan X, Jiang X, Chen X, Reymick OO, Zhu C, Tao N. Trans-2-hexenal reduces postharvest mango stem-end rot by oxidative damage to Neofusicoccum parvum cell membranes. World J Microbiol Biotechnol 2024; 41:17. [PMID: 39724443 DOI: 10.1007/s11274-024-04235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved. The findings showed that at concentrations greater than 0.4 µL/mL, TH exhibited exceptional antifungal activity against N. parvum in vitro. TH application led to the disruption of the structural integrity of both cell walls and cell membranes, with a particular impact on the latter, as evidenced by the dramatically increased propidium iodide level, as well as reduced total lipids and ergosterol content. Further DCFH-DA staining experiments showed that TH induced mycelial reactive oxygen species (ROS) accumulation, which exacerbated cell membrane lipid peroxidation. For easier application of TH, we fabricated aerogel-loaded TH (ALTH) materials, which demonstrated excellent antifungal activity in vitro. Infestation studies on fruits demonstrated that ALTH mitigated mango stem-end rot in a dose-dependent fashion, with a concentration of 40 µL/L showing efficacy comparable to the conventional fungicide prochloraz, while maintaining fruit quality. In light of these results, TH works by inducing ROS buildup and oxidative damage to the cell membrane of N. parvum, and is a particularly promising preservative for preventing postharvest infections in mangoes.
Collapse
Affiliation(s)
- Xiaoli Tan
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xiaobing Jiang
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Okwong Oketch Reymick
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
- Department of Science, Technical & Vocational Education, College of Education & External Studies, Makerere University, Kampala, Uganda
| | - Chen Zhu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
6
|
Tandel J, Tandel Y, Kapadia C, Singh S, Gandhi K, Datta R, Singh S, Yirgu A. Nontargeted Metabolite Profiling of the Most Prominent Indian Mango ( Mangifera indica L.) Cultivars Using Different Extraction Methods. ACS OMEGA 2023; 8:40184-40205. [PMID: 37929128 PMCID: PMC10620928 DOI: 10.1021/acsomega.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Aroma has a crucial role in assessing the quality of fresh fruit and its processed versions, which serve as reliable indications for advancing local cultivars in the mango industry. The aroma of mango is attributed to a complex of hundreds of volatile, polar, and nonpolar metabolites belonging to different chemical classes like monoterpenes, sesquiterpenes, nonterpene hydrocarbons (alkanes), alcohols, esters, fatty acids, aldehydes, lactones, amides, amines, ethers, and many more. This study looked at the volatile, nonpolar, and polar metabolites from 16 mango cultivars to determine their relative quantities and intervarietal changes using hexane, ethanol, and solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC-MS) analysis. In total, 58 volatile compounds through SPME, 50 nonpolar metabolites from hexane extract, and 52 polar metabolites from ethanol extract were detected from all of the cultivars, belonging to various chemical classes. Through the SPME method, all 16 mango cultivars except Dashehari and Neelum exhibited abundant monoterpenes with maximum concentration in Kesar (91.00%) and minimum in Amrapali (60.66%). However, the abundance of fatty acids and sesquiterpenes was detected in Dashehari (37.91%) and Neelum (74.80%), respectively. In the hexane extract, 23 nonterpene hydrocarbons exhibited abundance in all 16 mango cultivars except Baneshan, with a higher concentration in Dashehari (95.45%) and lower in Ratna (77.63%). The ethanol extraction of 16 mango cultivars showed a higher concentration of esters, aldehydes, alcohols, and amides in Jamadar (52.16%), Dadamio (74.30%), Langra (64.38%), and Kesar (37.10%), respectively. There have been a lot of metabolite variations observed and analyzed using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the similarity of various chemical compounds. Cluster analysis revealed the true similarity and pedigree of different mango cultivars, viz., Neeleswari, Dashehari, Neelum, Alphonso, Baneshan, Sonpari, and Neeleshan. They occupied the same cluster during analysis.
Collapse
Affiliation(s)
- Jinal Tandel
- Department
of Fruit Science, Aspee College of Horticulture, Navsari Agricultural University, Navsari 396450, India
| | - Yatin Tandel
- Department
of Fruit Science, Aspee College of Horticulture, Navsari Agricultural University, Navsari 396450, India
| | - Chintan Kapadia
- Aspee
Shakilam Biotechnology Institute, Navsari
Agricultural University, God Dod Road, Athwa Farm, Surat, Gujarat 395007, India
| | - Susheel Singh
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Kelvin Gandhi
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Sachidanand Singh
- Department
of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315, India
| | - Abraham Yirgu
- Researcher
II, Central Ethiopia Environment and Forestry Research Centre, P.O. Box 33042 Addis Ababa, Ethiopia
| |
Collapse
|
7
|
He Y, Qin H, Wen J, Cao W, Yan Y, Sun Y, Yuan P, Sun B, Fan S, Lu W, Li C. Characterization of Key Compounds of Organic Acids and Aroma Volatiles in Fruits of Different Actinidia argute Resources Based on High-Performance Liquid Chromatography (HPLC) and Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Foods 2023; 12:3615. [PMID: 37835267 PMCID: PMC10572923 DOI: 10.3390/foods12193615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Actinidia arguta, known for its distinctive flavor and high nutritional value, has seen an increase in cultivation and variety identification. However, the characterization of its volatile aroma compounds remains limited. This study aimed to understand the flavor quality and key volatile aroma compounds of different A. arguta fruits. We examined 35 A. arguta resource fruits for soluble sugars, titratable acids, and sugar-acid ratios. Their organic acids and volatile aroma compounds were analyzed using high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The study found that among the 35 samples tested, S12 had a higher sugar-acid ratio due to its higher sugar content despite having a high titratable acid content, making its fruit flavor superior to other sources. The A. arguta resource fruits can be classified into two types: those dominated by citric acid and those dominated by quinic acid. The analysis identified a total of 76 volatile aroma substances in 35 A. arguta resource fruits. These included 18 esters, 14 alcohols, 16 ketones, 12 aldehydes, seven terpenes, three pyrazines, two furans, two acids, and two other compounds. Aldehydes had the highest relative content of total volatile compounds. Using the orthogonal partial least squares discriminant method (OPLS-DA) analysis, with the 76 volatile aroma substances as dependent variables and different soft date kiwifruit resources as independent variables, 33 volatile aroma substances with variable importance in projection (VIP) greater than 1 were identified as the main aroma substances of A. arguta resource fruits. The volatile aroma compounds with VIP values greater than 1 were analyzed for odor activity value (OAV). The OAV values of isoamyl acetate, 3-methyl-1-butanol, 1-hexanol, and butanal were significantly higher than those of the other compounds. This suggests that these four volatile compounds contribute more to the overall aroma of A. arguta. This study is significant for understanding the differences between the fruit aromas of different A. arguta resources and for scientifically recognizing the characteristic compounds of the fruit aromas of different A. arguta resources.
Collapse
Affiliation(s)
- Yanli He
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Jinli Wen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Weiyu Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Yiping Yan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Yining Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Pengqiang Yuan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Bowei Sun
- Faculty of Agriculture, Yanbian University, Yanji 136200, China;
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| | - Changyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.H.); (H.Q.); (J.W.); (W.C.); (Y.Y.); (Y.S.); (P.Y.); (S.F.); (W.L.)
| |
Collapse
|
8
|
Xie H, Meng L, Guo Y, Xiao H, Jiang L, Zhang Z, Song H, Shi X. Effects of Volatile Flavour Compound Variations on the Varying Aroma of Mangoes ' Tainong' and ' Hongyu' during Storage. Molecules 2023; 28:molecules28093693. [PMID: 37175103 PMCID: PMC10179933 DOI: 10.3390/molecules28093693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The aroma, taste, and flavour profiles of mango cultivars vary, directly influencing their marketability and consumer acceptance. In this study, we explored the effects of volatile organic compounds (VOCs) on the distinct aromas of two mango cultivars during storage using GC-IMS and HS-SPME-GC-MS combined with OPLS-DA analysis. Our findings revealed that the terpene and aldehyde contents were higher in the 'Tainong' mango cultivar, compared to the 'Hongyu' mango, while the ester content was lower. The aroma was attributed to the presence of terpinolene, 2-nonenal, delta-carene, and alpha-phellandrene in the early stages of storage, and later-between 5 and 11 days-to ethyl acetate, ethyl butyrate, and ethyl propanoate. Further analysis of characteristic VOCs using OPLS-DA demonstrated and explained the strong grassy aroma of the 'Tainong' mango, and the strong fruity and sweet aromas of the 'Hongyu' mango. Additionally, esters mainly accumulated during the later periods of storage, especially propyl butyrate, which was produced and accumulated when fruit quality deteriorated in the later storage period. Our study provides a theoretical basis for detecting mango VOCs during storage to determine the appropriate marketing time for the two mango cultivars and enables informed consumer choice.
Collapse
Affiliation(s)
- Huiwen Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanhuan Meng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ying Guo
- Department Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hongmei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haichao Song
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xuequn Shi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Kumar A, Castro M, Feller JF. Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. SENSORS (BASEL, SWITZERLAND) 2023; 23:4017. [PMID: 37112358 PMCID: PMC10141392 DOI: 10.3390/s23084017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Food quality control is an important area to address, as it directly impacts the health of the whole population. To evaluate the food authenticity and quality, the organoleptic feature of the food aroma is very important, such that the composition of volatile organic compounds (VOC) is unique in each aroma, providing a basis to predict the food quality. Different types of analytical approaches have been used to assess the VOC biomarkers and other parameters in the food. The conventional approaches are based on targeted analyses using chromatography and spectroscopies coupled with chemometrics, which are highly sensitive, selective, and accurate to predict food authenticity, ageing, and geographical origin. However, these methods require passive sampling, are expensive, time-consuming, and lack real-time measurements. Alternately, gas sensor-based devices, such as the electronic nose (e-nose), bring a potential solution for the existing limitations of conventional methods, offering a real-time and cheaper point-of-care analysis of food quality assessment. Currently, research advancement in this field involves mainly metal oxide semiconductor-based chemiresistive gas sensors, which are highly sensitive, partially selective, have a short response time, and utilize diverse pattern recognition methods for the classification and identification of biomarkers. Further research interests are emerging in the use of organic nanomaterials in e-noses, which are cheaper and operable at room temperature.
Collapse
|
10
|
Guo M, Wu Y, Zhang Y, Hu S, Jia Y, Luo X. Nutritive Value of Active Volatile Components of Anacardiaceae Mango and Their Effects on Carrier Proteins Function. Food Res Int 2023; 168:112779. [PMID: 37120228 DOI: 10.1016/j.foodres.2023.112779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
The effects of mango active volatile components (VOCs) on protein function were investigated from the perspective of nutrient transport. The active volatile components of five varieties of mango were analyzed by headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). The interaction mechanism between active volatile components and three carrier proteins was discussed by fluorescence spectroscopy, molecular docking and dynamic simulation. The results showed that there were 7 active components in the five mango varieties. The aroma components represented by 1-caryophyllene and β-pinene were selected for further study. The interaction between VOCs small molecules and proteins is a static binding process, and its main force is hydrophobic interaction. The results of molecular simulation and spectral experiments showed that the binding ability of 1-caryophyllene and β-pinene to β-Lg was strong, so mango VOCs could possess a certain nutritional value in dairy products, expanding its application in dairy products in the food industry.
Collapse
|
11
|
Li L, Yi P, Sun J, Tang J, Liu G, Bi J, Teng J, Hu M, Yuan F, He X, Sheng J, Xin M, Li Z, Li C, Tang Y, Ling D. Genome-wide transcriptome analysis uncovers gene networks regulating fruit quality and volatile compounds in mango cultivar 'Tainong' during postharvest. Food Res Int 2023; 165:112531. [PMID: 36869530 DOI: 10.1016/j.foodres.2023.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Mango is one of the most economically important fruit; however, the gene regulatory mechanism associated with ripening and quality changes during storage remains largely unclear. This study explored the relationship between transcriptome changes and postharvest mango quality. Fruit quality patterns and volatile components were obtained using headspace gas chromatography and ion-mobility spectrometry (HS-GC-IMS). The changes in mango peel and pulp transcriptome were analyzed during four stages (pre-harvesting, harvesting, maturity, and overripe stages). Based on the temporal analysis, multiple genes involved in the biosynthesis of secondary metabolites were upregulated in both the peel and pulp during the mango ripening process. Moreover, cysteine and methionine metabolism related to ethylene synthesis were upregulated in the pulp over time. Weighted gene co-expression network analysis (WGCNA) further showed that the pathways of pyruvate metabolism, citrate cycle, propionate metabolism, autophagy, and SNARE interactions in vesicular transport were positively correlated with the ripening process. Finally, a regulatory network of important pathways from pulp to peel was constructed during the postharvest storage of mango fruit. The above findings provide a global insight into the molecular regulation mechanisms of postharvest mango quality and flavor changes.
Collapse
Affiliation(s)
- Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Guangxi University, 530004 Nanning, China
| | - Ping Yi
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China; Guangxi Academy of Agricultural Sciences, 530007 Nanning, China.
| | - Jie Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Jinfeng Bi
- Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China
| | - Fang Yuan
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Xuemei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Jinfeng Sheng
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Ming Xin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Zhichun Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Yayuan Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Dongning Ling
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| |
Collapse
|
12
|
Zhang Y, Tong X, Chen B, Wu S, Wang X, Zheng Q, Jiang F, Qiao Y. Novel application of HS-GC-IMS for characteristic fingerprints and flavor compound variations in Citrus reticulatae pericarpium during storage with different Aspergillus niger fermentation. Food Chem X 2023; 18:100653. [PMID: 36993870 PMCID: PMC10041455 DOI: 10.1016/j.fochx.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Citrus reticulatae pericarpium (CRP) is regarded as a valuable functional food in many countries due to its pharmacological activities and unique aroma. In this study, CRP was treated by different A. niger to accelerate aging. Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) fingerprinting was adopted to rapidly and comprehensively evaluate the flavor compounds of CRP and to identify their dynamic changes at different storage time. Results revealed that the hesperidin content of DOL groups reduced more clearly than other groups during storage. A total of 134 volatile flavor compounds were identified. The volatile organic compounds (VOCs) showed that the lemon, sweet with the musk aroma of CRP, changed to apple, pineapple, and coffee odors during storage. The principal component analysis (PCA) and fingerprint similarity analysis (FSA) results showed that the CRP was clearly distinguished at different storage time. DOL-3 and DOS-6 differ the most from the DOW-3,6, respectively. This work provided helpful information for accelerating the aging of CRP and has great potential for industrial application.
Collapse
|
13
|
Changes in quality properties and volatile compounds of different cultivars of green plum (Prunus mume Sieb. et Zucc.) during ripening. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
de Sousa DB, da Silva GS, Serrano LAL, Martins MVV, Rodrigues THS, Lima MAS, Zocolo GJ. Metabolomic Profile of Volatile Organic Compounds from Leaves of Cashew Clones by HS-SPME/GC-MS for the Identification of Candidates for Anthracnose Resistance Markers. J Chem Ecol 2023; 49:87-102. [PMID: 36631524 DOI: 10.1007/s10886-022-01402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, β-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Anne Sousa Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
15
|
Liu H, Yu Y, Zou B, Yu Y, Yang J, Xu Y, Chen X, Yang F. Evaluation of Dynamic Changes and Regularity of Volatile Flavor Compounds for Different Green Plum ( Prunus mume Sieb. et Zucc) Varieties during the Ripening Process by HS-GC-IMS with PLS-DA. Foods 2023; 12:551. [PMID: 36766079 PMCID: PMC9913901 DOI: 10.3390/foods12030551] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Headspace gas chromatography-ion mobility spectrometry and partial-least-squares discriminant analysis (PLS-DA) were adopted to analyze the rule of change in flavor substances for different varieties of green plums at different levels of maturity (S1-immature, S2-commercially mature, and S3-fully mature). The results showed that 68 kinds of volatile flavor substances were identified in all green plum samples. The types and contents of such volatile substances experienced a V-shaped trend with an increasing degree of green plum maturity. During the S1 and S2 stages, aldehydes, ketones, and a small amount of alcohols were the main volatile flavor substances in the green plum samples. During the S3 stage, esters and alcohols were the most important volatile flavor components in the green plum pulp samples, followed by terpenes and ketones. YS had the most types and highest contents of volatile flavor substances in three stages, followed by GC and DZ. By using the PLS-DA method, this study revealed the differences in flavor of the different varieties of green plums at different maturity stages, and it identified eight common characteristic volatile flavor substances, such as ethyl acetate, 3-methylbutan-1-ol, and 2-propanone, produced by the different green plum samples during the ripening process, as well as the characteristic flavor substances of green plums at each maturity stage (S1-S3).
Collapse
Affiliation(s)
- Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yangyang Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Xiaowei Chen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Fan Yang
- Liuliu Orchard Group Co., Ltd., Wuhu 241200, China
| |
Collapse
|
16
|
Chen X, Xu Y, Wu J, Yu Y, Zou B, Li L. Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods 2023; 12:foods12020330. [PMID: 36673422 PMCID: PMC9858270 DOI: 10.3390/foods12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
In this study, the physicochemical properties, antioxidant capacity, and volatile compounds of the juices of different guava cultivars before and after pectinase treatment were evaluated. The results showed that the guava juice of the small fragrant (SF) cultivar exhibited the highest ascorbic acid concentration (1761.09 mg/L), and the highest contents of total phenolics (329.52 mg GAE/L) and total flavonoids (411.13 mg RE/L) were both found in the juice of the watermelon red (WR) cultivar. After pectinase treatment, the juice yield and the titratable acid, sugar components, total phenolics and total flavonoids, and antioxidant capacity levels of the guava juices were all higher than those of the non-pectinase group. However, lower sensory evaluation scores were obtained in the pectinase-treated guava juices. Aldehydes and terpenoids were the main flavor components in the guava juices, which were responsible for the aroma of the juice, while their relative contents were different in the four cultivar guava juices. Furthermore, pectinase treatment could change the amounts and relative contents of volatile compounds in the guava juice. During the pectinase treatment process, the relative contents of the main aroma constituents in the guava juices were significantly decreased. The findings of this research provide valuable information for the processing of guava juice.
Collapse
|
17
|
Evolution of Free Amino Acids, Histamine and Volatile Compounds in the Italian Anchovies ( Engraulis encrasicolus L.) Sauce at Different Ripening Times. Foods 2022; 12:foods12010126. [PMID: 36613342 PMCID: PMC9818933 DOI: 10.3390/foods12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
In this study, the evolution of the safety, nutritional, and volatile profile of a traditional Italian anchovy sauce with protected designation of origin (PDO), called "colatura di alici di Cetara", is investigated after 12, 24, and 48 months of aging in wooden barrels. Some physicochemical parameters, free amino acids, volatile compounds, and histamine contents were evaluated during the aging of the samples. Glutamate, which together with aspartate is responsible for the umami taste, was the predominant free amino acid in the tested fish sauce, with a significant increase during the 48 months of maturation. The total amino acid content of the anchovy sauce increased from 24 to 48 months of aging. The histamine content decreased significantly from 12 to 48 months of ripening. This point is particularly interesting for the sauce safety and confirms the importance of the maturation time of at least 9 months reported in the disciplinary of production. A total of 44 volatile compounds were found in the anchovy sauce samples, of which the largest class was acids, mainly isovaleric acid. The results show that prolonged maturation improves the safety, nutritional, and volatile components of the seasoning "colatura di alici".
Collapse
|
18
|
Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata ‘chachi’ peel at different collection periods using gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Liu J, Clarke JA, McCann S, Hillier NK, Tahlan K. Analysis of Streptomyces Volatilomes Using Global Molecular Networking Reveals the Presence of Metabolites with Diverse Biological Activities. Microbiol Spectr 2022; 10:e0055222. [PMID: 35900081 PMCID: PMC9431705 DOI: 10.1128/spectrum.00552-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Streptomyces species produce a wide variety of specialized metabolites, some of which are used for communication or competition for resources in their natural environments. In addition, many natural products used in medicine and industry are derived from Streptomyces, and there has been interest in their capacity to produce volatile organic compounds (VOCs) for different industrial and agricultural applications. Recently, a machine-learning workflow called MSHub/GNPS was developed, which enables auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data, molecular networking, and library search capabilities, but it has not been applied to Streptomyces volatilomes. In this study, 131 Streptomyces isolates from the island of Newfoundland were phylogenetically typed, and 37 were selected based on their phylogeny and growth characteristics for VOC analysis using both a user-guided (conventional) and an MSHub/GNPS-based approach. More VOCs were annotated by MSHub/GNPS than by the conventional method. The number of unknown VOCs detected by the two methods was higher than those annotated, suggesting that many novel compounds remain to be identified. The molecular network generated by GNPS can be used to guide the annotation of such unknown VOCs in future studies. However, the number of overlapping VOCs annotated by the two methods is relatively small, suggesting that a combination of analysis methods might be required for robust volatilome analysis. More than half of the VOCs annotated with high confidence by the two approaches are plant-associated, many with reported bioactivities such as insect behavior modulation. Details regarding the properties and reported functions of such VOCs are described. IMPORTANCE This study represents the first detailed analysis of Streptomyces volatilomes using MSHub/GNPS, which in combination with a routinely used conventional method led to many annotations. More VOCs could be annotated using MSHub/GNPS as compared to the conventional method, many of which have known antimicrobial, anticancer, and insect behavior-modulating activities. The identification of numerous plant-associated VOCs by both approaches in the current study suggests that their production could be a more widespread phenomenon by members of the genus, highlighting opportunities for their large-scale production using Streptomyces. Plant-associated VOCs with antimicrobial activities, such as 1-octen-3-ol, octanol, and phenylethyl alcohol, have potential applications as fumigants. Furthermore, many of the annotated VOCs are reported to influence insect behavior, alluding to a possible explanation for their production based on the functions of other recently described Streptomyces VOCs in dispersal and nutrient acquisition.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
20
|
Effect of alginate-based coating charged with hydroxyapatite and quercetin on colour, firmness, sugars and volatile compounds of fresh cut papaya during cold storage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractActive alginate-based coatings with quercetin glycoside and complexes of hydroxyapatite/quercetin-glycoside were used to study the shelf life of fresh cut papaya stored at 6 °C. Hydroxyapatite was used as a carrier for the release of the bioactive compound. The parameters considered affecting the quality of the fruit during storage were weight loss, color, texture, sugars and volatile compounds. Active coatings with hydroxyapatite and quercetin glycoside proved a higher capacity to slow down the degradation phenomena studied, showing less weight loss, a lower reduction in glucose and fructose, as well as better firmness, than the other samples after 14 days of cold storage. Benzyl isothiocyanate, the characteristic odor compound of papaya fruit, ranged from approximately 10.0 μg/kg in fresh cut fruit to approximately 7.50 μg/kg in samples coated by alginate with hydroxyapatite/quercetin and 3.6 μg/kg in the fresh cut papaya without coating after 14 days of cold storage. The trials also indicated greater effectiveness of alginate coatings alone and with quercetin-glucoside in preserving the color of freshly cut papaya.
Collapse
|
21
|
Campos Alencar Oldoni F, Florencio C, Brait Bertazzo G, Aparecida Grizotto P, Bogusz Junior S, Lajarim Carneiro R, Alberto Colnago L, David Ferreira M. Fruit quality parameters and volatile compounds from 'Palmer' mangoes with internal breakdown. Food Chem 2022; 388:132902. [PMID: 35447579 DOI: 10.1016/j.foodchem.2022.132902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
The internal breakdown (IB) is a premature and uneven mango pulp ripening physiological disorder that is noticed only when the fruit is sliced for consumption. Thus, there is a demand for analytical methods to detect IB in mangoes to avoid consumer dissatisfaction and reduce postharvest waste. In this work, physicochemical and volatile compounds were determined to evaluate the ability to predict pulp IB. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the data show that color, firmness, and volatiles compounds are important to give some information about the physiological changes caused by IB. The volatile compounds methacrylic acid, ethyl ester, isopentyl ethanoate, limonene oxide, (E)-2-pentenal, tetradecane, and γ-elemene were identified as chemical markers of IB. Therefore, mango physical and chemical characteristics combined with PCA and PLS-DA were successfully employed for the identification of IB in mangoes, showing significant differences between healthy and IB fruits.
Collapse
Affiliation(s)
- Fernanda Campos Alencar Oldoni
- Department of Food and Nutrition, Sao Paulo State University (UNESP), Rod. Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil.
| | - Camila Florencio
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| | - Giovana Brait Bertazzo
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Pamela Aparecida Grizotto
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Stanislau Bogusz Junior
- Sao Carlos Institute of Chemistry (IQSC), University of Sao Paulo (USP), Trab. Sao Carlense Av., 400 - Arnold Schimidt Park, 13566-590, Sao Carlos, SP, Brazil
| | - Renato Lajarim Carneiro
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), Rod. Washington Luis, Km 235, 310, 13565-905 Sao Carlos, SP, Brazil
| | - Luiz Alberto Colnago
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, XV de Novembro Street, 1452, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
22
|
Zhang Y, Liu W, Zhang B, Zhang Y, Cai Z, Song H, Ma R, Yu M. Analysis of volatile compounds and their potential regulators in four high-quality peach (Prunus persica L.) cultivars with unique aromas. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Pereira JAM, Casado N, Porto-Figueira P, Câmara JS. The Potential of Microextraction Techniques for the Analysis of Bioactive Compounds in Food. Front Nutr 2022; 9:825519. [PMID: 35257008 PMCID: PMC8897005 DOI: 10.3389/fnut.2022.825519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, the importance of sample preparation and extraction in the analytical performance of the most diverse methodologies have been neglected. Cumbersome techniques, involving high sample and solvent volumes have been gradually miniaturized from solid-phase and liquid-liquid extractions formats and microextractions approaches are becoming the standard in different fields of research. In this context, this review is devoted to the analysis of bioactive compounds in foods using different microextraction approaches reported in the literature since 2015. But microextraction also represents an opportunity to mitigate the environmental impact of organic solvents usage, as well as lab equipment. For this reason, in the recent literature, phenolics and alkaloids extraction from fruits, medicinal herbs, juices, and coffee using different miniaturized formats of solid-phase extraction and liquid-liquid microextraction are the most popular applications. However, more ambitious analytical limits are continuously being reported and emergent sorbents based on carbon nanotubes and magnetic nanoparticles will certainly contribute to this trend. Additionally, ionic liquids and deep eutectic solvents constitute already the most recent forefront of innovation, substituting organic solvents and further improving the current microextraction approaches.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Natalia Casado
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
24
|
Effect of Lactic Acid Fermentation on Volatile Compounds and Sensory Characteristics of Mango (Mangifera indica) Juices. Foods 2022; 11:foods11030383. [PMID: 35159535 PMCID: PMC8834145 DOI: 10.3390/foods11030383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Fermentation is a sustainable bio-preservation technique that can improve the organoleptic quality of fruit juices. Mango juices were fermented by monoculture strains of Lactiplantibacillus plantarum subsp. plantarum (MLP), Lacticaseibacillus rhamnosus (MLR), Lacticaseibacillus casei (MLC), Levilactobacillus brevis (MLB), and Pediococcus pentosaceus (MPP). Volatile compounds were sorbed using headspace solid phase microextraction, separated, and identified with gas chromatography-mass spectrometry. Forty-four (44) volatile compounds were identified. The control, MPP, and MLB had higher amounts of ethyl acetate, ethyl butyrate, 2-hexenal, 2,6-nonadienal, 2,2-dimethylpropanal, β-selinene, γ-gurjunene, α-copaene, and δ-cadinene, while MLC, MLP, and MLR had higher amounts of 2,3-butanedione and a cyclic hydrocarbon derivate. Consumers (n = 80) assessed their overall liking and characterized sensory attributes (appearance, color, aroma, flavor, consistency, acidity, and sweetness) using check-all-that-apply, and penalty analysis (just-about-right). Overall liking was associated with ‘mango color’, ‘pulp’, ‘mango aroma’, ‘sweet’, ‘natural taste’, and ‘mango flavor’ that described the control, MLB, MLC and MPP. Juices MLR and MLP were described as ‘bitter’, ‘sour’, ‘aftertaste’, and ‘off-flavor’. Multivariate analysis revealed relationships between the volatile compounds, mango juices fermented by different lactic acid bacteria, and sensory characteristics. Thus, the type of lactic acid bacteria strains determined the volatile and sensory profile of mango juices.
Collapse
|
25
|
Farag MA, Dokalahy EU, Eissa TF, Kamal IM, Zayed A. Chemometrics-Based Aroma Discrimination of 14 Egyptian Mango Fruits of Different Cultivars and Origins, and Their Response to Probiotics Analyzed via SPME Coupled to GC-MS. ACS OMEGA 2022; 7:2377-2390. [PMID: 35071925 PMCID: PMC8771959 DOI: 10.1021/acsomega.1c06341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 05/08/2023]
Abstract
The present study investigated the volatile organic compounds (VOCs) in 14 Egyptian mango specimens collected from three different regions and of different cultivars (cvs). VOCs were extracted via solid-phase microextraction, followed by gas chromatography-mass spectrometry analysis. The results obtained for sesquiterpene hydrocarbons' qualitative abundance were represented by 28 peaks, whereas monoterpene hydrocarbons amounted for the highest levels in most of the mango cvs. Multivariate data analyses were employed for sample classification and identification of markers. Unsupervised principal component analysis revealed that "zebdia" cv from the three origins combined together being enriched in terpinolene. Moreover, supervised orthogonal partial least square-discriminant analysis identified β-terpinene and (Z)-geranylacetone in the premium "awees" cv. The impact of probiotic bacteria on mango juice aroma was further assessed revealing no potential changes in the composition. This study provides the first comprehensive insights into Egyptian mango aroma and reveals that the cv type overcomes the geographical origin in their aroma profile.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
- , . Phone: +011-202-2362245. Fax: +011-202-25320005
| | - Erick U. Dokalahy
- Chemistry
Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Tarek F. Eissa
- Faculty
of Biotechnology, October University for
Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Islam M. Kamal
- Microbiology
and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr
El Aini Street, Cairo 11562, Egypt
| | - Ahmed Zayed
- Pharmacognosy
Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt
- Institute
of Bioprocess Engineering, Technical University
of Kaiserslautern, Gottlieb-Daimler-Street
49, Kaiserslautern 67663, Germany
| |
Collapse
|
26
|
Effects of High Hydrostatic Pressure Combined with Vacuum-Freeze Drying on the Aroma-Active Compounds in Blended Pumpkin, Mango, and Jujube Juice. Foods 2021; 10:foods10123151. [PMID: 34945702 PMCID: PMC8702150 DOI: 10.3390/foods10123151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
A combination process of completely non-thermal processing methods involving high hydrostatic pressure (HHP) and vacuum-freeze drying (VFD) for producing a new snack from fruit and vegetable blends was developed, and the effect of the process on flavor quality was investigated. The HHP-VFD treatment did not significantly reduce volatile compound contents compared to single HHP or VFD. Gas chromatography-olfactometry showed that HHP-VFD raised the contents of floral-like volatile compounds (e.g., β-ionone) compared to the untreated sample. Sensory evaluation analysis confirmed that the overall liking was unchanged after the HHP-VFD treatment. The HHP-VFD combined treatment is effective in maintaining the flavor and extending shelf life, and is convenient for the portability and transportation of ready-to-drink juice.
Collapse
|
27
|
Liu H, Xu Y, Wu J, Wen J, Yu Y, An K, Zou B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res Int 2021; 150:110784. [PMID: 34865799 DOI: 10.1016/j.foodres.2021.110784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/24/2023]
Abstract
This study aims to investigate the influence of different harvesting seasons on the aroma of black tea and the trend in the tea aroma variation. A total of 68 volatile substances was identified by gas chromatography coupled with ion-mobility spectrometry (GC-IMS), and 20 characteristic aroma-active compounds were quantitatively analyzed by gas chromatography-olfactometry coupled with aroma extract dilution analysis (GC-O AEDA) and odor activity value (OAV) analysis. These aroma-active compounds are mainly linalool, β-damascenone, and benzeneacetaldehyde. Both methods confirmed that the aroma of tea changes with the harvesting seasons, showing a downward trend followed by an upward trend. Besides, black teas harvested in different seasons have their characteristic volatile compounds and metabolism precursors. The degradation of glycosides, carotenes, and amino acids are the most important degradation pathways for the formation of tea aroma. The PLSR results of GC-O-AEDA, OAV, and DSA data agree with each other, showing that five aroma attributes of the autumn tea have strong correlations. The autumn tea has the richest aroma, followed by the spring tea and the summer tea.
Collapse
Affiliation(s)
- Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Kejing An
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
28
|
Egea MB, Bertolo MRV, de Oliveira Filho JG, Lemes AC. A Narrative Review of the Current Knowledge on Fruit Active Aroma Using Gas Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021; 26:5181. [PMID: 34500614 PMCID: PMC8433627 DOI: 10.3390/molecules26175181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Fruit aroma, a mixture of chemical compounds with odor, is a strong attractant derived from a complex mixture of different amounts and intensities (threshold) of chemical compounds found in fruits. The odor-producing compounds of fruit aroma are derived from carbohydrates, lipids, phenolic compounds, and mono- and sesquiterpenes, among others. The identification of compounds responsible for fruit aroma is usually conducted using gas chromatography coupled with olfactometry (GC-O). This technique separates the chemical compounds from the aroma of foods using a chromatographic column and divides the resultant outflow between the physical detector and a testing outlet (sniffing port). Trained judges describe the perceived odor in terms of the intensity of the odor zones perceived according to their training method. Moreover, the use of GC-O coupled with a mass detector (GC-MS-O) allows for the retrieval of chemical information such as identification and quantification of compounds, which can be correlated to sensory information. This review aimed to demonstrate the application of GC-MS-O in the identification of precursor compounds in fruit aroma, considering important factors for the application, main results, and most recent advances in this field.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Campus Rio Verde, Goiano Federal Institute of Education, Science and Technology, Rodovia Sul Goiana, Km 01, Rural Area, Rio Verde 75901-970, GO, Brazil
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, CP-780, São Carlos 13560-970, SP, Brazil;
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, RJ, Brazil;
| |
Collapse
|
29
|
A comparative study of aromatic characterization of Yingde Black Tea infusions in different steeping temperatures. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Beltrán Sanahuja A, Valdés García A. New Trends in the Use of Volatile Compounds in Food Packaging. Polymers (Basel) 2021; 13:polym13071053. [PMID: 33801647 PMCID: PMC8038046 DOI: 10.3390/polym13071053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the last years, many of the research studies in the packaging industry have been focused on food active packaging in order to develop new materials capable of retaining the active agent in the polymeric matrix and controlling its release into food, which is not easy in many cases due to the high volatility of the chemical compounds, as well as their ease of diffusion within polymeric matrices. This review presents a complete revision of the studies that have been carried out on the incorporation of volatile compounds to food packaging applications. We provide an overview of the type of volatile compounds used in active food packaging and the most recent trends in the strategies used to incorporate them into different polymeric matrices. Moreover, a thorough discussion regarding the main factors affecting the retention capacity and controlled release of volatile compounds from active food packaging is presented.
Collapse
Affiliation(s)
- Ana Beltrán Sanahuja
- Correspondence: (A.B.S.); (A.V.G.); Tel.: +34-965-90-96-45 (A.B.S.); +34-965-90-35-27 (A.V.G.)
| | - Arantzazu Valdés García
- Correspondence: (A.B.S.); (A.V.G.); Tel.: +34-965-90-96-45 (A.B.S.); +34-965-90-35-27 (A.V.G.)
| |
Collapse
|
31
|
Li C, Xin M, Li L, He X, Yi P, Tang Y, Li J, Zheng F, Liu G, Sheng J, Li Z, Sun J. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chem 2021; 355:129685. [PMID: 33799248 DOI: 10.1016/j.foodchem.2021.129685] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
Passion fruit is a tropical liana of the Passiflora family that is commonly consumed throughout the world due to its attractive aroma and flavor. However, very limited information is available on the mechanism of aroma formation and composition of the passion fruit during ripening. Therefore, HS-SPME-GC/MS combined with transcriptome analysis was used to study the mechanism of aroma formation during passion fruit ripening. The profile analyzed included 148 volatile organic compounds (VOCs) and related differentially expressed genes (DEGs). Compared with SA, 85 VOCs and related DEGs were identified as significantly upregulated at the SB and SC stages, including esters, alcohols, ketones, hydrocarbons, alkanes, and aldehydes. Two main pathways, ester and amino acid metabolism, and related genes were analyzed with VOC biosynthesis in passion fruit. This study is the first analysis of passion fruit VOC formation and provides new insights into the flavor mechanism and quality breeding of passion fruit.
Collapse
Affiliation(s)
- Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Ming Xin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Ping Yi
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jiemin Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Fengjin Zheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Guoming Liu
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jinfeng Sheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Zhichun Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| |
Collapse
|
32
|
Wongkaew M, Sangta J, Chansakaow S, Jantanasakulwong K, Rachtanapun P, Sommano SR. Volatile profiles from over-ripe purée of Thai mango varieties and their physiochemical properties during heat processing. PLoS One 2021; 16:e0248657. [PMID: 33730082 PMCID: PMC7968669 DOI: 10.1371/journal.pone.0248657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
This research investigated volatile profiles of over-ripe Thai mango purée during thermal processing by solid-phase extraction, volatile quantification by XAD-2-solvent extraction, as well as descriptive sensory analysis. Overripe fruits of three varieties were analyzed for the ripening stage using specific gravity as well as firmness and the physiochemical properties were also reported. We found that aromatic profiles could be used as true representative to describe Thai mango identities of each varieties. A simple and straightforward heat treatment had differing effects on aroma characteristics and those effects were dependent with mango varieties. Indeed, the amount of terpene hydrocarbons and oxygenated sesquiterpenoids alternated after heat treatment. All descriptive attributes of heated ‘sam-pee’ purée were intensified while, heat treatment significantly improved only “mango identity” in ‘maha-chanok’ and “fermented” odour in ‘keaw’ purée. With or without heat treatment, the volatile profiles of ‘maha-chanok’ remained quite stable while heating played a significant role on chemical ingredients of ‘keaw’ and ‘sam-pee’. Our study demonstrated that the manufacturing of the over-ripe mango into the products of high market value, selection of varieties is vitally important based upon their specific aroma characteristics before and after processing.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Faculty of Agriculture, Department of Plant and Soil Sciences, Plant Bioactive Compound Laboratory, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Integrated of Science and Technology, Programme of Food Production and Innovation, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
- Major of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Sangta
- Faculty of Agriculture, Department of Plant and Soil Sciences, Plant Bioactive Compound Laboratory, Chiang Mai University, Chiang Mai, Thailand
- Major of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Sunee Chansakaow
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Faculty of Agriculture, Department of Plant and Soil Sciences, Plant Bioactive Compound Laboratory, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
33
|
Arai N, Miyake M, Yamamoto K, Kajiwara I, Hosoya N. Soft Mango Firmness Assessment Based on Rayleigh Waves Generated by a Laser-Induced Plasma Shock Wave Technique. Foods 2021; 10:foods10020323. [PMID: 33546385 PMCID: PMC7913535 DOI: 10.3390/foods10020323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Many methods based on acoustic vibration characteristics have been studied to indirectly assess fruit ripeness via fruit firmness. Among these, the frequency of the 0S2 vibration mode measured on the equator has been examined, but soft-flesh fruit do not show the 0S2 vibration mode. In this study, a Rayleigh wave is generated on a soft mango fruit using the impulse excitation force generated by a laser-induced plasma shock wave technique. Then, the flesh firmness of mangoes is assessed in a non-contact and non-destructive manner by observing the Rayleigh wave propagation velocity because it is correlated with the firmness (shear elasticity), density, and Poisson's ratio of an object. If the changes in the density and Poisson's ratio are small enough to be ignored during storage, then the Rayleigh wave propagation velocity is strongly correlated to fruit firmness. Here, we measure the Rayleigh wave propagation velocity and investigate the effect of storage time. Specifically, we investigate the changes in firmness caused by ripening. The Rayleigh wave propagation velocity on the equator of Kent mangoes tended to decrease by over 4% in 96 h. The Rayleigh wave measured on two different lines propagated independent distance and showed a different change rate of propagation velocity during 96-h storage. Furthermore, we consider the reliability of our method by investigating the interaction of a mango seed on the Rayleigh wave propagation velocity.
Collapse
Affiliation(s)
- Nayuta Arai
- Division of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Masafumi Miyake
- Division of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Kengo Yamamoto
- Division of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Itsuro Kajiwara
- Division of Human Mechanical Systems and Design, Hokkaido University, N13, W8, Kita-ku, Sapporo-shi 060-8628, Hokkaido, Japan
| | - Naoki Hosoya
- Department of Engineering Science and Mechanics, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
34
|
Utami M, Wijaya CH, Efendi D, Adawiyah DR. KARAKTERISTIK FISIKOKIMIA DAN PROFIL SENSORI MANGGA GEDONG PADA DUA TINGKAT KEMATANGAN. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.2.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mangoes of Gedong variety (Mangifera indica L. var. gedong) is one of the exported commodities from Indonesia. Half mature mangoes of this type are called gedong mangoes, whereas the full ripe mangoes are called gedong gincu mango. This research aimed to determine the physicochemical charac-teristics, sensory attributes and volatile compounds of the above two mango types. The results showed that gedong mangoes had a lower pH value, less total soluble solid, harder texture, and the skin color had a lower intensity of lightness, redness, and yellowness as compared to gedong gincu mango. The sensory analysis using rate-all-that-apply (RATA) method showed that attributes of color, fibrous, aroma (fruity, caramel, cooked, green, fermented, floral, sweet), taste (sweet, sour), melting, firmness, juiciness and astringency were significantly different between gedong and gedong gincu mango. The overall sensory of gedong gincu mangoes was more preferred by the panelists with the hedonic score of 6.20±0.09 (6= like) while that of gedong mango was 5.37±0.09 (5= slightly like). The sensory profiles of both mangoes were supported by the analysis of their volatile compounds. The gedong mango had predominantly green type of volatiles aroma while the gedong gincu was dominated by the fruity sweet ones. The sensory acceptability of gedong gincu mango was significantly higher rather than that of gedong mango.
Collapse
|
35
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
36
|
Fratianni A, Adiletta G, Di Matteo M, Panfili G, Niro S, Gentile C, Farina V, Cinquanta L, Corona O. Evolution of Carotenoid Content, Antioxidant Activity and Volatiles Compounds in Dried Mango Fruits ( Mangifera Indica L.). Foods 2020; 9:E1424. [PMID: 33050135 PMCID: PMC7600135 DOI: 10.3390/foods9101424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
The aim of this research was to study the evolution of carotenoid compounds, antioxidant β-ctivity, volatiles and sensory quality in two mango cultivars dried at 50, 60 and 70 °C. Total carotenoids in fresh samples were about 12 and 6 mg/100 g (dry basis) in Keitt and Osteen samples, respectively. β-carotene was the main carotenoid, representing about 50% of total carotenoids. In both cultivars, carotenoids were more susceptible to drying at 60 °C. Total phenols and metal reduction activity were higher in Osteen than in Keitt, which had higher values in radical scavenging capacity. The antioxidant activities were best preserved with drying temperatures at 50 °C in Keitt and 60 °C in Osteen fruits. Fresh Osteen mango fruits had a volatile compound content of about 37.1, while Keitt of about 5.2 mg/kg (dry basis). All the compounds with odorous impact were significantly reduced after drying. As regards organoleptic characteristics through sensory analysis, Keitt dried mangoes were quite similar to the fresh product, compared to Osteen.
Collapse
Affiliation(s)
- Alessandra Fratianni
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.F.); (G.P.); (S.N.)
| | - Giuseppina Adiletta
- Dipartimento di Ingegneria Industriale, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Marisa Di Matteo
- Dipartimento di Ingegneria Industriale, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Gianfranco Panfili
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.F.); (G.P.); (S.N.)
| | - Serena Niro
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.F.); (G.P.); (S.N.)
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
| | - Vittorio Farina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (V.F.); (L.C.); (O.C.)
| | - Luciano Cinquanta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (V.F.); (L.C.); (O.C.)
| | - Onofrio Corona
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (V.F.); (L.C.); (O.C.)
| |
Collapse
|
37
|
Naviglio D, Gallo M. Application of Analytical Chemistry to Foods and Food Technology. Foods 2020; 9:E1296. [PMID: 32942539 PMCID: PMC7554738 DOI: 10.3390/foods9091296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Foods are a mixture of substances capable of supplying the human body with nutrients, which, once metabolized, are used mainly for the production of energy, heat, replenishment, and growth material for organs and tissues, ensuring the normal performance of vital functions necessary for growth of the human body. Therefore, the study of the chemical composition of foods and the properties of their constituents helps to define their nutritional and commodity values. Furthermore, it allows for evaluation of the chemical modifications that the constituents of the food undergo following the treatments (Food Technology) to which they are subjected. Analytical chemistry is the branch of chemistry based on the qualitative and quantitative determination of compounds present in a sample under examination. Therefore, through its application, it is possible to determine the quality of a product and/or its nutritional value, reveal adulterations, identify the presence of xenobiotic substances potentially harmful to human health (heavy metals, IPA, pharmaceuticals, etc.). Furthermore, some foods, in particular those of plant origin, contain numerous substances, secondary metabolites, with huge beneficial effects for human health. These functional components can be taken both through a correct diet, but also obtained from different food matrices by technological or biotechnological processes for the formulation of both functional foods and/or nutraceutical products. This Special Issue brings together 10 original studies and two comprehensive reviews on the above topics, in particular: (i) processes of extraction, identification, and characterization of biologically active compounds from different food matrices, (ii) overview of the main techniques applied for the determination of food colors, (iii) newer and greener solid-liquid extraction techniques.
Collapse
Affiliation(s)
- Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
38
|
Du KZ, Sun AL, Yan C, Liang C, Qi L, Wang C, Yang R, Cui Y, Shang Y, Li J, Chang YX. Recent advances of green pretreatment techniques for quality control of natural products. Electrophoresis 2020; 41:1469-1481. [PMID: 32524626 DOI: 10.1002/elps.202000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
A few advancing technologies for natural product analysis have been widely proposed, which focus on decreasing energy consumption and developing an environmentally sustainable manner. These green sample pretreatment and analysis methods following the green Analytical Chemistry (GAC) criteria have the advantage of improving the strategy of chemical analyses, promoting sustainable development to analytical laboratories, and reducing the negative effects of analysis experiments on the environment. A few minimized extraction methodologies have been proposed for replacing the traditional methods in the quality evaluation of natural products, mainly including solid-phase microextraction (SPME) and liquid phase microextraction (LPME). These procedures not only have no need for large numbers of samples and toxic reagent, but also spend a small amount of extraction and analytical time. This overview aims to list out the main green strategies on the application of quality evaluation and control for natural products in the past 3 years.
Collapse
Affiliation(s)
- Kun-Ze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - A-Li Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chaozhuo Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chunxiao Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lina Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chenhong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Rui Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ye Shang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|