1
|
Romero-Martínez M, Andrade-Pizarro R, De Paula C. Functional compounds in tropical fruit processing by-products and intrinsic factors affecting their composition: A review. Curr Res Food Sci 2025; 10:101028. [PMID: 40190386 PMCID: PMC11968299 DOI: 10.1016/j.crfs.2025.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Tropical fruits, highly demanded in the food industry, generate a considerable amount of waste during processing. These traditionally discarded by-products, such as peels, seeds and pomace, are rich in bioactive compounds, natural molecules that have beneficial properties for human health, as they participate in various metabolic processes in the organism. Among the most prominent compounds are flavonoids, carotenoids, phenolic compounds, tannins and vitamin C. Beyond their health benefits, these compounds have significant industrial value and are widely used in the textile, pharmaceutical, cosmetic, biotechnological and food fields, in the latter especially as preservatives, additives, colorants and others. This review explores the main bioactive compounds found in fruit by-products, highlighting their functional relevance and analyzing the intrinsic or fruit-derived factors that influence the composition of these compounds, such as the type of by-product (peels, seeds, bagasse, pomace), the variety of fruit, and the state of maturity at the time of processing. In addition, the extraction methods used to obtain these compounds are addressed, differentiating between conventional techniques, such as solvent extraction, and emerging methods, such as ultrasound-assisted extraction and supercritical fluid extraction, which offer advantages in terms of efficiency and sustainability. The diversity of bioactive compounds and their potential application in various industries highlight the importance of ongoing research in this field. It is necessary to further study the factors that influence the composition of these compounds, as well as the development of more efficient and sustainable extraction methods. These advances will not only add value to food industry waste, but will also contribute to the development of natural products with health benefits.
Collapse
Affiliation(s)
- María Romero-Martínez
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Ricardo Andrade-Pizarro
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Claudia De Paula
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| |
Collapse
|
2
|
Lordêlo Nascimento L, Alves dos Santos PN, Granja HS, da Silveira Ferreira L, Ferreira Lima JV, de Moura Pita BL, dos Santos Polidoro A, dos Santos Freitas L, Caramão EB, de Souza Dias F, Fricks AT. Mixture Design and Doehlert Matrix for Optimization of Energized Dispersive Guided Extraction (EDGE) of Theobromine and Caffeine from Cocoa Bean Shells. Foods 2025; 14:740. [PMID: 40077443 PMCID: PMC11899108 DOI: 10.3390/foods14050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This work describes the development of a method for the extraction of methylxanthines from cocoa bean shell (CBS) by employing the novel Energized Dispersive Guided Extraction (EDGE) system. The mixtures were composed of ethanol-methanol-water and the ratio was optimized using a simplex-centroid design. Doehlert design (DD) was used to optimize the variables of temperature and time while using methylxanthine content obtained by HPLC-DAD as an analytical response. The optimized mixture consisted of water-ethanol in a 3:2 ratio. The optimum operating conditions for extraction were achieved at a temperature of 148.5 °C and 382 s. Under optimal conditions, 20.14 mg g-1 DM of theobromine and 3.53 mg g-1 DM of caffeine were found in the CBS extract. Methylxanthines were quantified with good linearity, LOQs, LODs, precision, and accuracy. The EDGE system, a newly automated extraction instrument, has proven to be very efficient for the recovery of theobromine and caffeine, and is considered a green extraction procedure, as demonstrated by the analytical greenness metric for sample preparation.
Collapse
Affiliation(s)
- Luciana Lordêlo Nascimento
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.L.N.); (L.d.S.F.); (J.V.F.L.)
| | - Paulo Natan Alves dos Santos
- Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil; (P.N.A.d.S.); (L.d.S.F.); (E.B.C.)
| | - Honnara Santos Granja
- Programa de Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil;
| | - Larissa da Silveira Ferreira
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.L.N.); (L.d.S.F.); (J.V.F.L.)
| | - João Victor Ferreira Lima
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.L.N.); (L.d.S.F.); (J.V.F.L.)
| | - Bruna Louise de Moura Pita
- Departamento de Análises Bromatológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Allan dos Santos Polidoro
- Department of Chemistry, Pharmaceutical, and Agricultural Sciences, Università degli Studi di Ferrara, 44121 Ferrara, Italy;
| | - Lisiane dos Santos Freitas
- Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil; (P.N.A.d.S.); (L.d.S.F.); (E.B.C.)
- Programa de Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil;
- Instituto Nacional de Ciência e Tecnologia, Energia e Ambiente (INCT E&A), Salvador 40170-110, BA, Brazil
| | - Elina Bastos Caramão
- Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil; (P.N.A.d.S.); (L.d.S.F.); (E.B.C.)
- Programa de Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão 49107-230, SE, Brazil;
- Instituto Nacional de Ciência e Tecnologia, Energia e Ambiente (INCT E&A), Salvador 40170-110, BA, Brazil
| | - Fabio de Souza Dias
- Programa de Pós-Graduação em Química, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Alini Tinoco Fricks
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.L.N.); (L.d.S.F.); (J.V.F.L.)
- Departamento de Análises Bromatológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| |
Collapse
|
3
|
Prado JPZ, Basso RC, Rodrigues CEDC. Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents. Foods 2025; 14:342. [PMID: 39941933 PMCID: PMC11817325 DOI: 10.3390/foods14030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Coffee and cocoa agribusinesses generate large volumes of byproducts, including coffee husk, coffee pulp, parchment skin, silver skin, and cocoa bean shell. Despite the rich composition of these materials, studies on biomolecule extraction with green solvents are still scarce, and further research is needed. Extraction methods using alternative solvents to obtain biomolecules must be developed to enhance the byproducts' value and align with biorefinery concepts. This article reviews the compositions of coffee and cocoa byproducts, their potential applications, and biomolecule extraction methods, focusing on alternative solvents. The extraction methods currently studied include microwave-assisted, ultrasound-assisted, pulsed electric field-assisted, supercritical fluid, and pressurized liquid extraction. At the same time, the alternative solvents encompass the biobased ones, supercritical fluids, supramolecular, ionic liquids, and eutectic solvents. Considering the biomolecule caffeine, using alternative solvents such as pressurized ethanol, supercritical carbon dioxide, ionic liquids, and supramolecular solvents resulted in extraction yields of 2.5 to 3.3, 4.7, 5.1, and 1.1 times higher than conventional solvents. Similarly, natural deep eutectic solvents led to a chlorogenic acid extraction yield 84 times higher than water. The results of this research provide a basis for the development of environmentally friendly and efficient biomolecule extraction methods, improving the utilization of agricultural waste.
Collapse
Affiliation(s)
- José Pedro Zanetti Prado
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil;
| | - Rodrigo Corrêa Basso
- Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL), Poços de Caldas 37715-400, Minas Gerais, Brazil;
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil;
| |
Collapse
|
4
|
Santoso I, Suprayogi S, Sulianto AA, Widyastuti E, Choirun A, Lestari K, A’yuniah S, Kusumaningtyas OW. Exploring antioxidant potential of agricultural by-products: a systematic review. F1000Res 2024; 13:1008. [PMID: 39410978 PMCID: PMC11474157 DOI: 10.12688/f1000research.145702.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Agricultural waste sourced from various activities that occur along the agricultural supply chain including post-harvest, processing, and consumption processes, can pose a threat to ecosystem balance and community welfare. Data shows that agricultural by-products have the potential to be utilized because they contain antioxidant compounds. This systematic review study aims to identify and assess the antioxidant activity of agricultural by-products through various extraction methods. Methods This systematic review collected literature in the last 10 years (2013-2023) from Google Scholar, Semantic, and Scopus-indexed articles with the help of Publish or Perish. Using the help of boolean operators (AND) and (OR) in searching using keywords. The steps applied adapt the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), including identification, screening, eligibility, and inclusion. Results Literature collection data shows that the dominant processing method used is the solvent extraction method to determine the antioxidant value of various agricultural waste by-products. Followed by microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) methods. A wide range of antioxidant activity values were found depending on the type of agricultural waste and processing technique. One potential utilization of agricultural wastes rich in antioxidant content is as additives in formulations in the cosmetic industry. Conclusion Agricultural waste by-products have high potential of antioxidant content, depending on the type of waste and extraction method. The dominant agricultural waste used is by-products from the fruit group. The utilization of agricultural waste that is rich in antioxidants has the potential to be utilized in the cosmetic industry.
Collapse
Affiliation(s)
- Imam Santoso
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Suprayogi Suprayogi
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Akhmad Adi Sulianto
- Biosystem Engineering, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Endrika Widyastuti
- Food Science and Biotechnology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Annisa’U Choirun
- Agricultural Technology, Politeknik Negeri Jember, Jember, East Java, 68121, Indonesia
| | - Khairunnisa Lestari
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Syairil A’yuniah
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | | |
Collapse
|
5
|
Roselli V, Pugliese G, Leuci R, Brunetti L, Gambacorta L, Tufarelli V, Piemontese L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024; 29:2682. [PMID: 38893556 PMCID: PMC11173532 DOI: 10.3390/molecules29112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.
Collapse
Affiliation(s)
- Vincenzo Roselli
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| | - Lucia Gambacorta
- Institute of Science of Food Production (ISPA), Research National Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Campus E. Quagliariello, Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
6
|
Benítez-Correa E, Bastías-Montes JM, Nelson SA, Iznaga TB, Wong MP, Muñoz-Fariña O. Improving the Composition and Bioactivity of Cocoa (Theobroma cacao L.) Bean Shell Extract by Choline Chloride-Lactic Acid Natural Deep Eutectic Solvent Extraction Assisted by Pulsed Electric Field Pre-Treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:351-358. [PMID: 38517668 DOI: 10.1007/s11130-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
An environmentally friendly method for the release of cocoa bean shell (CBS) extracts is proposed in this paper. This work aims to investigate the effect of pulsed electric field (PEF) pre-treatment on subsequent solid-liquid extraction (SLE) of metabolites with choline chloride-lactic acid natural deep eutectic solvent (NaDES) and bioactivity of cocoa bean shell (CBS) extract. Two different media for PEF application were evaluated: water and chlorine chloride-lactic acid. Total polyphenols (TPC), total flavonoids (TFC), individual major compounds, and antioxidant and antibacterial activity of CBS extracts were assessed. The performance of PEF-assisted extraction was compared with SLE and ultrasound-assisted extraction (UAE). The proposed method improved the release of TPC up to 45% and TFC up to 48% compared with the conventional extraction. The CBS extract showed medium growth inhibition of Escherichia coli and high growth inhibition of Salmonella sp, Listeria monocytogenes, and Staphylococcus aureus. Thus, an extract with enhanced antioxidant and antibacterial properties was obtained.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, University of Bío Bío, Chillán, Chile
- Food Industry Researches Institute, La Habana, Cuba
| | | | | | | | - Mario Pérez Wong
- Food Engineering Department, University of Bío Bío, Chillán, Chile
| | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Austral University of Chile, Valdivia, Chile
| |
Collapse
|
7
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
8
|
Benítez-Correa E, Bastías-Montes JM, Acuña-Nelson S, Muñoz-Fariña O. Effect of choline chloride-based deep eutectic solvents on polyphenols extraction from cocoa ( Theobroma cacao L.) bean shells and antioxidant activity of extracts. Curr Res Food Sci 2023; 7:100614. [PMID: 37840695 PMCID: PMC10570950 DOI: 10.1016/j.crfs.2023.100614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
The effective extraction of natural compounds from cocoa bean shells using deep eutectic solvents could contribute to the sustainable valorization of this waste material. The objective of this study was to: (1) analyze the extraction kinetics of polyphenols released from cocoa (Theobroma cacao L.) bean shells (CBS) by the solid-liquid extraction method using choline chloride-based deep eutectic solvents (ChCl-DES) and their aqueous solutions; (2) investigate the effect of choline chloride-based deep eutectic solvents (ChCl-DES) aqueous solutions on in-vitro antioxidant capacity and the main individual compounds of the extracts. ChCl-DES were prepared with lactic acid, glycerol, and ethylene glycol in a 1:2 ratio. Aqueous solutions (30%, 40%, and 50% water) to obtain solvents with different physicochemical properties were performed. The total phenolic content (TPC) was determined by the Folin-Ciocalteu method. The solution of Fick's law model for plate geometry particles was applied to fit the experimental data and calculate the effective diffusivity coefficient (De). The antioxidant capacity of the extracts was analyzed by a combination of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging capacity and ferric-reducing antioxidant power (FRAP) assays. The main bioactive compounds were quantified by high-performance liquid chromatography. The results showed that the type of hydrogen bond donor influences the total phenolic content, antioxidant activity and the main individual compounds in the extracts. Moreover, the washing/diffusion mechanism adequately depicts the extraction kinetics data for total phenolic content. However, the influence of an additional mechanism that enhanced the extraction capacity of deep eutectic solvents compared with organic solvent was confirmed.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, Universidad Del Bío-Bío, Chillán, Chile
- Food Industry Research Institute, La Habana, Cuba
| | | | | | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
9
|
Sánchez M, Laca A, Laca A, Díaz M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants (Basel) 2023; 12:antiox12051028. [PMID: 37237894 DOI: 10.3390/antiox12051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs-A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023; 12:571. [PMID: 36766100 PMCID: PMC9914002 DOI: 10.3390/foods12030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Due to environmental and human factors, there is a growing amount of agri-food waste worldwide. The European Commission is incentivizing a zero-waste policy by 2025, pushing to find a "second life" for at least the avoidable ones. In this review, after summarizing the nutritional values of pork and the importance of its inclusion in human diet, a phylogenetic analysis was conducted to investigate potential differences in the structure and activity of HMGCR, which is a key enzyme in cholesterol metabolism. In addition, a bibliometric analysis combined with visual and meta-analytical studies on 1047 scientific articles was conducted to understand whether the inclusion of agro-food waste could affect the growth performance of pigs and reduce cholesterol levels in pork. Although some critical issues were highlighted, the overall data suggest a modern and positive interest in the reuse of agri-food waste as swine feed. However, although interesting and promising results have been reported in several experimental trials, further investigation is needed, since animal health and meat quality are often given marginal consideration.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
11
|
Jafari K, Hossein Fatemi M, Lugo L. An experimental study of novel nanofluids based on deep eutectic solvents (DESs) by Choline chloride and ethylene glycol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tee YK, Bariah K, Hisyam Zainudin B, Samuel Yap KC, Ong NG. Impacts of cocoa pod maturity at harvest and bean fermentation period on the production of chocolate with potential health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1576-1585. [PMID: 34405409 DOI: 10.1002/jsfa.11494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cacao beans are rich sources of polyphenols with an abundance of flavonoids and methylxanthines that have positive influences on human health. The main factors affecting the formation of flavor as well as the chemical and bioactive composition of cacao beans are cacao pod maturity and post-harvest fermentation. The purpose of this research was to evaluate the effects of pod harvest maturity (mature and ripe) and post-fermentation period (1, 3, and 5 days in a controlled temperature environment) measured by pre-harvest maturity indices, post-harvest quality tests, chemical measurements, and organoleptic evaluation. RESULTS As pods developed, flavonol accumulated while nitrogen content degraded. Mature pods produced beans with a higher flavonol, catechin, and total phenolic content (TPC). As fermentation progressed, the beans' fat, TPC, antioxidant activity, and catechin content increased, regardless of pod maturity at harvest. Free fatty acid (FFA) levels were highest in 5 day fermented beans. The 3 day fermented beans contained significantly higher epicatechin, with lower FFA content. Chocolate made from mature beans with 3 day fermentation was more pleasant as it scored the highest in flavor intensity and complexity and the lowest in acidity and astringency. CONCLUSION This study suggests that cacao pods harvested at the mature stage with further fermentation for 3 days under controlled temperatures produce specialty beans with potential health benefits. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yei-Kheng Tee
- Cocoa Upstream Technology Division, Malaysian Cocoa Board, Sg. Sumun, Malaysia
| | - Khairul Bariah
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | - Badrul Hisyam Zainudin
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | - Kian-Chee Samuel Yap
- Cocoa Downstream Technology Division, Malaysian Cocoa Board, Cocoa Innovative and Technology Centre, Nilai, Malaysia
| | | |
Collapse
|
13
|
Belwal T, Cravotto C, Ramola S, Thakur M, Chemat F, Cravotto G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods 2022; 11:foods11060798. [PMID: 35327221 PMCID: PMC8947495 DOI: 10.3390/foods11060798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Cocoa husk is considered a waste product after cocoa processing and creates environmental issues. These waste products are rich in polyphenols, methylxanthine, dietary fibers, and phytosterols, which can be extracted and utilized in various food and health products. Cocoa beans represent only 32–34% of fruit weight. Various extraction methods were implemented for the preparation of extracts and/or the recovery of bioactive compounds. Besides conventional extraction methods, various studies have been conducted using advanced extraction methods, including microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE). To include cocoa husk waste products or extracts in different food products, various functional foods such as bakery products, jam, chocolate, beverage, and sausage were prepared. This review mainly focused on the composition and functional characteristics of cocoa husk waste products and their utilization in different food products. Moreover, recommendations were made for the complete utilization of these waste products and their involvement in the circular economy.
Collapse
Affiliation(s)
- Tarun Belwal
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Sudipta Ramola
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida 201303, India;
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence: ; Tel.: +39-011-670-7183; Fax: +39-011-670-7162
| |
Collapse
|
14
|
Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). SUSTAINABILITY 2022. [DOI: 10.3390/su14053126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the context of bioeconomic research approaches, a cascade use of plant raw materials makes sense in many cases for waste valorization. This not only guarantees that the raw material is used as completely as possible, but also offers the possibility of using its by-products and residual flows profitably. To make such cascade uses as efficient as possible, efficient and environmentally friendly processes are needed. To exemplify the versatile method, e.g., every year 675,000 metric tons of cocoa bean shell (CBS) accrues as a waste stream in the food processing industry worldwide. A novel green process reaches very high yields of up to 100% in one extraction stage, ensures low consumption of organic solvents due to double usage of ethanol as the only organic solvent, is adaptable enough to capture all kinds of secondary metabolites from hot water extracts and ensures the usage of structural carbohydrates from precipitation. A Design of Experiments (DoE) was conducted to optimize the influence of pH value and phase ratio on the yield and purity of the integrated ethanol/water/salt aqueous-two-phase extraction (ATPS) system.
Collapse
|
15
|
Rebollo-Hernanz M, Aguilera Y, Martin-Cabrejas MA, Gonzalez de Mejia E. Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants (Basel) 2022; 11:antiox11010136. [PMID: 35052640 PMCID: PMC8772970 DOI: 10.3390/antiox11010136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Maria A. Martin-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-244-3196
| |
Collapse
|
16
|
Alvi T, Asif Z, Iqbal Khan MK. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Walvekar R, Chen YY, Saputra R, Khalid M, Panchal H, Chandran D, Mubarak NM, Sadasivuni KK. Deep eutectic solvents-based CNT nanofluid – A potential alternative to conventional heat transfer fluids. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Garcia-Brand AJ, Morales MA, Hozman AS, Ramirez AC, Cruz LJ, Maranon A, Muñoz-Camargo C, Cruz JC, Porras A. Bioactive Poly(lactic acid)-Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization. Polymers (Basel) 2021; 13:polym13213707. [PMID: 34771262 PMCID: PMC8587584 DOI: 10.3390/polym13213707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
The unique lignocellulosic and solvent-extractive chemical constituents of most natural fibers are rich in natural polymers and bioactive molecules that can be exploited for biomaterial formulation. However, although natural fibers’ main constituents have been already incorporated as material reinforcement and improve surface bioactivity of polymeric materials, the use of the whole natural fibers as bioactive fillers remains largely unexplored. Thus, we put forward the formulation of natural fiber filling and functionalization of biomaterials by studying the chemical composition of cocoa bean shells (CBS) and proposing the fabrication and characterization of polylactic acid (PLA) and CBS-based composite by solvent-casting. As was expected from previous studies of agro-industrial wastes, the main components of CBS were to cellulose (42.23 wt.%), lignin (22.68 wt.%), hemicellulose (14.73 wt.%), and solvent extractives (14.42 wt.%). Structural analysis (FTIR) confirms the absence of covalent bonding between materials. Thermal degradation profiles (DSC and TGA) showed similar mass losses and thermal-reaction profiles for lignocellulosic-fibers-based composites. The mechanical behavior of the PLA/CBS composite shows a stiffer material behavior than the pristine material. The cell viability of Vero cells in the presence of the composites was above 94%, and the hemolytic tendency was below 5%, while platelet aggregation increased up to 40%. Antioxidant activity was confirmed with comparable 2,2-diphe-277 nyl-1-picryl-hydrazyl-hydrate (DPPH) free-radical scavenging than Vitamin C even for PLA/CBS composite. Therefore, the present study elucidates the significant promise of CBS for bioactive functionalization in biomaterial-engineering, as the tested composite exhibited high biocompatibility and strong antioxidant activity and might induce angiogenic factors’ release. Moreover, we present an eco-friendly alternative to taking advantage of chocolate-industry by-products.
Collapse
Affiliation(s)
- Andres J. Garcia-Brand
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
- Correspondence: (A.J.G.-B.); (A.P.); Tel.: +57-1339-4949 (ext. 1775) (A.P.)
| | - Maria A. Morales
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Ana Sofia Hozman
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Andres C. Ramirez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Luis J. Cruz
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Alejandro Maranon
- Structural Integrity Research Group, Department of Mechanical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
| | - Alicia Porras
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
- Correspondence: (A.J.G.-B.); (A.P.); Tel.: +57-1339-4949 (ext. 1775) (A.P.)
| |
Collapse
|
19
|
Recovery of Chlorogenic Acids from Agri-Food Wastes: Updates on Green Extraction Techniques. Molecules 2021; 26:molecules26154515. [PMID: 34361673 PMCID: PMC8347003 DOI: 10.3390/molecules26154515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The agri-food sector produces a huge amount of agri-food wastes and by-products, with a consequent great impact on environmental, economic, social, and health aspects. The reuse and recycling of by-products represents a very important issue: for this reason, the development of innovative recovery and extraction methodologies must be mandatory. In this context of a circular economy, the study of green extraction techniques also becomes a priority in substitution of traditional extraction approaches. This review is focused on the recovery of chlorogenic acids from agri-food wastes, as these compounds have an important impact on human health, exhibiting several different and important healthy properties. Novel extraction methodologies, namely microwave and ultrasound-assisted extractions, supercritical fluid extraction, and pressurized-liquid extraction, are discussed here, in comparison with conventional techniques. The great potentialities of these new innovative green and sustainable approaches are pointed out. Further investigations and optimization are mandatory before their application in industrial processes.
Collapse
|
20
|
Mariatti F, Gunjević V, Boffa L, Cravotto G. Process intensification technologies for the recovery of valuable compounds from cocoa by-products. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ivanović M, Islamčević Razboršek M, Kolar M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1428. [PMID: 33114332 PMCID: PMC7690858 DOI: 10.3390/plants9111428] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The growing interest of the food, pharmaceutical and cosmetics industries in naturally occurring bioactive compounds or secondary plant metabolites also leads to a growing demand for the development of new and more effective analysis and isolation techniques. The extraction of bioactive compounds from plant material has always been a challenge, accompanied by increasingly strict control requirements for the final products and a growing interest in environmental protection. However, great efforts have been made in this direction and today a considerable number of innovative extraction techniques have been developed using green, environmentally friendly solvents. These solvents include the deep eutectic solvents (DES) and their natural equivalents, the natural deep eutectic solvents (NADES). Due to their adjustable physical-chemical properties and their green character, it is expected that DES/NADES could be the most widely used solvents in the future, not only in extraction processes but also in other research areas such as catalysis, electrochemistry or organic synthesis. Consequently, this review provided an up-to-date systematic overview of the use of DES/NADES in combination with innovative extraction techniques for the isolation of bioactive compounds from various plant materials. The topicality of the field was confirmed by a detailed search on the platform WoS (Web of Science), which resulted in more than 100 original research papers on DES/NADES for bioactive compounds in the last three years. Besides the isolation of bioactive compounds from plants, different analytical methods are presented and discussed.
Collapse
Affiliation(s)
- Milena Ivanović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mitja Kolar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Domínguez-Pérez LA, Beltrán-Barrientos LM, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. Artisanal cocoa bean fermentation: From cocoa bean proteins to bioactive peptides with potential health benefits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|