1
|
González-Fandos E, Martínez Laorden A, Condón Usón S, Serrano Andrés MJ. Growth and Diversity of Spoiling and Foodborne Bacteria in Poultry Hamburgers in Modified Atmosphere and with Sulfites During Shelf Life. Microorganisms 2025; 13:754. [PMID: 40284591 PMCID: PMC12029653 DOI: 10.3390/microorganisms13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Poultry meat is the most consumed meat worldwide due to its low fat content, sensory qualities, and affordability. However, its rapid spoilage, especially when minced for products like hamburgers, is a challenge. Strategies such as sulfite addition or modified-atmosphere packaging (MAP) can help control spoilage and microbial growth. This study evaluated both approaches by analyzing bacterial development in poultry hamburgers through total viable counts and MALDI-TOF identification, combining food-pathogens detection. The addition of 5 mg/kg sulfites had a limited effect, whereas increasing CO2 levels in the packaging significantly extended the shelf life by reducing the bacterial growth rates and prolonging the lag phases. The most affected bacteria were aerobic mesophilic and psychrotrophic bacteria, as well as Brochothrix thermosphacta. Carnobacterium spp. dominated the aerobic mesophilic group, while Enterobacter spp. was prevalent in Enterobacteriaceae and aerobic mesophilic isolates, highlighting its role in spoilage. Hafnia alvei was also relevant in the final spoilage stages. These results suggest the importance of these bacteria in poultry hamburger decay and demonstrate that MAP is an effective method to delay spoilage.
Collapse
Affiliation(s)
- Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Alba Martínez Laorden
- Department of Food Technology, CIVA Research Center, University of La Rioja, de la Paz Avenue, 26006 Logroño, Spain; (E.G.-F.); (A.M.L.)
| | - Santiago Condón Usón
- Food Science and Technology Department, Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza, Miguel Servet St. 177, 50013 Zaragoza, Spain;
| | - María Jesús Serrano Andrés
- Instituto Agroalimentario de Aragón IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Miguel Servet St. 177, 50013 Zaragoza, Spain
| |
Collapse
|
2
|
Karatepe P, Kürşad İncili G, Tekin A, Çalıcıoğlu M, Akgöl M, Hayaloğlu AA. The impact of rhubarb (Rheum Ribes L.) juice-based marinade on the quality characteristics and microbial safety of chicken breast fillets during refrigerated storage. Poult Sci 2025; 104:104719. [PMID: 39731871 PMCID: PMC11742364 DOI: 10.1016/j.psj.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Acidic marinades are commonly used to improve the quality meat products. However, no study has been performed to determine the effects of rhubarb juice as a marinating liquid on the quality parameters of chicken breast fillets. The aim of the present study was to identify the bioactive compounds (organic acids, polyphenols, and volatiles) in the juice of rhubarb and to determine the effect of rhubarb juice as a marinade on the microbiological (total viable count, psychrotrophs, lactic acid bacteria, sulfate-reducing anaerobes, and yeast-molds) and physico-chemical properties (drip loss, cooking loss, water holding capacity, pH, color, malondialdehyde, total volatile base nitrogen, and texture profiles), sensory attributes, and microbial safety (Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes) of chicken breast fillets during a 15-day refrigerated storage. The experiment included five groups: a control (no treatment), and marinated groups treated with 50 % and 100 % rhubarb juice for 6 and 24 h. The application of a rhubarb juice-based marinade (100 % for 24 h) resulted in a significant decrease in the number of E. coli O157:H7, S. Typhimurium and L. monocytogenes by 1.67 to 2.60 log10 cfu/g compared to the control group (P < 0.05). In addition, this marinade significantly reduced the growth of psychrotrophs, lactic acid bacteria and the total number of viable bacteria compared to the control group during storage (P < 0.05). The rhubarb juice-based marinade significantly delayed the increase in spoilage microorganisms and oxidation parameters compared to the control fillets (P < 0.05). No differences were found between the control and treatment groups in terms of sensory evaluation (P > 0.05). In conclusion, the results show that the juice of rhubarb juice contains a variety of organic acids, polyphenolic compounds and volatiles that contribute to antioxidant capacity and antimicrobial activity. In addition, the use of rhubarb juice as a marinating liquid delayed the oxidation of proteins and lipids, the growth of spoilage microorganisms and improved microbial safety by inhibiting foodborne pathogens in the chicken breast fillets.
Collapse
Affiliation(s)
- Pınar Karatepe
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Türkiye
| | - Mehmet Çalıcıoğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Türkiye.
| |
Collapse
|
3
|
İncili GK, Akgöl M, Karatepe P, Üner S, Tekin A, Kanmaz H, Kaya B, Çalicioğlu M, Hayaloğlu AA. Quantification of Bioactive Metabolites Derived from Cell-Free Supernatant of Pediococcus acidilactici and Screening their Protective Properties in Frankfurters. Probiotics Antimicrob Proteins 2025; 17:253-270. [PMID: 37642896 DOI: 10.1007/s12602-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The specific aims of the current study were to determine and quantify the bioactive compounds derived from the cell-free supernatant (CFS) of Pediococcus acidilactici and screen their protective effect in frankfurters by applying an edible coating. This was achieved by immersing the peeled frankfurters in the CFS (CFS: 50% and 100%) alone or in combination with chitosan (CH: 0.5% and 1%) solutions for 3 min. Untreated frankfurter samples (control) exceeded the maximum acceptable total viable count limit (7.0 log10) on the 14th day, whereas samples treated with 100% CFS + 1% chitosan reached the limit on day 28 during refrigerated storage (P < 0.05). This treatment provided a 14-day extension to the shelf life of frankfurters without causing any significant changes in color and sensory attributes (P > 0.05). Additionally, this treatment inhibited oxidation in the frankfurters, leading to no significant changes in TBA and TVB-N within this group during storage (P > 0.05). This protective effect was mainly attributed to the wide variety of bioactive compounds identified in the CFS, including a total of 5 organic acids, 20 free amino acids, 11 free fatty acids, 77 volatiles, and 10 polyphenols. Due to these bioactive compounds, CFS exhibited a strong radical scavenging capacity (DPPH: 435.08 TEAC/L, ABTS: 75.01 ± 0.14 mg TEAC/L; FRAP: 1.30 ± 0.03 mM FE/L) and antimicrobial activity against microorganisms primarily responsible for the spoilage of frankfurters. In conclusion, the results indicate that the CFS contains high levels of bioactive metabolites, and an edible chitosan coating impregnated with CFS can be utilized to extend the shelf life of frankfurters through its antimicrobial effects and oxidation stabilization.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazıg, Turkey.
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazıg, Turkey
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazıg, Turkey
| | - Sefa Üner
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazıg, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Çalicioğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazıg, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Popoola O, Finny A, Dong I, Andreescu S. Smart and Sustainable 3D-Printed Nanocellulose-Based Sensors for Food Freshness Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60920-60932. [PMID: 39436980 DOI: 10.1021/acsami.4c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Annually, about one-third of the food produced around the world is wasted due to spoilage. Food contamination and spoilage, along with the use and disposal of nondegradable packaging materials, impact human health and have huge economic and sustainability implications. Achieving sustainability within the food system requires innovative solutions to reduce the environmental footprint. Herein, we describe the formulation, scalable manufacturing, and characterization of three-dimensional (3D)-printed sensors prepared from a mixture of edible biopolymer hydrogels, 8% alginate, and 10% gelatin and nanocellulose (CNC) as a reinforcement filler. We demonstrate that incorporating CNC improves the overall mechanical performance of the printed film and enables the stabilization of pH-responsive dyes for monitoring the release of total volatile basic nitrogen (TVB-N), an indicator of food freshness. Mechanical performance enhancement includes increases of 43% in load-depth indentation, 28.2% in hardness, and 17.4% in elastic modulus. This enhancement facilitates its use as a smart label technology, enabling the visual assessment of spoilage when placed inside packaging over a period of 3 days at room temperature. The 3D-printed film exhibits excellent durability, flexibility, shape memory, and robustness, along with pH responsiveness, showing distinctive color changes over the pH range of 2 to 13. These performances are demonstrated in packaged meat and fish, enabling monitoring over several days and illustrating potential as a real-time freshness indicator. The material formulations developed in this work are biodegradable, eco-friendly, and inexpensive, making them suitable candidates for smart and sustainable food packaging.
Collapse
Affiliation(s)
- Oluwatosin Popoola
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Abraham Finny
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Ivy Dong
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University (FIU), Miami, Florida 33199, United States
| |
Collapse
|
5
|
Söderqvist K, Peterson M, Johansson M, Olsson V, Boqvist S. A Microbiological and Sensory Evaluation of Modified Atmosphere-Packed (MAP) Chicken at Use-By Date and Beyond. Foods 2024; 13:2140. [PMID: 38998645 PMCID: PMC11241083 DOI: 10.3390/foods13132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Consumers are responsible for a large proportion of food waste, and food that has reached its use-by or best-before date is often discarded, even if edible. In this study on fresh chicken, the suitability of use-by dates currently used in the EU was evaluated by using microbial and sensory analyses. This was carried out by analyzing bacterial populations of chicken breast fillets (M. pectoralis major) at three different time points (use-by date, 2 days past use-by date, 4 days past use-by date) and two different storage temperatures (4 °C, 8 °C). A discrimination triangle test was performed to check for sensory differences between chicken breast fillets cooked at the three selected time points for both storage temperatures. A consumer preference test was also performed for chicken breast fillets that had been stored at the highest recommended temperature (4 °C) and after being cooked at the three time points. Changes in populations of total aerobic count (TAC), Enterobacteriaceae (EB), and lactic acid bacteria (LAB) were recorded over time. Despite large differences in bacterial counts at the selected time points, with TAC populations of approximately 6.5 and 8.0 log CFU/g at use-by date and four days after use-by date, respectively, storage for two or four extra days had no significant effect on the sensory parameters of cooked chicken compared with chicken consumed at its use-by date. Since the TAC populations were close to or above levels that are associated with spoilage, more work is needed to explore if shelf life can be extended.
Collapse
Affiliation(s)
- Karin Söderqvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07 Uppsala, Sweden
| | - Max Peterson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07 Uppsala, Sweden
| | - Marcus Johansson
- Department of Food and Meal Science, Kristianstad University, 291 88 Kristianstad, Sweden
| | - Viktoria Olsson
- Department of Food and Meal Science, Kristianstad University, 291 88 Kristianstad, Sweden
| | - Sofia Boqvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Afonso CL, Afonso AM. Next-Generation Sequencing for the Detection of Microbial Agents in Avian Clinical Samples. Vet Sci 2023; 10:690. [PMID: 38133241 PMCID: PMC10747646 DOI: 10.3390/vetsci10120690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Direct-targeted next-generation sequencing (tNGS), with its undoubtedly superior diagnostic capacity over real-time PCR (RT-PCR), and direct-non-targeted NGS (ntNGS), with its higher capacity to identify and characterize multiple agents, are both likely to become diagnostic methods of choice in the future. tNGS is a rapid and sensitive method for precise characterization of suspected agents. ntNGS, also known as agnostic diagnosis, does not require a hypothesis and has been used to identify unsuspected infections in clinical samples. Implemented in the form of multiplexed total DNA metagenomics or as total RNA sequencing, the approach produces comprehensive and actionable reports that allow semi-quantitative identification of most of the agents present in respiratory, cloacal, and tissue samples. The diagnostic benefits of the use of direct tNGS and ntNGS are high specificity, compatibility with different types of clinical samples (fresh, frozen, FTA cards, and paraffin-embedded), production of nearly complete infection profiles (viruses, bacteria, fungus, and parasites), production of "semi-quantitative" information, direct agent genotyping, and infectious agent mutational information. The achievements of NGS in terms of diagnosing poultry problems are described here, along with future applications. Multiplexing, development of standard operating procedures, robotics, sequencing kits, automated bioinformatics, cloud computing, and artificial intelligence (AI) are disciplines converging toward the use of this technology for active surveillance in poultry farms. Other advances in human and veterinary NGS sequencing are likely to be adaptable to avian species in the future.
Collapse
|
7
|
Soro AB, Ekhlas D, Shokri S, Yem MM, Li RC, Barroug S, Hannon S, Whyte P, Bolton DJ, Burgess CM, Bourke P, Tiwari BK. The efficiency of UV light-emitting diodes (UV-LED) in decontaminating Campylobacter and Salmonella and natural microbiota in chicken breast, compared to a UV pilot-plant scale device. Food Microbiol 2023; 116:104365. [PMID: 37689419 DOI: 10.1016/j.fm.2023.104365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.
Collapse
Affiliation(s)
- Arturo B Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, Juliette Wytsman 14, 1050, Ixelles, Brussels, Belgium; Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sajad Shokri
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Ming Ming Yem
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Rui Chao Li
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Soukaina Barroug
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Shay Hannon
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Paula Bourke
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | | |
Collapse
|
8
|
Martinez-Laorden A, Arraiz-Fernandez C, Gonzalez-Fandos E. Microbiological Quality and Safety of Fresh Quail Meat at the Retail Level. Microorganisms 2023; 11:2213. [PMID: 37764057 PMCID: PMC10537602 DOI: 10.3390/microorganisms11092213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the microbiological quality and safety of 37 fresh quail meats. Mesophiles, Pseudomonas spp., Enterobacteriaceae, and staphylococci counts were 5.25 ± 1.14, 3.92 ± 1.17, 3.09 ± 1.02, and 2.80 ± 0.64 log CFU/g, respectively. Listeria monocytogenes was detected in seven samples (18.92%). Campylobacter jejuni was detected in one sample (2.70%). Clostridium perfringens was not detected in any sample. The dominant bacteria were Pseudomonas spp. (30.46%), Micrococcaceae (19.87%), lactic acid bacteria (14.57%), and Enterobacteriaceae (11.92%). Brochotrix thermosphacta and enterococci were isolated to a lesser extent, 7.28% and 1.99%, respectively. The dominant Enterobacteriaceae found were Escherichia coli (42.53%). ESBL-producing E. coli was detected in one sample (2.70%), showing resistance to 16 antibiotics. Sixteen different Staphylococcus spp. and three Mammaliicoccus spp. were identified, the most common being S. cohnii (19.86%) and M. sciuri (17.02%). S. aureus and S. epidermidis were also found in one and four samples, respectively. Methicillin-resistant M. sciuri and S. warneri were found in 13.51% and 10.81% of quail samples, respectively. These bacteria showed an average of 6.20 and 18.50 resistances per strain, respectively. The high resistance observed in ESBL-producing E. coli and methicillin-resistant S. warneri is of special concern. Measures should be adopted to reduce the contamination of quail meat.
Collapse
Affiliation(s)
| | | | - Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
9
|
Azizkhani M, Kavosi S, Partovi R. Improving the quality of the chicken fillet using chitosan, gelatin, and starch coatings incorporated with bitter orange peel extract during refrigeration. Food Sci Nutr 2023; 11:4700-4712. [PMID: 37576027 PMCID: PMC10420770 DOI: 10.1002/fsn3.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
The preserving potential of biopolymer coatings can be improved by adding natural antimicrobial and antioxidant compounds. The objective of this study was to evaluate the effect of natural coatings (gelatin (Gel), chitosan (Ch), and modified starch (MS)) incorporated with bitter orange peel extract (BOE) on the quality of the chicken fillets during cold. BOE had a high amount of phenolic compounds (145.28 mgGAE/g). Coating the fillets with pure BOE exerted a higher inhibitory effect against bacterial growth compared to composite coatings without extract. Lower microbial count (2-3 log CFU/g on days 9 and 12 of storage) was observed in the samples coated with composite biopolymers incorporated with BOE in comparison to the coatings without BOE. Composite coatings of Gel/MS/BOE showed lower FFA in the fillets followed by Gel/Ch/BOE and MS/Ch/BOE. The lowest TVB-N belonged to MS/Ch/BOE followed by Gel/Ch/BOE and Gel/MS/BOE which were 17.05, 17.39, and 19.40 mg/100 g at the end of the storage. Among the samples, pure BOE, Gel/MS/BOE, Gel/Ch/BOE, and MS/Ch/BOE showed the lowest peroxide value and the coatings containing chitosan had a slower rate of hydroperoxide generation. Drip loss showed a descending trend in all coated samples except for an enhancement in control and BOE-coated fillets, 6.42% and 6.39%, respectively, on day 12 of storage. Samples coated with Gel/MS and Gel/MS/BOE had the lowest drip loss during the storage period (5.96% and 5.98%, respectively). It should be noted that coatings containing chitosan had higher antimicrobial and antioxidant effects. The effect of the coatings as antimicrobial barriers and preservative agents were as follows: Gel/Ch/BOE > MS/Ch/BOE > Gel/MS/BOE. It can be concluded that the applied composite coatings in this work have a high potential to maintain and improve the quality of raw chicken fillets during storage in the refrigerator.
Collapse
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Sara Kavosi
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|
10
|
Tsaloumi S, Stathas L, Koutsoumanis K. Quantitative microbiological spoilage risk assessment (QMSRA) of fresh poultry fillets during storage at retail. Food Res Int 2023; 170:113018. [PMID: 37316024 DOI: 10.1016/j.foodres.2023.113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
A quantitative microbiological spoilage risk assessment model (QMSRA) of aerobically stored fresh poultry fillets was developed based on pseudomonads growth and metabolic activity. Simultaneous microbiological and sensory analyses were performed in poultry fillets to evaluate the relation between pseudomonads concentration and sensory rejection due to spoilage. The analysis showed no organoleptic rejection at pseudomonads concentrations less than 6.08 log CFU/cm2. For higher concentrations, a "spoilage-response" relationship was developed using a beta-Poisson model. The above relationship was combined with a stochastic modeling approach for pseudomonads growth by taking into account both variability and uncertainty of factors affecting spoilage. To enhance the reliability of the developed QMSRA model, uncertainty was quantified and separated from variability using a second order Monte Carlo simulation. For a batch of 10,000 units, the QMSRA model predicted a median number of 11, 80, 295, 733 and 1,389 spoiled units for retail storage times of 6,7, 8, 9 and 10 days, respectively, while no spoiled units were predicted for storage time of up to 5 days at retail. Scenario analysis showed that a reduction of 1 log in the pseudomonads concentration at the time of packaging or 1 °C in retail storage temperature results in up to 90% reduction of the spoiled units while the combination of the above interventions can reduce the risk of spoilage by up to 99%, depending on the storage time. The poultry industry can utilize the QMSRA model as a transparent scientific basis to support food quality management decisions in determining appropriate expiration dates which maximize the utilization of the product's "true" shelf life while minimize the risk of spoilage to an acceptable level. Furthermore, the scenario analysis can provide the necessary components for an effective cost-benefit analysis, enabling the identification and comparison of appropriate strategies for extending the shelf life of fresh poultry products.
Collapse
Affiliation(s)
- Sofia Tsaloumi
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Leonardos Stathas
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Al Tamimi Z, Chen L, Ji X, Vanderlaan G, Gacura MD, Piovesan D. Preparation of Nanopaper for Colorimetric Food Spoilage Indication. Polymers (Basel) 2023; 15:3098. [PMID: 37514487 PMCID: PMC10384993 DOI: 10.3390/polym15143098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we are reporting the fabrication of a nanocellulose (NFC) paper-based food indicator for chicken breast spoilage detection by both visual color change observation and smartphone image analysis. The indicator consists of a nanocellulose paper (nanopaper) substrate and a pH-responsive dye, bromocresol green (BCG), that adsorbs on the nanopaper. The nanopaper is prepared through vacuum filtration and high-pressure compression. The nanopaper exhibits good optical transparency and strong mechanical strength. The color change from yellow to blue in the nanopaper indicator corresponding to an increase in the solution pH and chicken breast meat storage data were observed and analyzed, respectively. Further, we were able to use color differences determined by the RGB values from smartphone images to analyze the results, which indicates a simple, sensitive, and readily deployable approach toward the development of future smartphone-based food spoilage tests.
Collapse
Affiliation(s)
- Zainab Al Tamimi
- Biomedical Engineering Program, Gannon University, Erie, PA 16541, USA
| | - Longyan Chen
- Biomedical Engineering Program, Gannon University, Erie, PA 16541, USA
| | - Xiaoxu Ji
- Biomedical Engineering Program, Gannon University, Erie, PA 16541, USA
| | | | | | - Davide Piovesan
- Biomedical Engineering Program, Gannon University, Erie, PA 16541, USA
- MP-Erie-Co, Erie, PA 16501, USA
- Center for Manufacturing and Technology, Gannon University, Erie, PA 16541, USA
| |
Collapse
|
12
|
Martínez-Laorden A, Arraiz-Fernández C, González-Fandos E. Microbiological Quality and Safety of Fresh Turkey Meat at Retail Level, Including the Presence of ESBL-Producing Enterobacteriaceae and Methicillin-Resistant S. aureus. Foods 2023; 12:1274. [PMID: 36981199 PMCID: PMC10048072 DOI: 10.3390/foods12061274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this work was to study the microbiological safety and quality of marketed fresh turkey meat, with special emphasis on methicillin-resistant S. aureus, ESBL-producing E. coli, and K. pneumoniae. A total of 51 fresh turkey meat samples were collected at retail level in Spain. Mesophile, Pseudomonas spp., enterococci, Enterobacteriaceae, and staphylococci counts were 5.10 ± 1.36, 3.17 ± 0.87, 2.03 ± 0.58, 3.18 ± 1.00, and 2.52 ± 0.96 log CFU/g, respectively. Neither Campylobacter spp. nor Clostridium perfringens was detected in any sample. ESBL-producing K. pneumoniae and E. coli were detected in 22 (43.14%), and three (5.88%) samples, respectively, all of which were multi-resistant. Resistance to antimicrobials of category A (monobactams, and glycilcyclines) and category B (cephalosporins of third or fourth generation, polymixins, and quinolones), according to the European Medicine Agency classification, was found among the Enterobacteriaceae isolates. S. aureus and methicillin-resistant S. aureus were detected in nine (17.65%) and four samples (7.84%), respectively. Resistance to antimicrobials of category A (mupirocin, linezolid, rifampicin, and vancomycin) and category B (cephalosporins of third- or fourth generation) was found among S. aureus, coagulase-negative staphylococci, and M. caseolyticus isolates.
Collapse
Affiliation(s)
| | | | - Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, Madre de Dios, 26006 Logroño, Spain
| |
Collapse
|
13
|
İncili GK, Akgöl M, Karatepe P, Tekin A, Kanmaz H, Kaya B, Hayaloğlu AA. Whole-Cell Postbiotics: an Innovative Approach for Extending the Shelf Life and Controlling Major Foodborne Pathogens in Chicken Breast Fillets. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Hansen AÅ, Langsrud S, Carlehög M, Haugen JE, Moen B. CO2 packaging increases shelf life through reduction of off-odor production by CO2 tolerant bacteria in addition to growth inhibition of the spoilage bacteriota. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Abouloifa H, Hasnaoui I, Ben Slima S, Rokni Y, Gaamouche S, Trabelsi I, Bellaouchi R, Ghabbour N, Ben Salah R, Jaouadi B, Saalaoui E, Asehraou A. Bio-preservation Effect of Probiotic Lactiplantibacillus plantarum S61 Against Rhodotorula glutinis and Listeria monocytogenes in Poultry Meat. Curr Microbiol 2022; 79:232. [PMID: 35767082 DOI: 10.1007/s00284-022-02923-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
The objective of this work is the study of the antifungal and antibacterial activity of Lactiplantibacillus plantarum S61 strains, isolated from traditional fermenting green olives against Rhodotorula glutinis UMP 22 and Listeria monocytogenes ATCC 19117, and its application in meat as bio-preservative agent. The cell-free supernatant (CFS) of Lpb. plantarum S61 shows high inhibition zones, which are 22.45 ± 0.49 and 17.75 ± 0.35 mm, against Rhodotorula glutinis and Listeria monocytogenes. The minimum fungicidal and bactericidal concentrations of the CFS obtained are 8% (v/v) and 10% (v/v), respectively. The competition assay, realized in liquid medium by co-culture of Lpb. plantarum S61 with Rho Rhodotorula glutinis and L. monocytogenes, led to inhibition percentages of 77.72% and 89.52%, respectively. However, the antimicrobial activity of Lpb. plantarum S61 was revealed a proteinaceous nature. Lpb. plantarum S61 strain allowed the reduction of L. monocytogenes in minced poultry meat during 7 days of storage at 4 °C. In addition, Lpb. plantarum S61 improved the physicochemical and color parameters of poultry minced meat. Lpb. plantarum S61 and/or its antimicrobial compounds can be applied as bio-preservative agent in meat product and food industry.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.
- Research Unit of Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry-Physics and Biotechnology of Molecules and Materials, Faculty of Sciences and Techniques, Mohammedia, Hassan II University of Casablanca, Mohammédia, Morocco.
| | - Ismail Hasnaoui
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Sirine Ben Slima
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Yahya Rokni
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
- Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, Mghila, 23000, Beni Mellal, Morocco
| | - Sara Gaamouche
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Imen Trabelsi
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Reda Bellaouchi
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B. P 1223, Taza, Morocco
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour 6 km, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Ennouamane Saalaoui
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioressource, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| |
Collapse
|
16
|
Joshi N, Pransu G, Adam Conte-Junior C. Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Crit Rev Food Sci Nutr 2022; 63:10536-10559. [PMID: 35647714 DOI: 10.1080/10408398.2022.2078950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many people around the world are concerned about meat safety and quality, which has resulted in the ongoing advancement of packaged food technology. Since the emergence of graphene in 2004, the number of studies on layered two-dimensional materials (2DMs) for applications ranging from food packaging to meat quality monitoring has been expanding quickly. Recently, scientists have been working hard to develop a novel class of 2DMs that keep the good things about graphene but don't have zero bandgaps at room temperature. Much work has been done on layered transition metal dichalcogenides (TMDCs) like different metal sulfides and selenides for meat spoilage gas sensors. This review looks at (i) the main indicators of meat spoilage and (ii) the detection methods that can be used to find out if meat has been spoiled, such as chemiresistive, electrochemical, and optical methods. (iii) the role of 2DMs in meat spoilage detection and (iv) the emergence of advanced methods for selective classification of target analytes in meat/food spoilage detection in recent years. Thus, this review demonstrates the potential scope of 2DMs for developing intelligent sensor systems for food and meat spoilage detection with high viability, simplicity, cost-effectiveness, and other multipurpose tools.
Collapse
Affiliation(s)
- Nirav Joshi
- Physics Department, Federal University of ABC, Campus Santo André, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gaurav Pransu
- Graphene Research Labs, Manchappanahosahalli, Karnataka, India
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV) Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
17
|
Chen S, Liu S, Ma J, Xu X, Wang H. Evaluation of the spoilage heterogeneity of meat-borne Leuconostoc mesenteroides by metabonomics and in-situ analysis. Food Res Int 2022; 156:111365. [DOI: 10.1016/j.foodres.2022.111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
18
|
Development and validation of a mathematical model for pseudomonads growth as a basis for predicting spoilage of fresh poultry breast and thigh fillets. Poult Sci 2022; 101:101985. [PMID: 35797780 PMCID: PMC9264009 DOI: 10.1016/j.psj.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The growth of naturally contaminated pseudomonads on fresh breast and thigh poultry fillets during aerobic storage was studied and modeled as a function of temperature (0–30°C). A statistical comparison of the models for breast and thigh fillets showed that muscle type does not significantly affect the temperature dependence of pseudomonads growth kinetics. A unified model for breast and thigh was developed and validated against pseudomonads growth rate data under isothermal conditions extracted from literature and experimental data under dynamic temperature conditions. The validation results showed a satisfactory performance of the model with the bias and accuracy factors ranging from 0.85 to 1.09 and 1.02 to 1.21, respectively. The model was further used to predict the shelf life of fresh poultry as the time required by pseudomonads to reach the spoilage level for various scenarios of temperature, initial contamination level, and physiological state of pseudomonads demonstrating its application in a risk-based shelf-life assessment of fresh poultry products.
Collapse
|
19
|
Impact of chitosan embedded with postbiotics from Pediococcus acidilactici against emerging foodborne pathogens in vacuum-packaged frankfurters during refrigerated storage. Meat Sci 2022; 188:108786. [DOI: 10.1016/j.meatsci.2022.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
|
20
|
Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int J Food Microbiol 2022; 364:109533. [DOI: 10.1016/j.ijfoodmicro.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
21
|
A Comprehensive Evaluation of Enterobacteriaceae Primer Sets for Analysis of Host-Associated Microbiota. Pathogens 2021; 11:pathogens11010017. [PMID: 35055964 PMCID: PMC8780275 DOI: 10.3390/pathogens11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Enterobacteriaceae is one of the most important bacterial groups within the Proteobacteria phylum. This bacterial group includes pathogens, commensal and beneficial populations. Numerous 16S rRNA gene PCR-based assays have been designed to analyze Enterobacteriaceae diversity and relative abundance, and, to the best of our knowledge, 16 primer pairs have been validated, published and used since 2003. Nonetheless, a comprehensive performance analysis of these primer sets has not yet been carried out. This information is of particular importance due to the recent taxonomic restructuration of Enterobacteriaceae into seven bacterial families. To overcome this lack of information, the identified collection of primer pairs (n = 16) was subjected to primer performance analysis using multiple bioinformatics tools. Herein it was revealed that, based on specificity and coverage of the 16S rRNA gene, these 16 primer sets could be divided into different categories: Enterobacterales-, multi-family-, multi-genus- and Enterobacteriaceae-specific primers. These results highlight the impact of taxonomy changes on performance of molecular assays and data interpretation. Moreover, they underline the urgent need to revise and update the molecular tools used for molecular microbial analyses.
Collapse
|
22
|
Zhang T, Chen L, Ding H, Wu PF, Zhang GX, Pan ZM, Xie KZ, Dai GJ, Wang JY. The Potential Effect of Microbiota in Predicting The Freshness of Chilled Chicken. Br Poult Sci 2021; 63:360-367. [PMID: 34747672 DOI: 10.1080/00071668.2021.2003753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. The goals of this study were to analyse the changes in microbiota composition of chilled chicken during storage and identify microbial biomarkers related to meat freshness.2. The study used 16S rDNA sequencing to track the microbiota shift in chilled chicken during storage. Associations between microbiota composition and storage time were analysed and microbial biomarkers were identified.3. The results showed that microbial diversity of chilled chicken decreased with the storage time. A total of 27 and 24 microbial biomarkers were identified by using orthogonal partial least squares (OPLS) and the random forest regression approach, respectively. The receiver operating characteristic (ROC) curve analysis indicated that the OPLS regression approach had better performance in identifying freshness-related biomarkers. The multiple stepwise regression analysis identified four key microbial biomarkers, including Streptococcus, Carnobacterium, Serratia and Photobacterium genera and constructed a predictive model.4. The study provided microbial biomarkers and a model related to the freshness of chilled chicken. These findings provide a basis for developing detection methods of the freshness of chilled chicken.
Collapse
Affiliation(s)
- T Zhang
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - L Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - H Ding
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - P F Wu
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - G X Zhang
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - Z M Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - K Z Xie
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - G J Dai
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| | - J Y Wang
- College of Animal Science and Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
23
|
Identification of the Specific Spoilage Organism in Farmed Sturgeon ( Acipenser baerii) Fillets and Its Associated Quality and Flavour Change during Ice Storage. Foods 2021; 10:foods10092021. [PMID: 34574132 PMCID: PMC8469357 DOI: 10.3390/foods10092021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Hybrid sturgeon, a popular commercial fish, plays important role in the aquaculture in China, while its spoilage during storage significantly limits the commercial value. In this study, the specific spoilage organisms (SSOs) from ice stored-sturgeon fillet were isolated and identified by analyzing their spoilage related on sensory change, microbial growth, and biochemical properties, including total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARS), and proteolytic degradation. In addition, the effect of the SSOs on the change of volatile flavor compounds was evaluated by solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results showed that the Pseudomonas fluorescens, Pseudomonas mandelii, and Shewanella putrefaciens were the main SSOs in the ice stored-sturgeon fillet, and significantly affect the odors by changing the volatile compounds in the sturgeon. Compared with the fresh sturgeon, the appreciable increase of polycyclic aromatic hydrocarbons and tetramethyl-pyrazine might be the spoilage indicators of the sturgeon contaminated by P. fluorescens; the appreciable increase of 1-octen-3-ol and (z)-2-penten-1-o might be the potential marker of the sturgeon contaminated by P. mandelii; and the appreciable increase of 1-(3,3-dimethylbicyclo [2.2.1] hept-2-yl)-ethanon and butylated hydroxytoluene were associated with S. putrefaciens. This study reveals the relationship between the SSOs and flavor changes in sturgeon fillets, which will contribute to the sturgeon preservation and shelf-life extension.
Collapse
|
24
|
İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 2021; 184:429-437. [PMID: 34166693 DOI: 10.1016/j.ijbiomac.2021.06.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
This study was carried out to characterize antioxidant activity, total phenolic content, and the phenolic and flavonoids profile of postbiotic of Pediococcus acidilactici and to evaluate the effects of postbiotics (10% and 50%) alone and in combination with chitosan coating (1%) on the microbial and chemical quality of chicken breast fillets during storage at 4 °C. Antioxidant activity and total phenolic content of the postbiotics were found to be 1291.02 ± 1.5 mg/L TEAC and 2336.11 ± 2.36 mg/L GAE, respectively. The most abundant phenolic was vanillic acid, followed by t-caffeic, gallic, and caftaric acids. The postbiotic-chitosan (50% + 1%) combination decreased L. monocytogenes and S. Typhimurium counts by 1.5 and 2.1 log10 CFU/g, respectively, compared to the control (P < 0.05). This combination decreased the total viable count (TVC), lactic acid bacteria (LAB), and psychrotrophic bacteria count compared to the control (P < 0.05). No differences were found in thiobarbituric acid (TBA) values among the samples during storage (P > 0.05). Postbiotic treatment did not significantly change the pH values and color properties of the breast fillets (P > 0.05). Postbiotic-chitosan combinations extended the shelf-life by up to 12 days compared to the control. In conclusion, the postbiotic-chitosan combination can be used to preserve and improve the microbial quality of chicken meat products.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
25
|
Bekhit AEDA, Giteru SG, Holman BWB, Hopkins DL. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Compr Rev Food Sci Food Saf 2021; 20:3620-3666. [PMID: 34056832 DOI: 10.1111/1541-4337.12764] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
The use of total volatile basic nitrogen (TVB-N) as a quality parameter for fish is rapidly growing to include other types of meat. Investigations of meat quality have recently focused on TVB-N as an index of freshness, but little is known on the biochemical pathways involved in its generation. Furthermore, TVB-N and methylated amines have been reported to exert deterimental health effects, but the relationship between these compounds and human health has not been critically reviewed. Here, literature on the formative pathways of TVB-N has been reviewed in depth. The association of methylated amines and human health has been critically evaluated. Interventions to mitigate the effects of TVB-N on human health are discussed. TVB-N levels in meat can be influenced by the diet of an animal, which calls for careful consideration when using TVB-N thresholds for regulatory purposes. Bacterial contamination and temperature abuse contribute to significant levels of post-mortem TVB-N increases. Therefore, controlling spoilage factors through a good level of hygiene during processing and preservation techniques may contribute to a substantial reduction of TVB-N. Trimethylamine (TMA) constitutes a significant part of TVB-N. TMA and trimethylamine oxide (TMA-N-O) have been related to the pathogenesis of noncommunicable diseases, including atherosclerosis, cancers, and diabetes. Proposed methods for mitigation of TMA and TMA-N-O accumulation are discussed, which include a reduction in their daily dietary intake, control of internal production pathways by targeting gut microbiota, and inhibition of flavin monooxygenase 3 enzymes. The levels of TMA and TMA-N-O have significant health effects, and this should, therefore, be considered when evaluating meat quality and acceptability. Agreed international values for TVB-N and TMA in meat products are required. The role of feed, gut microbiota, and translocation of methylated amines to muscles in farmed animals requires further investigation.
Collapse
Affiliation(s)
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Food & Bio-based Products, AgResearch Limited, Tennent Drive, Palmerston North, 4410, New Zealand
| | - Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| |
Collapse
|
26
|
Zhang T, Ding H, Chen L, Zhang S, Wu P, Xie K, Pan Z, Zhang G, Dai G, Wu H, Wang J. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis. Food Res Int 2021; 144:110328. [PMID: 34053532 DOI: 10.1016/j.foodres.2021.110328] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/20/2023]
Abstract
Spoilage of chilled chicken can occur as a result of microbial development and consumption of meat nutrients by spoilage bacteria, ultimately resulting in the release of undesired metabolites. Characterizing the profiles of the microbiota and metabolites and clarifying their relationships will contribute to an improved understanding of the mechanism underlying chilled chicken spoilage. In the present study, 16S rRNA gene sequencing and ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS)-based untargeted metabolomics analyses were applied to determine the microbial and metabolic profiles in chicken during chilled storage. The microbial and metabolic datasets were subjected to combined analysis using weighted gene co-expression network analysis (WGCNA) and Spearman's correlation analysis. Brochothrix, Carnobacterium, Photobacterium, Pseudomonas, Acinetobacter, Serratia, Kurthia, Shewanella, and Obesumbacterium genera were identified as the dominant spoilage bacteria in chilled chicken. Ten metabolic pathways, including histidine metabolism and purine metabolism, were identified as potential mechanisms underlying chilled chicken spoilage. Correlation analysis demonstrated that spoilage bacterial genera were highly correlated with spoilage-related metabolites. Taken together, the present study proposed an integrated microbiome and metabolomics approach to investigate the mechanism of chilled chicken spoilage caused by microbial activity. The results obtained by this approach provide a comprehensive insight into changes in the microbial and metabolic profiles of chilled chicken during spoilage.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou 225009, China.
| | - Hao Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Shanshan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Zhiming Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou 225009, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Haiqing Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
27
|
Bekhit AEDA, Holman BW, Giteru SG, Hopkins DL. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Dourou D, Grounta A, Argyri AA, Froutis G, Tsakanikas P, Nychas GJE, Doulgeraki AI, Chorianopoulos NG, Tassou CC. Rapid Microbial Quality Assessment of Chicken Liver Inoculated or Not With Salmonella Using FTIR Spectroscopy and Machine Learning. Front Microbiol 2021; 11:623788. [PMID: 33633698 PMCID: PMC7901899 DOI: 10.3389/fmicb.2020.623788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Chicken liver is a highly perishable meat product with a relatively short shelf-life and that can get easily contaminated with pathogenic microorganisms. This study was conducted to evaluate the behavior of spoilage microbiota and of inoculated Salmonella enterica on chicken liver. The feasibility of Fourier-transform infrared spectroscopy (FTIR) to assess chicken liver microbiological quality through the development of a machine learning workflow was also explored. Chicken liver samples [non-inoculated and inoculated with a four-strain cocktail of ca. 103 colony-forming units (CFU)/g Salmonella] were stored aerobically under isothermal (0, 4, and 8°C) and dynamic temperature conditions. The samples were subjected to microbiological analysis with concomitant FTIR measurements. The developed FTIR spectral analysis workflow for the quantitative estimation of the different spoilage microbial groups consisted of robust data normalization, feature selection based on extra-trees algorithm and support vector machine (SVM) regression analysis. The performance of the developed models was evaluated in terms of the root mean square error (RMSE), the square of the correlation coefficient (R2), and the bias (Bf) and accuracy (Af) factors. Spoilage was mainly driven by Pseudomonas spp., followed closely by Brochothrix thermosphacta, while lactic acid bacteria (LAB), Enterobacteriaceae, and yeast/molds remained at lower levels. Salmonella managed to survive at 0°C and dynamic conditions and increased by ca. 1.4 and 1.9 log CFU/g at 4 and 8°C, respectively, at the end of storage. The proposed models exhibited Af and Bf between observed and predicted counts within the range of 1.071 to 1.145 and 0.995 to 1.029, respectively, while the R2 and RMSE values ranged from 0.708 to 0.828 and 0.664 to 0.949 log CFU/g, respectively, depending on the microorganism and chicken liver samples. Overall, the results highlighted the ability of Salmonella not only to survive but also to grow at refrigeration temperatures and demonstrated the significant potential of FTIR technology in tandem with the proposed spectral analysis workflow for the estimation of total viable count, Pseudomonas spp., B. thermosphacta, LAB, Enterobacteriaceae, and Salmonella on chicken liver.
Collapse
Affiliation(s)
- Dimitra Dourou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Anthoula A Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - George Froutis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - George-John E Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Agapi I Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Nikos G Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| |
Collapse
|
29
|
Charmpi C, Van Reckem E, Sameli N, Van der Veken D, De Vuyst L, Leroy F. The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation. Foods 2020; 9:foods9101386. [PMID: 33019548 PMCID: PMC7601081 DOI: 10.3390/foods9101386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
The bacterial communities that are established during natural meat fermentation depend on the processing conditions and the type of meat substrate used. Six pork samples of variable quality (reflected in pH values) and six less conventional meats (beef, horse, hare, wild deer, wild duck, and wild boar) were naturally fermented under controlled conditions in model systems. The development of lactic acid bacteria (LAB), coagulase-negative staphylococci (CNS), and enterobacteria was followed using culture-dependent techniques and (GTG)5-PCR fingerprinting of genomic DNA from the isolates obtained. Taken together, Latilactobacillus sakei was the most abundant LAB species, although Latilactobacillus curvatus was more manifest in high-pH pork. Within staphylococci, common species were encountered (i.e., Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus xylosus), although some atypical ones (i.e., Staphylococcus succinus) were also recovered. Within enterobacteria, Serratia spp. prevailed in more acidic pork batches and in beef, whereas Hafnia spp. prevailed in game meat fermentations. Enterobacterial counts were particularly high in fermentations with low acidity, namely for some pork batches, hare, wild duck, and wild boar. These findings should be considered when naturally fermented meat products are manufactured, as the use of game meat or meat with high pH can give rise to safety concerns.
Collapse
|