1
|
Fortuin J, Leclercq CC, Iken M, Villas-Boas SG, Soukoulis C. Proteomic and peptidomic profiling of spirulina-fortified probiotic powder formulations during in vitro digestion. Int J Biol Macromol 2025; 302:140432. [PMID: 39884605 DOI: 10.1016/j.ijbiomac.2025.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
This study reports on the influence of lactic acid fermentation on the proteomic and peptidomic profiles of spirulina protein isolate (SPI)-fortified, freeze-dried powders containing living Lacticaseibacillus rhamnosus GG (LGG) cells during in vitro digestion. For comparison, powders fortified with whey protein isolate (WPI) and pea protein isolate (PPI) were also evaluated. Prior to freeze-drying, the powder precursors were either non-treated or fermented. Capillary SDS-PAGE electropherograms revealed a mild proteolytic effect due to fermentation. C-phycocyanin (SPI) and β-lactoglobulin (WPI) showed the highest resistance to pepsinolysis. All samples were responsive to pancreases, with fermented WPI showing the lowest responsiveness. Fermentation enhanced the degree of hydrolysis (DH) in gastric chymes, whereas in intestinal chymes, DH followed the order SPI > PPI > WPI, with fermentation showing no significant impact. A total of 6, 11, and 52 potential bioactive peptide sequences, associated with various beneficial activities, were identified in the SPI, PPI, and WPI digesta, respectively. The highest amino acid bioaccessibilities were observed for cysteine and methionine in SPI, isoleucine and arginine in PPI, and glycine in WPI. In conclusion, fortifying probiotic formulations with protein isolates offers secondary health benefits, stemming from the release of bioactive peptides and bioaccessible essential amino acids.
Collapse
Affiliation(s)
- Jennyfer Fortuin
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg; Food Quality and Design Group, Wageningen University and Research, 6708, NL, Wageningen, the Netherlands
| | - Céline C Leclercq
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | | | - Silas G Villas-Boas
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | - Christos Soukoulis
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
De Fazio R, Di Francesco A, Di Ciccio PA, Cunsolo V, Britti D, Lomagistro C, Roncada P, Piras C. Detection of Bioactive Peptides' Signature in Podolica Cow's Milk. Foods 2025; 14:877. [PMID: 40077579 PMCID: PMC11898676 DOI: 10.3390/foods14050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this study was to identify and characterize the bioactive peptide profile of Podolica cow's milk. This dairy product is known for its nutritional properties related to the presence of peculiar lipids and is a typical breed traditionally reared in southern Italy. Using top-down peptidomics, we identified 2213 peptides in milk samples from four different farms, with 19 matching bioactive sequences. Bioactivities include dipeptidyl peptidase-IV (DPP-IV) inhibition, angiotensin-converting enzyme (ACE) inhibition, antioxidant activity, enhanced calcium uptake, and other peptides with potential antimicrobial effects. DPP-IV-inhibitory peptides (e.g., LDQWLCEKL and VGINYWLAHK) suggest potential for type 2 diabetes management, while ACE inhibitors (such as YLGY and FFVAPFPEVFGK) could support cardiovascular health by reducing hypertension. Antimicrobial peptides such as SDIPNPIGSENSEK and VLNENLLR showed broad spectrum of activity against various harmful microorganisms, positioning Podolica milk as a promising source for natural antimicrobial agents. Additionally, peptides with osteoanabolic, antianxiety, and immunomodulatory properties further highlight the multifaceted health benefits associated with this type of milk. Our findings underline the functional richness of Podolica milk peptides with various bioactivity properties, which could enhance the value of derived dairy products and contribute to sustainable agricultural practices. Future research will aim to explore these bioactivity properties in vivo, establishing a foundation for functional foods and supplements based on Podolica milk.
Collapse
Affiliation(s)
- Rosario De Fazio
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95124 Catania, Italy; (A.D.F.); (V.C.)
| | - Pierluigi Aldo Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Torino, Italy;
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95124 Catania, Italy; (A.D.F.); (V.C.)
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro (CISVetSUA), 88100 Catanzaro, Italy
| | - Carmine Lomagistro
- Associazione Regionale Allevatori Calabria (A.R.A. Calabria), 88046 Lamezia Terme, Italy;
| | - Paola Roncada
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
| | - Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (D.B.); (P.R.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro (CISVetSUA), 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Cui W, Xie Y, Zhang Y, Su X, Cui T, Chen X, Wang Z, Xu F, Zhou H, Xu B. Antioxidant potential of peptides from poultry hemoglobin via probiotic-assisted hydrolysis: Deciphering mechanisms at the cellular level and through molecular dynamics simulations. Food Res Int 2025; 204:115953. [PMID: 39986793 DOI: 10.1016/j.foodres.2025.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Achieving the therapeutic goal of treating diseases by effectively controlling the excessive accumulation of intracellular free radicals is still very challenging, which motivates researchers to develop efficient novel antioxidant peptides from sustainable resources continuously. This study first pioneered a probiotic-assisted enzymatic hydrolysis of hemoglobin, which obtained 149 peptides. Two antioxidant peptides were rapidly screened using advanced molecular dynamics simulation techniques, revealing their molecular interaction mechanisms with Keap1. It was found that GLWGKV occupied six binding sites for Keap1 to form hydrogen bonds with Nrf2, whereas LIVYPW occupied two binding sites, and the binding free energy of GLWGKV to Keap1 was lower binding more stable. Cellular experiments confirmed that GLWGKV up-regulated the expression of related proteins and increased antioxidant enzyme activities, thereby attenuating H2O2-induced oxidative damage in Caco-2 cells. This research increases the economic added value of animal blood and demonstrates its great potential for development in functional foods.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yinghui Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xinlian Su
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tianqi Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingguang Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
4
|
Bhuva B, Sakure AA, Mankad PM, Ramanuj K, Rawat A, Bishnoi M, Kondepudi KK, Patel A, Sarkar P, Hati S. Influence of Lactobacillus and yeast on antioxidative, antidiabetic, and anti-inflammatory attributes of camel milk and Gir cow milk as well as release of bioactive peptides: A comparative study. J Food Sci 2025; 90:e70112. [PMID: 40091698 DOI: 10.1111/1750-3841.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
The aim of the study is to explore the biofunctional properties (antioxidative, anti-diabetic, and anti-inflammatory) with the release of bioactive peptides from fermented camel milk and Gir cow milk through yeast-lactic fermentation. Fermented camel milk and Gir cow milk exhibited higher antioxidative, antidiabetic, and anti-inflammatory activities compared to their unfermented counterparts. At 30°C, the most significant production of peptides had been discovered at 48 h of incubation with 2.5% rate of inoculation of yeast-lactic culture in the fermented milks of camel and Gir cow. Additionally, both the fermented milks considerably reduced the overproduction of TNF-α, IL-6, IL-1β, and nitric oxide in RAW 267.4 cells. Confocal laser scanning microscopy revealed the visualization of protein biomolecules of camel milk and Gir cow milk pre- and post-fermentation, revealing changes in protein network structure. The structural changes that occur during fermentation were examined using Fourier-transform infrared spectroscopy by assessing changes in functional groups after fermentation. To distinguish between different peptide fractions, reversed-phase high-performance liquid chromatography was used for comparing water-soluble extracts of ultra-filtered fractions. The Peakview tool was implemented to assess the liquid chromatography-mass spectrometry (LC/MS) data. However, fermenting camel and Gir cow milk with yeast and lactic acid bacteria enhances their nutritional and therapeutic values by releasing bioactive compounds, improving antioxidative, antidiabetic, and anti-inflammatory activities, and this process supports gut health, immunity, and sustainability, offering potential for functional foods and nutraceutical innovations. PRACTICAL APPLICATION: Traditionally, camel and Gir cow milk provide health benefits beyond nutrition for the well-being of the society since long. Fermented Gir cow and camel milk contain physiologically bioactive peptides. Gir cow and camel milk fermented with Limosilactobacillus fermentum (KGL4) in combination with Saccharomyces cerevisiae (WBS2A) also provide antidiabetic and antioxidative activities. Anti-inflammatory activity of fermented Gir cow and camel milks was also observed in RAW 264.7 macrophage cell. Antidiabetic and antioxidative peptides were also identified from fermented Gir Cow and camel milks. However, functional fermented dairy products can be developed using these two potent strains in combination for providing better health benefits.
Collapse
Affiliation(s)
- Brijesh Bhuva
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Amar A Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Pooja M Mankad
- Department of Veterinary Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Krupali Ramanuj
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Anita Rawat
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
5
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Valenzuela Zamudio F, Rojas Herrera R, Segura Campos MR. In vitro evaluation of multifunctional peptides PW, PF, PPG, PM, IW, and SW for metabolic syndrome management. Food Chem 2024; 460:140653. [PMID: 39089038 DOI: 10.1016/j.foodchem.2024.140653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Multifunctional peptides derived from various food sources, including ancestral grains, hold significant promise for managing metabolic syndrome. These bioactive peptides exhibit diverse properties that collectively contribute to improving the components of metabolic syndrome. In this study, we investigated the in vitro multifunctionality of six peptides (PW, PM, SW, PPG, PW, and IW) identified through in silico analysis and chemically synthesized. These peptides were evaluated for their potential to address metabolic syndrome-related activities such as antidiabetic, antiobesity, antihypertensive, and antioxidative properties. Assessment included their capacity to inhibit key enzymes associated with these activities, as well as their free radical scavenging and cellular antioxidative activities. Principal component analysis was employed to cluster the peptides according to their multifunctionality. Our results revealed that peptides containing tryptophan (SW, PW, and IW) exhibited the most promising multifunctional attributes, with SW showing particularly high potential. This multifunctional peptide represents a promising avenue for addressing metabolic syndrome.
Collapse
Affiliation(s)
- Francisco Valenzuela Zamudio
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburna de Hidalgo Inn, Merida, Yucatan, Mexico
| | - Rafael Rojas Herrera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburna de Hidalgo Inn, Merida, Yucatan, Mexico
| | - Maira Rubi Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburna de Hidalgo Inn, Merida, Yucatan, Mexico
| |
Collapse
|
7
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
9
|
Pitchakarn P, Buacheen P, Taya S, Karinchai J, Temviriyanukul P, Inthachat W, Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Ounjaijean S, Boonyapranai K. Anti-Inflammatory, Cytotoxic, and Genotoxic Effects of Soybean Oligopeptides Conjugated with Mannose. Foods 2024; 13:2558. [PMID: 39200485 PMCID: PMC11353420 DOI: 10.3390/foods13162558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang Chiang Mai, Chiang Mai 50200, Thailand; (P.P.); (P.B.); (J.K.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; (P.T.); (W.I.)
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Pairote Wiriyacharee
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.C.); (R.P.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
10
|
Long Y, Tao H, Wang S, Xing B, Wang Z, Liu K, Shao Q, Gao F. Identification and Functional Validation of Two Novel Antioxidant Peptides in Saffron. Antioxidants (Basel) 2024; 13:378. [PMID: 38539911 PMCID: PMC10967730 DOI: 10.3390/antiox13030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 12/18/2024] Open
Abstract
Saffron (Crocus sativus L.) is one of the most expensive spices in the world, boasting rich medicinal and edible value. However, the effective development of active natural substances in saffron is still limited. Currently, there is a lack of comprehensive studies on the saffron stigma protein, and the main effect peptides have not been identified. In this study, the total protein composition of saffron stigmas was analyzed, and two main antioxidant peptides (DGGSDYLGK and VDPYFNK) were identified, which showed high antioxidant activity. Then, the stability of two peptides was further evaluated. Furthermore, our results suggested that these two peptides may protect HepG2 cells from H2O2-induced oxidative damage by significantly improving the activity of endogenous antioxidant enzymes and reducing the malondialdehyde (MDA) content. Collectively, we identified two peptides screened from the saffron protein possessing good antioxidant activity and stability, making them promising candidates for use as functional foods, etc., for health promotion. Our findings indicated that proteomic analysis together with peptide identification is a good method for exploitation and utilization of spice plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.T.); (S.W.); (B.X.); (Z.W.); (K.L.)
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.T.); (S.W.); (B.X.); (Z.W.); (K.L.)
| |
Collapse
|
11
|
Szerszunowicz I, Kozicki S. Plant-Derived Proteins and Peptides as Potential Immunomodulators. Molecules 2023; 29:209. [PMID: 38202792 PMCID: PMC10780438 DOI: 10.3390/molecules29010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response of humans may be modulated by certain biopeptides. The present study aimed to determine the immunomodulatory potential of plant-derived food proteins and hydrolysates obtained from these proteins via monocatalytic in silico hydrolysis (using ficin, stem bromelainm or pepsin (pH > 2)). The scope of this study included determinations of the profiles of select bioactivities of proteins before and after hydrolysis and computations of the frequency of occurrence of selected bioactive fragments in proteins (parameter A), frequency/relative frequency of the release of biopeptides (parameters AE, W) and the theoretical degree of hydrolysis (DHt), by means of the resources and programs available in the BIOPEP-UWM database. The immunomodulating (ImmD)/immunostimulating (ImmS) peptides deposited in the database were characterized as well (ProtParam tool). Among the analyzed proteins of cereals and legumes, the best precursors of ImmD immunopeptides (YG, YGG, GLF, TPRK) turned out to be rice and garden pea proteins, whereas the best precursors of ImmS peptides appeared to be buckwheat (GVM, GFL, EAE) and broad bean (LLY, EAE) proteins. The highest number of YG sequences was released by stem bromelain upon the simulated hydrolysis of rice proteins (AE = 0.0010-0.0820, W = 0.1994-1.0000, DHt = 45-82%). However, antibacterial peptides (IAK) were released by ficin only from rice, oat, and garden pea proteins (DHt = 41-46%). Biopeptides (YG, IAK) identified in protein hydrolysates are potential immunomodulators, nutraceuticals, and components of functional food that may modulate the activity of the human immune system. Stem bromelain and ficin are also active components that are primed to release peptide immunomodulators from plant-derived food proteins.
Collapse
Affiliation(s)
- Iwona Szerszunowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland
| | | |
Collapse
|
12
|
de Espindola JS, Ferreira Taccóla M, da Silva VSN, Dos Santos LD, Rossini BC, Mendonça BC, Pacheco MTB, Galland F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res Int 2023; 173:113291. [PMID: 37803604 DOI: 10.1016/j.foodres.2023.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.
Collapse
Affiliation(s)
- Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Milena Ferreira Taccóla
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Vera Sônia Nunes da Silva
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Bruna Cavecci Mendonça
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
13
|
Helal A, Pierri S, Tagliazucchi D, Solieri L. Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates. Microorganisms 2023; 11:1742. [PMID: 37512914 PMCID: PMC10386367 DOI: 10.3390/microorganisms11071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID.
Collapse
Affiliation(s)
- Ahmed Helal
- Department of Food and Dairy Sciences and Technology, Damanhour University, Damanhour 22516, Egypt
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Sara Pierri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
14
|
Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fermentation is a promising solution to valorize cheese whey, the main by-product of the dairy industry. In Parmigiano Reggiano cheese production, natural whey starter (NWS), an undefined community of thermophilic lactic acid bacteria, is obtained from the previous day residual whey through incubation at gradually decreasing temperature after curd cooking. The aim of this study was to investigate the effect of fermentation regime (spontaneous (S) and NWS-inoculated (I-NWS)) on biofunctionalities and release of bioactive peptides during whey fermentation. In S and I-NWS trials proteolysis reached a peak after 24 h, which corresponded to the drop out in pH and the maximum increase in lactic acid. Biological activities increased as a function of fermentation time. NWS inoculum positively affected antioxidant activity, whilst S overcame I-NWS in angiotensin-converting enzyme (ACE) and DPP-IV (dipeptidyl peptidase IV) inhibitory activities. Peptidomics revealed more than 400 peptides, mainly derived from β-casein, κ-casein, and α-lactalbumin. Among them, 49 were bioactive and 21 were ACE-inhibitors. Semi-quantitative analysis strongly correlated ACE-inhibitory activity with the sum of the peptide abundance of ACE-inhibitory peptides. In both samples, lactotripeptide isoleucine-proline-proline (IPP) was higher than valine-proline-proline (VPP), with the highest content in S after 24 h of fermentation. In conclusion, we demonstrated the ability of whey endogenous microbiota and NWS to extensively hydrolyze whey proteins, promoting the release of bioactive peptides and improving protein digestibility.
Collapse
|
15
|
Cavalcante KN, Feitor J, Morais ST, Nassu RT, Ahrné L, Cardoso DR. Impact of UV-C pretreatment on β-lactoglobulin hydrolysis by trypsin: production and bioavailability of bioactive peptides. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Wongngam W, Hamzeh A, Tian F, Roytrakul S, Yongsawatdigul J. Purification and molecular docking of angiotensin converting enzyme-inhibitory peptides derived from corn gluten meal hydrolysate and from in silico gastrointestinal digestion. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
17
|
Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. BIOLOGY 2023; 12:biology12010078. [PMID: 36671770 PMCID: PMC9855406 DOI: 10.3390/biology12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Several recent published studies reported that cheese consumption may protect against the onset of cardiovascular diseases and type-2 diabetes due to the presence of bioactive peptides. In the present work, six cheese varieties (the Egyptian traditional cheeses Karish, Domiati and Ras as well as Feta-type, Gouda and Edam cheeses) were characterized for their peptidomics profiles with high-resolution mass spectrometry, biological activities and content in bioactive peptides. The highest ACE-inhibitory and DPP-IV-inhibitory activities were found in Gouda cheese, which also displayed the highest antioxidant activity. A total of 809 peptides originating from the major milk proteins were identified, and 82 of them were bioactive. Most of them showed ACE-inhibitory, antioxidant and DPP-IV-inhibitory activities. The highest amount of the in vivo anti-hypertensive tripeptides VPP and IPP was found in Gouda cheese (39.19 ± 1.26 and 17.72 ± 0.89 mg/100 g of cheese, respectively), whereas the highest amount of APFPE was detected in Edam cheese (509.13 ± 20.44 mg/100 g of cheese). These results suggest that the intake of Edam, Domiati and, especially, Gouda cheeses may result in a possible anti-hypertensive effect in hypertensive subjects.
Collapse
|
18
|
Rodríguez-Arana N, Jiménez-Aliaga K, Intiquilla A, León JA, Flores E, Zavaleta AI, Izaguirre V, Solis-Calero C, Hernández-Ledesma B. Protection against Oxidative Stress and Metabolic Alterations by Synthetic Peptides Derived from Erythrina edulis Seed Protein. Antioxidants (Basel) 2022; 11:2101. [PMID: 36358473 PMCID: PMC9686657 DOI: 10.3390/antiox11112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/21/2024] Open
Abstract
The ability of multifunctional food-derived peptides to act on different body targets make them promising alternatives in the prevention/management of chronic disorders. The potential of Erythrina edulis (pajuro) protein as a source of multifunctional peptides was proven. Fourteen selected synthetic peptides identified in an alcalase hydrolyzate from pajuro protein showed in vitro antioxidant, anti-hypertensive, anti-diabetic, and/or anti-obesity effects. The radical scavenging properties of the peptides could be responsible for the potent protective effects observed against the oxidative damage caused by FeSO4 in neuroblastoma cells. Moreover, their affinity towards the binding cavity of angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) were predicted by molecular modeling. The results demonstrated that some peptides such as YPSY exhibited promising binding at both enzymes, supporting the role of pajuro protein as a novel ingredient of functional foods or nutraceuticals for prevention/management of oxidative stress, hypertension, and metabolic-alteration-associated chronic diseases.
Collapse
Affiliation(s)
- Nathaly Rodríguez-Arana
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - José A. León
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Eduardo Flores
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Víctor Izaguirre
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Christian Solis-Calero
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
19
|
Antioxidant Potential of the Sweet Whey-Based Beverage Colada after the Digestive Process and Relationships with the Lipid and Protein Fractions. Antioxidants (Basel) 2022; 11:antiox11091827. [PMID: 36139901 PMCID: PMC9495724 DOI: 10.3390/antiox11091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Whey-based beverages could be an effective way of reusing a by-product of th cheese industry, mitigating environmental hazards and, at the same time, profiting a useful food with high nutritional and antioxidant properties. In this study, a traditional Ecuadorian beverage (Colada) was prepared combining sweet whey, Maracuyá and barley. Antioxidant properties before and after an in vitro digestion using the INFOGEST method were determined, and relationships with intestinal transformations of the lipid and protein fractions were analyzed. The digestive process had a positive effect on antioxidant properties based on increased values of ABTS and FRAP located in the bioaccessible fraction (BF), together with strong increments of total polyphenols. Moreover, pretreatment of Caco-2 cells with the BF of Colada significantly reduced ROS generation (p < 0.001) measured by the dichlorofluorescein assay. Substantial changes of the fatty acid profile occurred during digestion, such as a fall of saturated fatty acids and a rise of polyunsaturated. The protein profile, examined by SDS-PAGE and exclusion molecular chromatography in the BF, showed that the major part of the proteins were digested in the intestinal phase. Analysis of NanoLC-MS/MS revealed 18 antioxidant peptides originated from whey proteins, but also 16 peptides from barley with potential antioxidant properties. In conclusion, combining sweet whey with Maracuyá and barley constitutes an excellent nutritional beverage with a strong antioxidant potential.
Collapse
|
20
|
Castellone V, Prandi B, Bancalari E, Tedeschi T, Gatti M, Bottari B. Peptide profile of Parmigiano Reggiano cheese after simulated gastrointestinal digestion: From quality drivers to functional compounds. Front Microbiol 2022; 13:966239. [PMID: 36081785 PMCID: PMC9445588 DOI: 10.3389/fmicb.2022.966239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Time of ripening has a strong impact on shaping the valuable and recognizable characteristics of long-ripened types of cheese such as Parmigiano Reggiano (PR) due to the interrelationship between microbiota and proteolysis that occurs during ripening. The derived peptide profile is linked to cheese quality and represents the canvas for enzymes upon digestion, which could be responsible for the release of potentially bioactive peptides (BPs). In this study, we aimed at investigating the presence of BP in 72 PR cheese samples of different ripening times, from curd to 24 months of ripening, produced in six different dairies, and following their fate after simulated gastrointestinal digestion. A small number of peptide sequences sharing 100% similarity with known antimicrobial, antioxidant, and ACE-inhibitor sequences were found in PR cheeses, while a higher number of potential BPs were found after their simulated gastrointestinal digestion, in different amounts according to ripening time. Taking advantage of the complex organization of the sampling plan, we were able to follow the fate of peptides considered quality drivers during cheese ripening to their release as functional compounds upon digestion.
Collapse
|
21
|
Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Sarkar T, Bharadwaj KK, Salauddin M, Pati S, Chakraborty R. Phytochemical Characterization, Antioxidant, Anti-inflammatory, Anti-diabetic properties, Molecular Docking, Pharmacokinetic Profiling, and Network Pharmacology Analysis of the Major Phytoconstituents of Raw and Differently Dried Mangifera indica (Himsagar cultivar): an In Vitro and In Silico Investigations. Appl Biochem Biotechnol 2022; 194:950-987. [PMID: 34591254 DOI: 10.1007/s12010-021-03669-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023]
Abstract
Mango (Himsagar cultivar) is a high moisture-bearing seasonal fruit and cultivated in a wide range of the world. Mango pulp is generally preserved by sun drying. In recent days, industries are using hot-air oven, freeze, and microwave drying for mango leather (dried mango pulp in the sheet like texture) processing. Here, all these four drying methods were studied to determine the effect of drying on mango leather processing. RP-HPLC and FTIR were studied for analysis of polyphenol profile and predominant functional groups in raw and processed samples. The phytochemical analysis and medicinal properties (antioxidant, anti-diabetic, and anti-inflammatory activity) of all five mango samples were studied. The bioinformatics approach was studied to evaluate the bioactive potential of the phytochemicals derived from the samples. Freeze-dried mango leather was found to be the highest in DPPH (74.23%) and Superoxide (66.04%) activity, though raw mango pulp was observed with the highest H2O2 activity (73.24%). Gallic acid was the predominant phenolic acid present in all five samples and it was maximum in the case of freeze-dried sample (2.76 ± 0.04 mg/100 g MD). On the other hand, quercetin was the predominant flavonoid, it was found maximum for freeze-dried sample (3.93 ± 0.21 mg/100 g MD).
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Technology and Biochemical Engineering, Faculty of Engineering and Technology, Jadavpur University, Kolkata, 700032, India.
- Malda Polytechnic, West Bengal State Council of Technical Education, Malda, 732102, Govt. of West Bengal, India.
| | - Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Molla Salauddin
- Department of Food Technology and Biochemical Engineering, Faculty of Engineering and Technology, Jadavpur University, Kolkata, 700032, India
- MMM Govt. Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Nadia, 741156, India
| | - Siddhartha Pati
- SIAN Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, 756001, Odisha, India
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, 752057, Odisha, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Faculty of Engineering and Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
24
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
25
|
Devita L, Lioe HN, Nurilmala M, Suhartono MT. The Bioactivity Prediction of Peptides from Tuna Skin Collagen Using Integrated Method Combining In Vitro and In Silico. Foods 2021; 10:2739. [PMID: 34829019 PMCID: PMC8625179 DOI: 10.3390/foods10112739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022] Open
Abstract
The hydrolysates and peptide fractions of bigeye tuna (Thunnus obesus) skin collagen have been successfully studied. The hydrolysates (HPA, HPN, HPS, HBA, HBN, HBS) were the result of the hydrolysis of collagen using alcalase, neutrase, and savinase. The peptide fractions (PPA, PPN, PPS, PBA, PBN, PBS) were the fractions obtained following ultrafiltration of the hydrolysates. The antioxidant activities of the hydrolysates and peptide fractions were studied using the DPPH method. The effects of collagen types, enzymes, and molecular sizes on the antioxidant activities were analyzed using profile plots analysis. The amino acid sequences of the peptides in the fraction with the highest antioxidant activity were analyzed using LC-MS/MS. Finally, their bioactivity and characteristics were studied using in silico analysis. The hydrolysates and peptide fractions provided antioxidant activity (6.17-135.40 µmol AAE/g protein). The lower molecular weight fraction had higher antioxidant activity. Collagen from pepsin treatment produced higher activity than that of bromelain treatment. The fraction from collagen hydrolysates by savinase treatment had the highest activity compared to neutrase and alcalase treatments. The peptides in the PBN and PPS fractions of <3 kDa had antidiabetic, antihypertensive and antioxidant activities. In conclusion, they have the potential to be used in food and health applications.
Collapse
Affiliation(s)
- Liza Devita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
- The Ministry of Agriculture Republic Indonesia, Jakarta 12550, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia;
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| |
Collapse
|
26
|
Ogrodowczyk AM, Dimitrov I, Wróblewska B. Two Faces of Milk Proteins Peptides with Both Allergenic and Multidimensional Health Beneficial Impact- Integrated In Vitro/ In Silico Approach. Foods 2021; 10:163. [PMID: 33466712 PMCID: PMC7828788 DOI: 10.3390/foods10010163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
The main food-origin antigens that the infant's body is in contact with are cow's milk proteins (CMP). Still, CMP are one of the main sources of beneficial biologically active peptides that play a role in treatment of non-communicable diseases. Safe methods to quickly predict the sensitizing potential of food proteins among their range of health-promoting properties are essential. The aim of study was to adapt an integrated approach combining several in silico (IS) studies and in vitro (IV) assays to screen the multifunctionality of CMP-derived peptides. Major histocompatability complex type II MHC II-binders, interleukin-4 and -10 inducers, interferon γ -inducers and immunobioactivity tools were used to predict the peptide-power of inducing allergies or tolerance. A comparison of the peptide profiless revealed the presence of one identical and one overlapping sequence in IS and IV hydrolysate. By IS analysis, four of 24 peptides were found to have high affinity and stimulate IL-4 expression, and by IV, one of seven peptides had this potential (Bos d9 peptide DIPNPIGSENSEK (195-208)). Three IV peptides may induce IL-10 expression. The IV/IS assessment seems promising agents for peptides' potential determination dedicated only to preliminary screening of peptides. The IV verification is still crucial in further steps of studies.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
27
|
Amigo L, Hernández-Ledesma B. Introduction to the Special Issue: New Advances in the Research of Antioxidant Food Peptides. Foods 2020; 9:foods9121810. [PMID: 33297290 PMCID: PMC7762295 DOI: 10.3390/foods9121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
|