1
|
Sagu ST, Ulbrich N, Morche JR, Nichani K, Özpinar H, Schwarz S, Henze A, Rohn S, Rawel HM. Formation of Cysteine Adducts with Chlorogenic Acid in Coffee Beans. Foods 2024; 13:1660. [PMID: 38890888 PMCID: PMC11171587 DOI: 10.3390/foods13111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The post-harvest processing of coffee beans leads to a wide range of reactions involving proteins. The formation of crosslinks between proteins and phenolic compounds present in high concentrations of coffee beans represents one of the most challenging and still not fully characterized reactions. The aim of this work was to assess the presence of products from such reactions in coffee samples, focusing on the adducts between cysteine and chlorogenic acids (CQAs). For this purpose, 19 green and 15 roasted coffee samples of the Coffea arabica, Coffea canephora, and Coffea liberica varieties were selected for this study and basically characterized. Then, targeted liquid chromatography mass spectrometry (LC-MS/MS) methods were developed to assess the formation of adducts between CQA and cysteine, glutathione, and N-acetylcysteine as the amino acid and peptide models, and quantified such adducts in coffee samples. The results of the characterization showed a heterogeneous distribution of the protein content (8.7-14.6%), caffeine (0.57-2.62 g/100 g), and antioxidant capacity (2-4.5 g ascorbic acid/100 g) in Arabica, Canephora, and Liberica samples. Glutamic acid, arginine, and proline were found to be the major amino acids, while 5-CQA (38-76%), 3-CQA (4-13%), and 4-CQA (4-13%) were the most abundant CQA derivatives of all coffee varieties. The model experiments for adduct formation demonstrated that cysteine binds to CQA via thiol groups and 5-CQA initially isomerizes to 3- and 4-CQA, depending on the conditions, allowing cysteine to bind to two different sites on 3-, 4- or 5-CQA molecules, thus, forming six different Cys-CQA adducts with m/z 476. The reaction was more favored at pH 9, and the adducts proved to be stable up to 90 °C for 10 min and up to 28 days at room temperature. The relative quantification of adducts showed peak area values ranging from 1100 to 3000 in green coffee bean samples, while no adducts were detected in roasted coffee beans. Overall, this work was the first attempt to demonstrate the presence of Cys-CQA adducts in coffee beans and paves the way for further investigations of such adduct formation at the protein level.
Collapse
Affiliation(s)
- Sorel Tchewonpi Sagu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany; (S.T.S.); (A.H.)
| | - Nina Ulbrich
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Johanna Rebekka Morche
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| | - Kapil Nichani
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| | - Haydar Özpinar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Aydın Üniversitesi, Mah. İnönü Cad. No: 38 Sefaköy, 34295 İstanbul, Turkey;
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Andrea Henze
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany; (S.T.S.); (A.H.)
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Harshadrai M. Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; (N.U.); (J.R.M.); (K.N.)
| |
Collapse
|
2
|
Halagarda M, Obrok P. Influence of Post-Harvest Processing on Functional Properties of Coffee ( Coffea arabica L.). Molecules 2023; 28:7386. [PMID: 37959805 PMCID: PMC10650074 DOI: 10.3390/molecules28217386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Coffee is one of the most popular beverages worldwide, valued for its sensory properties as well as for its psychoactive effects that are associated with caffeine content. Nevertheless, coffee also contains antioxidant substances. Therefore, it can be considered a functional beverage. The aim of this study is to evaluate the influence of four selected post-harvest coffee fruit treatments (natural, full washed, washed-extended fermentation, and anaerobic) on the antioxidant and psychoactive properties of Arabica coffee. Additionally, the impact of coffee processing on the selected quality parameters was checked. For this purpose, results for caffeine content, total phenolic content (TPC), DPPH assay, pH, titratable acidity, and water content were determined. The results show that natural and anaerobic processing allow the highest caffeine concentration to be retained. The selection of the processing method does not have a significant influence on the TPC or antiradical activity of coffee. The identified differences concerning water content and pH along with lack of significant discrepancies in titratable acidity may have an influence on the sensory profile of coffee.
Collapse
Affiliation(s)
- Michał Halagarda
- Department of Food Product Quality, Krakow University of Economics, Ul. Sienkiewicza 5, 30-033 Krakow, Poland
| | | |
Collapse
|
3
|
Li Z, Zhao C, Cao C. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 2023; 28:molecules28083476. [PMID: 37110710 PMCID: PMC10143638 DOI: 10.3390/molecules28083476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.
Collapse
Affiliation(s)
- Zelin Li
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
4
|
Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds. Foods 2022; 11:foods11020159. [PMID: 35053890 PMCID: PMC8775169 DOI: 10.3390/foods11020159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma.
Collapse
|
5
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
6
|
Coffee By-Products as Sustainable Novel Foods: Report of the 2nd International Electronic Conference on Foods-"Future Foods and Food Technologies for a Sustainable World". Foods 2021; 11:foods11010003. [PMID: 35010128 PMCID: PMC8750261 DOI: 10.3390/foods11010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The coffee plant Coffea spp. offers much more than the well-known drink made from the roasted coffee bean. During its cultivation and production, a wide variety of by-products are accrued, most of which are currently unused, thermally recycled, or used as fertilizer or animal feed. Modern, ecologically oriented society attaches great importance to sustainability and waste reduction, so it makes sense to not dispose of the by-products of coffee production but to bring them into the value chain, most prominently as foods for human nutrition. There is certainly huge potential for all of these products, especially on markets not currently accessible due to restrictions, such as the novel food regulation in the European Union. The by-products could help mitigate the socioeconomic burden of coffee farmers caused by globally low coffee prices and increasing challenges due to climate change. The purpose of the conference session summarized in this article was to bring together international experts on coffee by-products and share the current scientific knowledge on all plant parts, including leaf, cherry, parchment and silverskin, covering aspects from food chemistry and technology, nutrition, but also food safety and toxicology. The topic raised a huge interest from the audience and this article also contains a Q&A section with more than 20 answered questions.
Collapse
|
7
|
Yulia M, Suhandy D. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics. Molecules 2021; 26:molecules26206091. [PMID: 34684672 PMCID: PMC8539780 DOI: 10.3390/molecules26206091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
In this present research, a spectroscopic method based on UV–Vis spectroscopy is utilized to quantify the level of corn adulteration in peaberry ground roasted coffee by chemometrics. Peaberry coffee with two types of bean processing of wet and dry-processed methods was used and intentionally adulterated by corn with a 10–50% level of adulteration. UV–Vis spectral data are obtained for aqueous samples in the range between 250 and 400 nm with a 1 nm interval. Three multivariate regression methods, including partial least squares regression (PLSR), multiple linear regression (MLR), and principal component regression (PCR), are used to predict the level of corn adulteration. The result shows that all individual regression models using individual wet and dry samples are better than that of global regression models using combined wet and dry samples. The best calibration model for individual wet and dry and combined samples is obtained for the PLSR model with a coefficient of determination in the range of 0.83–0.93 and RMSE below 6% (w/w) for calibration and validation. However, the error prediction in terms of RMSEP and bias were highly increased when the individual regression model was used to predict the level of corn adulteration with differences in the bean processing method. The obtained results demonstrate that the use of the global PLSR model is better in predicting the level of corn adulteration. The error prediction for this global model is acceptable with low RMSEP and bias for both individual and combined prediction samples. The obtained RPDp and RERp in prediction for the global PLSR model are more than two and five for individual and combined samples, respectively. The proposed method using UV–Vis spectroscopy with a global PLSR model can be applied to quantify the level of corn adulteration in peaberry ground roasted coffee with different bean processing methods.
Collapse
Affiliation(s)
- Meinilwita Yulia
- Department of Agricultural Technology, Lampung State Polytechnic, Jl. Soekarno Hatta No. 10, Rajabasa, Bandar Lampung 35141, Indonesia;
| | - Diding Suhandy
- Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No.1, Bandar Lampung 35145, Indonesia
- Correspondence: ; Tel.: +62-0813-7334-7128
| |
Collapse
|
8
|
Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes (Basel) 2021. [DOI: 10.3390/pr9081396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.
Collapse
|
9
|
Legas Muhammed B, Hussen Seid M, Habte AT. Determination of Caffeine and Hydrogen Peroxide Antioxidant Activity of Raw and Roasted Coffee Beans Around Habru Woreda, Ethiopia Using UV-Vis Spectroscopy. Clin Pharmacol 2021; 13:101-113. [PMID: 34079391 PMCID: PMC8163633 DOI: 10.2147/cpaa.s311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Coffee is a well-known beverage that is widely used around the world. Despite the wide use of coffee in Ethiopia, there is a lack of extensive studies addressing the issues related to the caffeine content and hydrogen peroxide antioxidant activity of varieties of coffee types, particularly in Habru woreda, Ethiopia. Objective This study aimed to determine the caffeine content and hydrogen peroxide antioxidant activity of raw and roasted coffee beans collected directly from Habru woreda, North Wollo zone of Ethiopia. Methods The study was conducted in Bohoro, Girana, and Wurgisa kebeles of Habru woreda, Ethiopia, by collecting 500 g of green beans of Arabica coffee without considering their variety. Then, the collected beans were divided into raw and roasted coffee to perform aqueous and dichloromethane extraction of their caffeine content and hydrogen peroxide antioxidant activity using UV-Vis spectrophotometry. Results The amounts of caffeine in aqueous and dichloromethane extraction were in the range of 124.01−191.27 ppm and 145.15−200.09 ppm in raw and roasted coffees, respectively. Using the IC50 value, the hydrogen peroxide scavenging activity of the aqueous phase coffee bean extracts in Bohoro raw, Bohoro roasted, Wurgisa raw, Wurgisa roasted, Girana raw, and Girana roasted coffee were 32.17 ppm, 11.69 ppm, 26.14 ppm, 3.12 ppm, 24.83 ppm, and 11.06 ppm, respectively, while that of ascorbic acid was 6.91 ppm. Conclusion The study showed that the highest amount of caffeine in both aqueous and dichloromethane solvent extraction was found in Bohoro’s raw and roasted coffee beans. Also, the amounts of caffeine in all coffee bean samples were safe and the antioxidant activity was excellent. In most of the samples, significant variations in the concentration of caffeine in raw and roasted coffee bean samples were observed in the two extraction solvents.
Collapse
|
10
|
Ramírez K, Pineda-Hidalgo KV, Rochín-Medina JJ. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|