1
|
Li C, Ma Y, Fan C, An Y, Ma S. A ratiometric fluorescence sensor based on molecular imprinting technology for rapid and visual detection of norfloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125689. [PMID: 39756132 DOI: 10.1016/j.saa.2024.125689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The problem of excessive use and abuse of antibiotics in the environment and food biology is becoming increasingly prominent, and norfloxacin (NOR) is widely used as an inexpensive and broad-spectrum antibiotic drug. Therefore, rapid and effective detection of antibiotics and residues in biological samples has become a demand of the times. This article describes a ratiometric fluorescence sensor based on molecular imprinting technology for the rapid and visual detection of NOR. A linear relationship (R2 = 0.9977) was established between the ratio of self-fluorescence of NOR to the reference fluorescence from rhodamine B and NOR concentration (0-400 μg/L), with a detection limit as low as 0.38 ng/mL, the detection time is as short as 8 min, and a high imprinting factor of 4.5. Visual detection of NOR was achieved through the change of fluorescence color from red to blue-purple. Satisfactory detection accuracy (RSD < 3.5 %) and recovery rate (90.03-102.10 %) were obtained through real sample spiking experiments and were highly consistent with HPLC-UV results. This ratiometric fluorescent sensor based on molecularly imprinting technology with high selectivity, sensitivity, rapidity, and visualization for detecting NOR in complex matrices has broad application prospects in the fields of rapid screening and on-site detection.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Cheng Fan
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Yu An
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Siyue Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Pinamonti D, Manzano M, Maifreni M, Bianco S, Domi B, Ferrin A, Anba-Mondoloni J, Dechamps J, Briandet R, Vidic J. Prevalence and Characterization of Staphylococcus aureus Isolated from Meat and Milk in Northeastern Italy. J Food Prot 2025; 88:100442. [PMID: 39725327 DOI: 10.1016/j.jfp.2024.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine the prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production. Among the meat isolates, 41.67% were resistant to ampicillin, and 25% were methicillin-resistant S. aureus (MRSA). In milk, 20% of the isolates were resistant to gentamycin, while 5.71% were MRSA. The prevalence of multidrug-resistant strains was higher in meat (16.67%) compared to milk (5.71%). The biofilm formation capability was assessed in most of the isolates (80% in milk and 100% in meat). Representative strains exhibiting different antibiotic resistance profiles were all negative for the enterotoxin genes sea, seb, sec, sed, and see, but harbored potential virulence factors such as hemolytic activity, high pigmentation, low cell envelop permeability, charged and hydrophobicity. Finally, the interaction of representative strains with human Caco-2 intestinal cell line showed that most strains had an adhesion capacity. Our findings reveal that foodborne isolates of S. aureus present a considerable threat to consumers due to their production of virulence factors, which enhance their pathogenicity and increase the likelihood of antibiotic treatment failures.
Collapse
Affiliation(s)
- Debora Pinamonti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Marisa Manzano
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy.
| | - Michela Maifreni
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Silvia Bianco
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Beki Domi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Alessia Ferrin
- University of Udine, Department of Agricultural, Food, Environmental and Animal Science, 33100 Udine, Italy
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Julien Dechamps
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Roman Briandet
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France.
| |
Collapse
|
3
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
4
|
Li C, Ma Y, Fan C, He C, Ma S. Highly sensitive and selective detection of amoxicillin using molecularly imprinted ratiometric fluorescent nanosensor based on quantum dots. Mikrochim Acta 2024; 191:525. [PMID: 39120793 DOI: 10.1007/s00604-024-06593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
A dual-emission ratiometric fluorescence sensor (CDs@CdTe@MIP) with a self-calibration function was successfully constructed for AMO detection. In the CDs@CdTe@MIP system, non-imprinted polymer-coated CDs and molecule-imprinted polymer-coated CdTe quantum dots were used as the reference signal and response elements, respectively. The added AMO quenched the fluorescence of the CdTe quantum dots, whereas the fluorescence intensity of the CDs remained almost unchanged. The AMO concentration was monitored using the fluorescence intensity ratio (log(I647/I465)0/(I647/I465)) to reduce interference from the testing environment. The sensor with a low detection limit of 0.15 μg/L enabled detection of the AMO concentration within 6 min. The ratiometric fluorescence sensor was used to detect AMO in spiked pork samples; it exhibited a high recovery efficiency and relative standard deviation (RSD) of 97.94-103.70% and 3.77-4.37%, respectively. The proposed highly sensitive and selective platform opens avenues for sensitive, reliable, and rapid determination of pharmaceuticals in the environment and food safety monitoring using ratiometric sensors.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Cheng Fan
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Chong He
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Siyue Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
5
|
Santos ICD, Barbosa LN, Sposito PH, Silva KRD, Caldart ET, Costa LMB, Martins LA, Gonçalves DD. Presence and Resistance Profile of Staphylococcus spp. Isolated from Slaughtered Pigs. Vector Borne Zoonotic Dis 2023; 23:576-582. [PMID: 37695815 DOI: 10.1089/vbz.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Background: The objective of this study was to isolate Staphylococcus spp. and to characterize the resistance profile in nasal samples from pigs slaughtered for consumption. Material and Methods: Intranasal swabs were collected from 100 pigs immediately after bleeding in a slaughterhouse located in the largest pork production region in Brazil, these samples were cultured and isolated to identify Staphylococcus spp. in coagulase positive (CoPS) and coagulase negative (CoNS) and molecular identification of Staphylococcus aureus and then subjected to the disk-diffusion test to identify the bacterial resistance profile and search for the mecA gene. Results: Of the 100 samples collected, it was possible to isolate 79 Staphylococcus spp., of these, 72.15% were classified as CoNS and 27.85% of the isolates classified as CoPS. Among the CoPS isolates, 77.27% were identified as S. aureus. Through the disk-diffusion test, it was possible to verify isolates resistant to clindamycin and erythromycin (98.73%), chloramphenicol (93.67%), and doxycycline (89.87%). There was amplification of the mecA gene in 30.38% of Staphylococcus spp. Conclusion: The results of this study highlight the need for the careful use of antibiotics in swine production, in addition to aiming at continuous surveillance in relation to the rate of multiresistant microorganisms within these environments, focused on large industrial centers; such results also indicate the importance of understanding, through future studies, possible pathways to transmission of these microorganisms directly, or indirectly, through meat products derived from these pigs, which can be considered neglected diffusers of variants of Staphylococcus spp. resistant to antibiotics or carriers of important resistance genes related to One Health.
Collapse
Affiliation(s)
| | | | - Paulo Henrique Sposito
- Médico Veterinário do Ministério da Agricultura, Pecuária e Abastecimento, MAPA/DF, Brasilia, Brasil
| | | | | | | | | | | |
Collapse
|
6
|
Omara M, Hagras M, Elsebaie MM, Abutaleb NS, Nour El-Din HT, Mekhail MO, Attia AS, Seleem MN, Sarg MT, Mayhoub AS. Exploring novel aryl/heteroaryl-isosteres of phenylthiazole against multidrug-resistant bacteria. RSC Adv 2023; 13:19695-19709. [PMID: 37425632 PMCID: PMC10323310 DOI: 10.1039/d3ra02778c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant Staphylococci to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class. Previous studies revealed the existence of two key structural features essential for the antibacterial activity, the guanidine head and lipophilic tail. In this study, a new series of twenty-three phenylthiazole derivatives were synthesized utilizing the Suzuki coupling reaction to explore the lipophilic part. The in vitro antibacterial activity was evaluated against a range of clinical isolates. The three most promising compounds, 7d, 15d and 17d, with potent MIC values against MRSA USA300 were selected for further antimicrobial evaluation. The tested compounds exhibited potent results against the tested MSSA, MRSA, and VRSA strains (concentration: 0.5 to 4 μg mL-1). Compound 15d inhibited MRSA USA400 at a concentration of 0.5 μg mL-1 (one-fold more potent than vancomycin) and showed low MIC values against ten clinical isolates, including linezolid-resistant strain MRSA NRS119 and three vancomycin-resistant isolates VRSA 9/10/12. Moreover, compound 15d retained its potent antibacterial activity using the in vivo model by the burden reduction of MRSA USA300 in skin-infected mice. The tested compounds also showed good toxicity profiles and were found to be highly tolerable to Caco-2 cells at concentrations of up to 16 μg mL-1, with 100% of the cells remaining viable.
Collapse
Affiliation(s)
- Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Maria O Mekhail
- PharmD-Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University Giza Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Marwa T Sarg
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
7
|
Gagetti P, Giacoboni GI, Nievas HD, Nievas VF, Moredo FA, Corso A. First Isolation of Methicillin-Resistant Livestock-Associated Staphylococcus aureus CC398 and CC1 in Intensive Pig Production Farms in Argentina. Animals (Basel) 2023; 13:1796. [PMID: 37889703 PMCID: PMC10251997 DOI: 10.3390/ani13111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 10/29/2023] Open
Abstract
Since the mid-2000s, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been identified among pigs worldwide, CC398 being the most relevant LA-MRSA clone. In the present work, nasal swabs were taken from healthy pigs of different age categories (25 to 154 days) from 2019 to 2021 in four intensive farms located in three provinces of Argentina. The aim of the present study was to characterize the first LA-MRSA isolates that colonized healthy fattening pigs in Argentina in terms of their resistance phenotype and genotype and to know the circulating clones in the country. Antimicrobial susceptibility, presence of the mecA gene and PCR screening of CC398 were evaluated in all the isolates. They were resistant to cefoxitin, penicillin, tetracycline, chloramphenicol and ciprofloxacin but susceptible to nitrofurantoin, rifampicin, vancomycin and linezolid. Furthermore, 79% were resistant to clindamycin and lincomycin, 68% to erythromycin, 58% to gentamicin and 37% to trimethoprim/sulfamethoxazole. All the isolates were multidrug resistant. The clonal relation was assessed by SmaI-PFGE (pulsed-field gel electrophoresis) and a representative isolate of each PFGE type was whole genome sequenced by Illumina. MLST (multilocus sequence typing), resistance and virulence genes and SCCmec typing were performed on sequenced isolates. The isolates were differentiated in three clonal types by PFGE, and they belonged to sequence-type ST398 (58%) and ST9, CC1 (42%) by MLST. SCCmec typeV and several resistance genes detected showed complete correlation with resistance phenotypes. The present study revealed that LA-MRSA colonizing healthy pigs in Argentina belongs to CC398 and CC1, two MRSA lineages frequently associated to pigs in other countries.
Collapse
Affiliation(s)
- Paula Gagetti
- Servicio Antimicrobianos, INEI-ANLIS “Dr. Carlos G. Malbrán”, Laboratorio Nacional/Regional de Referencia en Resistencia a los Antimicrobianos PAHO, Buenos Aires 1281, Argentina
| | - Gabriela Isabel Giacoboni
- Laboratorio de Bacteriología y Antimicrobianos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina; (G.I.G.); (H.D.N.); (V.F.N.); (F.A.M.)
| | - Hernan Dario Nievas
- Laboratorio de Bacteriología y Antimicrobianos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina; (G.I.G.); (H.D.N.); (V.F.N.); (F.A.M.)
| | - Victorio Fabio Nievas
- Laboratorio de Bacteriología y Antimicrobianos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina; (G.I.G.); (H.D.N.); (V.F.N.); (F.A.M.)
| | - Fabiana Alicia Moredo
- Laboratorio de Bacteriología y Antimicrobianos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires 1900, Argentina; (G.I.G.); (H.D.N.); (V.F.N.); (F.A.M.)
| | - Alejandra Corso
- Servicio Antimicrobianos, INEI-ANLIS “Dr. Carlos G. Malbrán”, Laboratorio Nacional/Regional de Referencia en Resistencia a los Antimicrobianos PAHO, Buenos Aires 1281, Argentina
| |
Collapse
|
8
|
Scollo A, Perrucci A, Stella MC, Ferrari P, Robino P, Nebbia P. Biosecurity and Hygiene Procedures in Pig Farms: Effects of a Tailor-Made Approach as Monitored by Environmental Samples. Animals (Basel) 2023; 13:ani13071262. [PMID: 37048519 PMCID: PMC10093544 DOI: 10.3390/ani13071262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
In livestock, the importance of hygiene management is gaining importance within the context of biosecurity. The aim of this study was to monitor the implementation of biosecurity and hygiene procedures in 20 swine herds over a 12-month period, as driven by tailor-made plans, including training on-farm. The measure of adenosine triphosphate (ATP) environmental contents was used as an output biomarker. The presence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) was also investigated as sentinels of antibiotic resistance. A significant biosecurity improvement (p = 0.006) and a reduction in the ATP content in the sanitised environment (p = 0.039) were observed. A cluster including 6/20 farms greatly improved both biosecurity and ATP contents, while the remaining 14/20 farms ameliorated them only slightly. Even if the ESBL-E. coli prevalence (30.0%) after the hygiene procedures significantly decreased, the prevalence of LA-MRSA (22.5%) was unaffected. Despite the promising results supporting the adoption of tailor-made biosecurity plans and the measure of environmental ATP as an output biomarker, the high LA-MRSA prevalence still detected at the end of the study underlines the importance of improving even more biosecurity and farm hygiene in a one-health approach aimed to preserve also the pig workers health.
Collapse
Affiliation(s)
- Annalisa Scollo
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Alice Perrucci
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | | | - Paolo Ferrari
- CRPA Research Centre for Animal Production, 42121 Reggio Emilia, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| |
Collapse
|
9
|
Chen Y, Ji S, Sun L, Wang H, Zhu F, Chen M, Zhuang H, Wang Z, Jiang S, Yu Y, Chen Y. The novel fosfomycin resistance gene fosY is present on a genomic island in CC1 methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect 2022; 11:1166-1173. [PMID: 35332834 PMCID: PMC9037201 DOI: 10.1080/22221751.2022.2058421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fosfomycin has gained attention as a combination therapy for methicillin-resistant Staphylococcus aureus infections. Hence, the detection of novel fosfomycin-resistance mechanisms in S. aureus is important. Here, the minimal inhibitory concentrations (MICs) of fosfomycin in CC1 methicillin-resistant S. aureus were determined. The pangenome analysis and comparative genomics were used to analyse CC1 MRSA. The gene function was confirmed by cloning the gene into pTXΔ. A phylogenetic tree was constructed to determine the clustering of the CC1 strains of S. aureus. We identified a novel gene, designated fosY, that confers fosfomycin resistance in S. aureus. The FosY protein is a putative bacillithiol transferase enzyme sharing 65.9-77.5% amino acid identity with FosB and FosD, respectively. The function of fosY in decreasing fosfomycin susceptibility was confirmed by cloning it into pTXΔ. The pTX-fosY transformant exhibited a 16-fold increase in fosfomycin MIC. The bioinformatic analysis showed that fosY is in a novel genomic island designated RIfosY (for "resistance island carrying fosY") that originated from other species. The global phylogenetic tree of ST1 MRSA displayed this fosY-positive ST1 clone, originating from different regions, in the same clade. The novel resistance gene in the fos family, fosY, and a genomic island, RIfosY, can promote cross-species gene transfer and confer resistance to CC1 MRSA causing the failure of clinical treatment. This emphasises the importance of genetic surveillance of resistance genes among MRSA isolates.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
de Brito FAE, de Freitas APP, Nascimento MS. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022; 11:pathogens11121416. [PMID: 36558750 PMCID: PMC9784232 DOI: 10.3390/pathogens11121416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.
Collapse
|
11
|
Golob M, Pate M, Kušar D, Zajc U, Papić B, Ocepek M, Zdovc I, Avberšek J. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Two Pig Farms: Longitudinal Study of LA-MRSA. Antibiotics (Basel) 2022; 11:1532. [PMID: 36358187 PMCID: PMC9687068 DOI: 10.3390/antibiotics11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.
Collapse
Affiliation(s)
- Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Detection and Degradation Characterization of 16 Quinolones in Soybean Sprouts by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:foods11162500. [PMID: 36010500 PMCID: PMC9407237 DOI: 10.3390/foods11162500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, there have been increasing safety concerns about the illegal abuse of quinolone in soybean sprouts. This study aimed to establish an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous detection of 16 quinolones (QNs) in soybean sprouts, and then reveal their degradation characteristics. The samples were extracted with acetonitrile (with 1% formic acid), purified by a C18 adsorbent, and separated by an ACQUITY UPLC BEH C18 (1.7 μm, 2.1 mm × 100 mm) column. The internal standard method was applied for quantitative determination. The results demonstrated that the quantification linear range for 16 QNs was between 2.0 ng/mL and 50.0 ng/mL. The detection limits were between 0.5 μg/kg and 4.0 μg/kg, and the quantification limits were between 2.0 μg/kg and 20.0 μg/kg. This method was used to screen for quinolones in 50 batches of market soybean sprouts; the obtained results showed good agreement with those of the standard method. It was found that QNs possessed longer degradation half-life (T1/2) in the storage stage of soybean sprouts, while they degraded to some extent during the germination stage via active enzyme action. In particular, ciprofloxacin was the most stable QNs with a T1/2 of 70.71 d during the storage stage of soybean sprouts. This work not only offers an accurate and efficient QNs residual analysis strategy but also provides a reference for the supervision and management of QNs in foods.
Collapse
|
13
|
The In Vitro Antimicrobial and Antibiofilm Activities of Lysozyme against Gram-Positive Bacteria. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4559982. [PMID: 35991138 PMCID: PMC9385363 DOI: 10.1155/2022/4559982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Objective To analyze the in vitro antibacterial and antibiofilm activities of lysozyme (LYS) and its combination with various drugs against Gram-positive bacteria (GPB, n = 9), thus to provide an exploration direction for drug development. Methods The minimum inhibitory concentrations (MICs) of linezolid (LZD), amikacin (AMK), ceftriaxone/sulbactam (CRO/SBT), cefotaxime/sulbactam (CTX/SBT), piperacillin/sulbactam (PIP/SBT), doxycycline (DOX), levofloxacin (LVX), amoxicillin/clavulanate potassium (7 : 1, AK71), imipenem (IPM), azithromycin (AZM), and their combinations with LYS were determined with tuber twice dilution. The antimicrobial and antibiofilm activities of LYS, AZM, LVX, and their combinations with others were evaluated through MTT and crystal violet assay. Results High-dose LYS (30 μg/mL) combined with PIP/SBT and AK71, respectively, showed synergistic antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), while it showed no synergistic activities when combined with other drugs. LYS and AZM inhibited the biofilm formation of one MRSA strain, but they and LVX had no similar activities against methicillin-resistant Staphylococcus epidermidis (MRSE) or vancomycin-resistant Enterococcus faecium (VREF). Particularly, LYS increased the permeability of biofilms of MRSA 33 and exhibited antibiofilm activities against MRSA 31 (inhibition rate = 38.1%) and MRSE 61 (inhibition rate = 46.6%). The combinations of PIP/SBT+LYS, AMK+LYS, and LZD+LYS showed stronger antibiofilm activities against MRSA 62, MRSE 62, MRSE 63, and VREF 11. Conclusion The antimicrobial and antibiofilm activities of LYS against MRSA were better than AZM, while that of LYS against MRSE and VREF, respectively, was similar with AZM and LVX.
Collapse
|
14
|
Szczuka E, Porada K, Wesołowska M, Łęska B. Occurrence and Characteristics of Staphylococcus aureus Isolated from Dairy Products. Molecules 2022; 27:molecules27144649. [PMID: 35889521 PMCID: PMC9319653 DOI: 10.3390/molecules27144649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Food, particularly milk and cheese, may be a reservoir of multi-drug resistant Staphylococcus aureus strains, which can be considered an important issue in terms of food safety. Furthermore, foods of animal origin can be a cause of staphylococcal food poisoning via the production of heat-stable enterotoxins (SE). For this reason, we investigated the prevalence of and characterized Staphylococcus aureus strains isolated from milk and fresh soft cheese obtained from farms located in Wielkopolskie and Zachodniopomorskie Provinces in Poland. Overall, 92% of S. aureus isolates were positive for at least one of the 18 enterotoxin genes identified, and 26% of the strains harbored 5 to 8 enterotoxin genes. Moreover, the S. aureus strains contained genes conferring resistance to antibiotics that are critically important in both human and veterinary medicine, i.e., β-lactams (mecA), aminoglycosides (aac(6′)/aph(2″), aph(3′)-IIIa, ant(4′)-Ia) and MLSB (erm(A), msr(A), lun(A)). The antimicrobial susceptibility of S. aureus to 16 antibiotics representing 11 different categories showed that 74% of the strains were resistant to at least 1 antibiotic. Moreover, 28% of the strains showed multidrug resistance; in particular, two methicillin-resistant S. aureus strains (MRSA) exhibited significant antibiotic resistance. In summary, our results show that dairy products are contaminated by S. aureus strains carrying genes encoding a variety of enterotoxins as well genes conferring resistance to antibiotics. Both MRSA strains and MSSA isolates showing multidrug resistance were present in foods of animal origin.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.P.); (M.W.)
- Correspondence: ; Tel.: +48-61-829-59-36; Fax: +48-61-829-55-50
| | - Karolina Porada
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.P.); (M.W.)
| | - Maria Wesołowska
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.P.); (M.W.)
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
15
|
Silva V, Correia E, Pereira JE, González-Machado C, Capita R, Alonso-Calleja C, Igrejas G, Poeta P. Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060772. [PMID: 35740178 PMCID: PMC9219840 DOI: 10.3390/antibiotics11060772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to compare the biofilm formation ability of Staphylococcus aureus isolated from a wide range of animals and study the association between biofilm formation and antimicrobial resistance and genetic lineages. A total of 214 S. aureus strains isolated from pets, livestock, and wild animals were evaluated regarding their ability to form biofilms by the microtiter biofilm assay and their structure via confocal scanning laser microscopy. Statistical analysis was used to find an association between biofilm formation and antimicrobial resistance, multidrug resistance, sequence types (STs), spa and agr-types of the isolates. The antimicrobial susceptibility of 24 h-old biofilms was assessed against minimum inhibitory concentrations (MIC) and 10× MIC of amikacin and tetracycline, and the biomass reduction was measured. The metabolic activity of biofilms after antimicrobial treatment was evaluated by the XTT assay. All isolates were had the ability to form biofilms. Yet, significant differences in biofilm biomass production were detected among animal species. Multidrug resistance had a positive association with biofilm formation as well as methicillin-resistance. Significant differences were also detected among the clonal lineages of the isolates. Both tetracycline and amikacin were able to significantly reduce the biofilm mass. However, none of the antimicrobials were able to eradicate the biofilm at the maximum concentration used. Our results provide important information on the biofilm-forming capacity of animal-adapted S. aureus isolates, which may have potential implications for the development of new biofilm-targeted therapeutics.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
16
|
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, Stájer A, Baráth Z, Szabó D, Urbán E, Gajdács M. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022; 11:pathogens11040471. [PMID: 35456146 PMCID: PMC9031815 DOI: 10.3390/pathogens11040471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
- Correspondence:
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| |
Collapse
|
17
|
Shadvar P, Mirzaie A, Yazdani S. Fabrication and optimization of amoxicillin-loaded niosomes: An appropriate strategy to increase antimicrobial and anti-biofilm effects against multidrug-resistant strains of Staphylococcus aureus. Drug Dev Ind Pharm 2022; 47:1568-1577. [PMID: 35007176 DOI: 10.1080/03639045.2022.2027958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, different formulations of amoxicillin-loaded niosomes were fabricated using the thin-film hydration method and their physicochemical properties were determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The optimum prepared niosomes had a spherical morphology with an average size of 170.6 ± 6.8 nm and encapsulation efficiency of 65.78 ± 1.45%. The drug release study showed that the release rate of amoxicillin from niosome containing amoxicillin was slow and 47 ± 1% of the drug was released within 8 hours, while 97 ± 0.5% of the free drug was released. In addition, amoxicillin-loaded niosome increased the antimicrobial activity by 2-4 folds against multidrug-resistant (MDR) Staphylococcus aureus strains using broth microdilution assay. Moreover, at ½ minimum inhibitory concentrations, amoxicillin-loaded niosome significantly enhanced the anti-biofilm activity compared to free amoxicillin. Amoxicillin-loaded niosome had negligible cytotoxicity against HEK-293 normal cell line compared to free amoxicillin. The free niosomes exhibited no toxicity against HEK-293 cells and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that amoxicillin-loaded niosome can be used as a promising candidate for enhancing antimicrobial and anti-biofilm effects against MDR strains of S. aureus.
Collapse
Affiliation(s)
- Pardis Shadvar
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| |
Collapse
|
18
|
From cattle to pastirma: Contamination source of methicillin susceptible and resistant Staphylococcus aureus (MRSA) along the pastirma production chain. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Bonvegna M, Grego E, Sona B, Stella MC, Nebbia P, Mannelli A, Tomassone L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics (Basel) 2021; 10:antibiotics10060676. [PMID: 34198805 PMCID: PMC8227741 DOI: 10.3390/antibiotics10060676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Swine farming as a source of methicillin-resistant Staphylococcus aureus (MRSA) has been well documented. Methicillin-resistant coagulase-negative staphylococci (MRCoNS) have been less studied, but their importance as pathogens is increasing. MRCoNS are indeed considered relevant nosocomial pathogens; identifying putative sources of MRCoNS is thus gaining importance to prevent human health hazards. In the present study, we investigated MRSA and MRCoNS in animals and environment in five pigsties in a high farm-density area of northwestern Italy. Farms were three intensive, one intensive with antibiotic-free finishing, and one organic. We tested nasal swabs from 195 animals and 26 environmental samples from three production phases: post-weaning, finishing and female breeders. Phenotypic tests, including MALDI-TOF MS, were used for the identification of Staphylococcus species; PCR and nucleotide sequencing confirmed resistance and bacterial species. MRCoNS were recovered in 64.5% of nasal swabs, in all farms and animal categories, while MRSA was detected only in one post-weaning sample in one farm. The lowest prevalence of MRCoNS was detected in pigs from the organic farm and in the finishing of the antibiotic-free farm. MRCoNS were mainly Staphylococcus sciuri, but we also recovered S. pasteuri, S. haemolyticus, S. cohnii, S. equorum and S. xylosus. Fifteen environmental samples were positive for MRCoNS, which were mainly S. sciuri; no MRSA was found in the farms’ environment. The analyses of the mecA gene and the PBP2-a protein highlighted the same mecA fragment in strains of S. aureus, S. sciuri and S. haemolyticus. Our results show the emergence of MRCoNS carrying the mecA gene in swine farms. Moreover, they suggest that this gene might be horizontally transferred from MRCoNS to bacterial species more relevant for human health, such as S. aureus.
Collapse
Affiliation(s)
- Miryam Bonvegna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
- Correspondence:
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Bruno Sona
- Local Veterinary Service, Animal Health, ASL CN1, Via Torino, 137, 12038 Savigliano, Italy;
| | - Maria Cristina Stella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (E.G.); (M.C.S.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
20
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
21
|
Senobar Tahaei SA, Stájer A, Barrak I, Ostorházi E, Szabó D, Gajdács M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect Drug Resist 2021. [PMID: 33790586 DOI: 10.2147/idrs303992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is an important causative pathogen in human infections. The production of biofilms by bacteria is an important factor, leading to treatment failures. There has been significant interest in assessing the possible relationship between the multidrug-resistant (MDR) status and the biofilm-producer phenotype in bacteria. The aim of our present study was to assess the biofilm-production rates in clinical methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA] isolates from Hungarian hospitals and the correlation between resistance characteristics and their biofilm-forming capacity. METHODS A total of three hundred (n=300) S. aureus isolates (corresponding to MSSA and MRSA isolates in equal measure) were included in this study. Identification of the isolates was carried out using the VITEK 2 ID/AST system and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method and E-tests, confirmation of MRSA status was carried out using PBP2a agglutination assay. Biofilm-production was assessed using the crystal violet (CV) tube-adherence method and the Congo red agar (CRA) plate method. RESULTS There were significant differences among MSSA and MRSA isolates regarding susceptibility-levels to commonly used antibiotics (in case of erythromycin, clindamycin and ciprofloxacin: p<0.001, gentamicin: p=0.023, sulfamethoxazole/trimethoprim: p=0.027, rifampin: p=0.037). In the CV tube adherence-assay, 37% (n=56) of MSSA and 39% (n=58) of MRSA isolates were positive for biofilm-production, while during the use of CRA plates, 41% (n=61) of MSSA and 44% (n=66) of MRSA were positive; no associations were found between methicillin-resistance and biofilm-production. On the other hand, erythromycin, clindamycin and rifampin resistance was associated with biofilm-positivity (p=0.004, p<0.001 and p<0.001, respectively). Biofilm-positive isolates were most common from catheter-associated infections. DISCUSSION Our study emphasizes the need for additional experiments to assess the role biofilms have in the pathogenesis of implant-associated and chronic S. aureus infections.
Collapse
Affiliation(s)
- Seyyed Askhan Senobar Tahaei
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, 6720, Hungary
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged, 6720, Hungary
| | - Ibrahim Barrak
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged, 6720, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, 6720, Hungary.,Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| |
Collapse
|
22
|
Di Ciccio PA. Antimicrobial-Resistance of Food-Borne Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10040372. [PMID: 33915769 PMCID: PMC8067115 DOI: 10.3390/antibiotics10040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Pierluigi Aldo Di Ciccio
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| |
Collapse
|
23
|
Senobar Tahaei SA, Stájer A, Barrak I, Ostorházi E, Szabó D, Gajdács M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect Drug Resist 2021; 14:1155-1168. [PMID: 33790586 PMCID: PMC8001189 DOI: 10.2147/idr.s303992] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is an important causative pathogen in human infections. The production of biofilms by bacteria is an important factor, leading to treatment failures. There has been significant interest in assessing the possible relationship between the multidrug-resistant (MDR) status and the biofilm-producer phenotype in bacteria. The aim of our present study was to assess the biofilm-production rates in clinical methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA] isolates from Hungarian hospitals and the correlation between resistance characteristics and their biofilm-forming capacity. METHODS A total of three hundred (n=300) S. aureus isolates (corresponding to MSSA and MRSA isolates in equal measure) were included in this study. Identification of the isolates was carried out using the VITEK 2 ID/AST system and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method and E-tests, confirmation of MRSA status was carried out using PBP2a agglutination assay. Biofilm-production was assessed using the crystal violet (CV) tube-adherence method and the Congo red agar (CRA) plate method. RESULTS There were significant differences among MSSA and MRSA isolates regarding susceptibility-levels to commonly used antibiotics (in case of erythromycin, clindamycin and ciprofloxacin: p<0.001, gentamicin: p=0.023, sulfamethoxazole/trimethoprim: p=0.027, rifampin: p=0.037). In the CV tube adherence-assay, 37% (n=56) of MSSA and 39% (n=58) of MRSA isolates were positive for biofilm-production, while during the use of CRA plates, 41% (n=61) of MSSA and 44% (n=66) of MRSA were positive; no associations were found between methicillin-resistance and biofilm-production. On the other hand, erythromycin, clindamycin and rifampin resistance was associated with biofilm-positivity (p=0.004, p<0.001 and p<0.001, respectively). Biofilm-positive isolates were most common from catheter-associated infections. DISCUSSION Our study emphasizes the need for additional experiments to assess the role biofilms have in the pathogenesis of implant-associated and chronic S. aureus infections.
Collapse
Affiliation(s)
- Seyyed Askhan Senobar Tahaei
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, 6720, Hungary
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged, 6720, Hungary
| | - Ibrahim Barrak
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Szeged, 6720, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, 6720, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, 1089, Hungary
| |
Collapse
|
24
|
Michalik M, Kosecka-Strojek M, Wolska M, Samet A, Podbielska-Kubera A, Międzobrodzki J. First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland. Pathogens 2021; 10:pathogens10030335. [PMID: 33805734 PMCID: PMC8000362 DOI: 10.3390/pathogens10030335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from laryngological patients and characterized by determining their antimicrobial resistance patterns and using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST-398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance in S. aureus strain was associated with the mutations in the ribosomal proteins L3 and L4, and in S. haemolyticus, resistance was associated with the presence of cfr gene. Moreover, S. aureus strain harbored optrA and poxtA genes. We identified the first case of staphylococci carrying linezolid resistance genes from patients with chronic sinusitis in Poland. Since both S. aureus and CoNS are the most common etiological factors in laryngological infections, monitoring of such infections combined with surveillance and infection prevention programs is important to decrease the number of linezolid-resistant staphylococcal strains.
Collapse
Affiliation(s)
- Michał Michalik
- MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland; (M.M.); (A.S.); (A.P.-K.)
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.W.); (J.M.)
- Correspondence:
| | - Mariola Wolska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.W.); (J.M.)
| | - Alfred Samet
- MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland; (M.M.); (A.S.); (A.P.-K.)
| | | | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.W.); (J.M.)
| |
Collapse
|