1
|
Wang Y, Cai S, Wen W, Tan Y, Wang W, Xu J, Xiong P. A Network Pharmacology Study and In Vitro Evaluation of the Bioactive Compounds of Kadsura coccinea Leaf Extract for the Treatment of Type 2 Diabetes Mellitus. Molecules 2025; 30:1157. [PMID: 40076380 PMCID: PMC11901907 DOI: 10.3390/molecules30051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Kadsura coccinea is a traditional Chinese medicine whose roots have long been used to treat various ailments, but little is known about the efficacy of its leaves. In this study, the antidiabetic activity of K. coccinea leaf extract (KCLE) was determined, the main components of KCLE were identified using UPLC-TOF-MS, and network pharmacology and molecular docking were integrated to elucidate the antidiabetic mechanism of KCLE. The results showed that KCLE effectively increased the glucose consumption of IR-HepG2 cells through pyruvate kinase (PK) and hexokinase (HK), promoted glycogen synthesis, and inhibited α-glucosidase and α-amylase activities. KCLE also improves diabetes by regulating AKT1, TNF, EGFR, and GSK3β. These targets (especially AKT1 and TNF) have a high binding affinity with the main active ingredients of KCLE (rutin, luteolin, demethylwedelolactone, maritimetin, and polydatin). Pathway enrichment analysis showed that the antidiabetic effect of KCLE was closely related to the PI3K-Akt signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway, and FoxO signaling pathway. These findings provide a theoretical basis for promoting the pharmacodynamic development of K. coccinea and its application in treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Xiong
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wiens JJ, Emberts Z. How life became colourful: colour vision, aposematism, sexual selection, flowers, and fruits. Biol Rev Camb Philos Soc 2025; 100:308-326. [PMID: 39279365 DOI: 10.1111/brv.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple). These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and invertebrates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought to utilize pre-existing sensitivities in the receiver's visual systems. This raises the question: what was the initial function of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across animals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in animals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300 Mya. Colour vision (sensu lato) appears to be substantially older, and likely originated ~400-500 Mya in both arthropods and chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism, and sexual colour signals. We also find that there appears to have been an explosion of colour within the last ~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually selected colouration among arthropods and chordates.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - Zachary Emberts
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
3
|
Jin ZL, Han K, Chen HY, Zhang XY, Qiao WL, Jia BX. Exploration of phytochemicals and biological functions of Kadsura coccinea pericarpium based on LC-MS and network pharmacology analysis and experimental validation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
4
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
5
|
Effects of Kadsura coccinea L. Fruit Extract on Growth Performance, Meat Quality, Immunity, Antioxidant, Intestinal Morphology and Flora of White-Feathered Broilers. Animals (Basel) 2022; 13:ani13010093. [PMID: 36611702 PMCID: PMC9817888 DOI: 10.3390/ani13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to determine whether adding Kadsura coccinea fruit extract to the diet of broilers could replace antibiotics. For this study, 300 one-day-old AA white feathered broilers were divided into five groups (no sex separated), with six repetitions per group (n = 10), as follows: blank control group (basal feed, CK group), positive drug (basal feed + 300 mg/kg aureomycin, PD group), and Kadsura coccinea low-dose, medium-dose, and high-dose groups (basal feed + 100 mg/kg, 200 mg/kg, and 300 mg/kg of Kadsura coccinea fruit extract, LD group, MD group and HD group). The experiment period was divided into early (1−21 days) and late (22−42 days) stage. We found that supplementation with Kadsura coccinea fruit extract in the diet significantly improved the growth performance of broilers (p < 0.05), reduced the feed to meat ratio (p < 0.05), reduced the fat percentage (p < 0.05), while had no significant effect on meat quality (p > 0.05) and Kadsura coccinea fruit extract could promote the development of immune organs to different extents, enhance antioxidant capacity, the contents of SOD and GSH-Px in serum were significantly increased (p < 0.05), improve the ratio of villus height to crypt depth. Finally, Kadsura coccinea fruit extract increased the relative abundance of probiotics and beneficial bacteria (Bacteroidales, NK4A214, Subdoligranulum and Eubacterium hallii) (p < 0.05) and reduced the relative abundance of harmful bacteria (Erysipelatoclostridium) (p < 0.05) in the gut of broilers. Compared with positive drug group, most of the indexes in the medium-dose group were better or had similar effects. We believe that Kadsura coccinea fruit extract can be used as a potential natural antibiotic substitute in livestock and poultry breeding programs.
Collapse
|
6
|
Huang D, Xu S, Qin Y, Li Y, Ming R, Huang R, Wang J, Tan Y. Comparative transcriptomic analysis identifies KcMYB1 as a R2R3-MYB anthocyanin activator in Kadsura coccinea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111458. [PMID: 36084765 DOI: 10.1016/j.plantsci.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit color, as an important appearance attribute, is crucial for attracting consumers. However, the underlying mechanism regulating mature fruit color formation in Kadsura coccinea remains unclear. Here, a comprehensive metabolomics and transcriptomics analysis was performed to investigate the molecular mechanisms of anthocyanin accumulation between two K. coccinea cultivars with different mature fruit colors-'Dahong No. 1' (red) and 'Jinhu' (yellow). Targeted metabolomic analysis revealed high anthocyanin levels, most of which were cyanidin and delphinidin derivatives, in 'Dahong No. 1' mature fruit peel. The SNP analysis indicated that the two different cultivars had similar genetic background. Moreover, comparative transcriptomic analysis demonstrated that differentially expressed genes (DEGs) were related to flavonoid biosynthesis and metabolic process in the two K. coccinea cultivars. Gene expression profiling data showed that the structural and regulatory genes associated with anthocyanin biosynthesis were significantly upregulated in 'Dahong No. 1' mature fruit peel, which was verified by quantitative real-time polymerase chain reaction (qRT-PCR). Notably, the key anthocyanin activator KcMYB1 was identified, which was significantly upregulated in 'Dahong No. 1' compared with 'Jinhu'. We further confirmed that KcMYB1 actively regulated the accumulation of anthocyanin by ectopic expression in vivo. Furthermore, allelic constitution of KcMYB1 in K. coccinea were investigated. The present study can provide insights for understanding the regulatory mechanisms of anthocyanin differential accumulation in the mature fruits of K. coccinea.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhong Qin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yingjie Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
7
|
Kadsura coccinea Lignan Metabolism Based on Metabolome and Transcriptome Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3152155. [PMID: 35957804 PMCID: PMC9359851 DOI: 10.1155/2022/3152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Kadsura coccinea is an important resource of traditional Chinese medicine. We find out the gene information of enzymes related to lignan biosynthesis and metabolism of Kadsura coccinea, so as to provide a scientific basis for the breeding of new varieties of Kadsura coccinea. In this paper, 2-year-old Kadsura coccinea from Hunan Kadsura coccinea provincial germplasm resource bank was used as the material and its root, stem, and leaf were analyzed by extensive targeted metabolomics combined with transcriptome sequencing. The results showed the following: (1) 51 lignans were detected by metabolome analysis, and the content of lignans in roots was higher than that in stems and leaves. The high content of lignans in roots, stems, and leaves includes ring-opening isolarch phenol-4-o-glucoside, narrow leaf schisandrin E, and schisandrin B. (2) After transcriptome sequencing, 13 classes of 137 Unigenes related to lignan biosynthesis pathway were retrieved. The analysis of differential genes in different parts showed that the overall expression amount and species of Kadsura coccinea lignan synthase gene in stems and leaves were closer than those in roots. CCoAOMT, C3H, and SIDR gene families are mainly expressed in roots and stems. (3) Metabolome combined with transcriptome analysis further screened these genes and obtained 11 genes of enzyme gene families such as HCT, DIR, COMT, CAD, SIDR, and PLR, which are highly correlated in lignan synthesis. Therefore, there are many lignans and their synthase-related genes in Kadsura coccinea roots, stems, and leaves, but the content and expression of different lignans and their synthase-related genes are quite different in each part. In this study, the gene information of the Kadsura coccinea lignan biosynthesis enzyme was obtained for the first time, which laid a good foundation for the cloning and molecular breeding of the key enzyme gene of lignan biosynthesis.
Collapse
|
8
|
Chemical characterization of extracts of leaves of Kadsua coccinea (Lem.) A.C. Sm. by UHPLC-Q-Exactive Orbitrap Mass spectrometry and assessment of their antioxidant and anti-inflammatory activities. Biomed Pharmacother 2022; 149:112828. [PMID: 35339830 DOI: 10.1016/j.biopha.2022.112828] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Kadsua coccinea (K. coccinea) has long been used as a fruit and folk medicine; however, the composition of its leaves and the activities of its constituents have been seldom studied. A total of 98 chemical constituents, including 53 phenolic acids, 41 flavonoids, and 4 lignans, were identified from the plant of kadsua coccinea by UHPLC-Q-Exactive Orbitrap Mass spectrometry. All these chemicals were reported for the first time in leaves, and 95 of them have been reported for the first time in the plant of kadsua coccinea. The biological potential of extracts of K. coccinea leaves (EKL) was evaluated by in vitro antioxidant assay and anti-inflammatory assay. EKL are composed of polysaccharides (60%), polyphenols (26%), and proteins (11%). EKL present decent potent •OH and DPPH scavenging abilities and Fe2+ chelating ability. They also inhibit the secretion of NO, reduce the level of Cox2 in proteins, inhibit the secretion of pro-inflammatory cytokines, such as IL-2 and IL-6, and promote the secretion of anti-inflammatory cytokine IL-10. These results displayed significant antioxidant and anti-inflammatory activities of EKL, which will be very beneficial for further development and investigation of kadsua coccinea leaves.
Collapse
|
9
|
Dong Y, Wei X, Qiang T, Liu J, Che P, Qi Y, Zhang B, Liu H. RAD-Seq and Ecological Niche Reveal Genetic Diversity, Phylogeny, and Geographic Distribution of Kadsura interior and Its Closely Related Species. FRONTIERS IN PLANT SCIENCE 2022; 13:857016. [PMID: 35557741 PMCID: PMC9087809 DOI: 10.3389/fpls.2022.857016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Kadsura have economic value and medicinal application. Among them, K. interior and its closely related species have been demonstrated to have definite efficacy. However, the taxonomy and phylogenetic relationship of Kadsura in terms of morphology and commonly used gene regions remain controversial, which adversely affects its rational application. In this study, a total of 107 individuals of K. interior, K. heteroclita, K. longipedunculata, K. oblongifolia, and K. coccinea were studied from the perspectives of genetic diversity, phylogeny, and ecology via single nucleotide polymorphisms (SNPs) developed through restriction site-associated DNA sequencing (RAD-seq). Based on these SNPs, the genetic diversity, phylogenetic reconstruction, and population genetic structure were analyzed. Subsequently, divergence time estimation and differentiation scenario simulation were performed. Meanwhile, according to the species distribution records and bioclimatic variables, the Last Glacial Maximum and current potential distributions of five species were constructed, and the main ecological factors affecting the distribution of different species were extracted. The F ST calculated showed that there was a moderate degree of differentiation among K. heteroclita, K. longipedunculata, and K. oblongifolia, and there was a high degree of genetic differentiation between K. interior and the above species. The phylogenetic tree indicated that each of the species was monophyletic. The results of population genetic structure and divergence scenario simulation and D-statistics showed that there were admixture and gene flow among K. heteroclita, K. longipedunculata, and K. oblongifolia. The results of ecological niche modeling indicated that the distribution areas and the bioclimatic variables affecting the distribution of K. interior and its related species were different. This study explored the differences in the genetic divergence and geographical distribution patterns of K. interior and its related species, clarifying the uniqueness of K. interior compared to its relatives and providing a reference for their rational application in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peng Che
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Kunkeaw T, Suttisansanee U, Trachootham D, Karinchai J, Chantong B, Potikanond S, Inthachat W, Pitchakarn P, Temviriyanukul P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer's disease. Sci Rep 2021; 11:23796. [PMID: 34893659 PMCID: PMC8664832 DOI: 10.1038/s41598-021-03142-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/26/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aβ), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aβ-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aβ42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.
Collapse
Affiliation(s)
- Thanit Kunkeaw
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Dunyaporn Trachootham
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Preclinical Science and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Meung, Chiang Mai, 50200, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, 73170, Nakhon Pathom, Thailand.
| |
Collapse
|
11
|
Kittibunchakul S, Yuthaworawit N, Whanmek K, Suttisansanee U, Santivarangkna C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Zhao T, Ma C, Zhu G. Chemical Composition and Biological Activities of Essential Oils from the Leaves, Stems, and Roots of Kadsura coccinea. Molecules 2021; 26:6259. [PMID: 34684838 PMCID: PMC8537082 DOI: 10.3390/molecules26206259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60-42.02%), β-pinene (10.03-18.82%), camphene (1.56-10.95%), borneol (0.50-7.71%), δ-cadinene (1.52-7.06%), and β-elemene (1.86-4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Tianming Zhao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (C.M.); (G.Z.)
| | | | | |
Collapse
|
13
|
Jeon JS, Kang HM, Park JH, Kang JS, Lee YJ, Park YH, Je BI, Park SY, Choi YW. A Comparative Study on Photo-Protective and Anti-Melanogenic Properties of Different Kadsura coccinea Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1633. [PMID: 34451678 PMCID: PMC8401305 DOI: 10.3390/plants10081633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Kadsura coccinea (KC), a beneficial plant for human health, has been used for centuries in China, Thailand, and Korea in folk medicine and food. There is evidence supporting the biological effects of highly bioactive ingredients in KC such as lignans, triterpenoids, flavonoids, phenolic acids, steroids, and amino acids. In this study, we aimed to explore the effects, functions, and mechanisms of the extracts from KC root (KCR), stem (KCS), leaf (KCL), and fruit (KCF) in UVA and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes. First, the total polyphenol and flavonoid contents of KCR, KCS, KCL, and KCF and their radical scavenging activities were investigated. These parameters were found to be in the following order: KCL > KCR > KCS > KCF. UVA and UVB-irradiated keratinocytes were treated with KCR, KCS, KCL, and KCF, and keratinocyte viability, LDH release, intracellular ROS production, and apoptosis were examined. Our results demonstrated that KC extracts improved keratinocyte viability and reduced LDH release, intracellular ROS production, and apoptosis in the presence UVA and UVB irradiation. The overall photoprotective activity of the KC extracts was confirmed in the following order: KCL > KCR > KCS > KCF. Moreover, KC extracts significantly decreased the intracellular melanin content and tyrosinase activity in α-MSH-stimulated melanocytes. Mechanistically, KC extracts reduced the protein and mRNA expression levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated melanocytes. In addition, these extracts markedly downregulated myophthalmosis-related transcription factor expression and cAMP-related binding protein phosphorylation, which is upstream of the regulation of Tyrosinase, TRP-1, and TRP-2. The overall anti-melanogenic activity of the KC extracts was established in the following order. KCL > KCR > KCS > KCF. Overall, the KC extracts exert photoprotective and anti-melanogenic effects, providing a basis for developing potential skin-whitening and photoprotective agents.
Collapse
Affiliation(s)
- Joong Suk Jeon
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Ju Ha Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Jum Soon Kang
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Yong Jae Lee
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Young Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea; (J.S.J.); (H.M.K.); (J.H.P.); (J.S.K.); (Y.J.L.); (Y.H.P.); (B.I.J.)
| |
Collapse
|
14
|
Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Gao J, Xiong K, Zhou W, Li W. Extensive Metabolite Profiling in the Unexploited Organs of Black Tiger for Their Potential Valorization in the Pharmaceutical Industry. Life (Basel) 2021; 11:544. [PMID: 34200589 PMCID: PMC8229443 DOI: 10.3390/life11060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Black tiger (Kadsura coccinea (Lem.)) has been reported to hold enormous pharmaceutical potential. The fruit and rhizome of black tiger are highly exploited in the pharmaceutical and other industries. However, the most important organs from the plant such as the leaf and stem are considered biowastes mainly because a comprehensive metabolite profile has not been reported in these organs. Knowledge of the metabolic landscape of the unexploited black tiger organs could help identify and isolate important compounds with pharmaceutical and nutritional values for a better valorization of the species. In this study, we used a widely targeted metabolomics approach to profile the metabolomes of the K. coccinea leaf (KL) and stem (KS) and compared them with the root (KR). We identified 642, 650 and 619 diverse metabolites in KL, KS and KR, respectively. A total of 555 metabolites were mutually detected among the three organs, indicating that the leaf and stem organs may also hold potential for medicinal, nutritional and industrial applications. Most of the differentially accumulated metabolites between organs were enriched in flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, arginine and proline metabolism, arginine biosynthesis, tyrosine metabolism and 2-oxocarboxylic acid metabolism pathways. In addition, several important organ-specific metabolites were detected in K. coccinea. In conclusion, we provide extensive metabolic information to stimulate black tiger leaf and stem valorization in human healthcare and food.
Collapse
Affiliation(s)
- Jianfei Gao
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control of China, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Wei Zhou
- Guizhou Industry Polytechnic College, Guiyang 550008, China;
| | - Weijie Li
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| |
Collapse
|
16
|
Hinkaew J, Aursalung A, Sahasakul Y, Tangsuphoom N, Suttisansanee U. A Comparison of the Nutritional and Biochemical Quality of Date Palm Fruits Obtained Using Different Planting Techniques. Molecules 2021; 26:molecules26082245. [PMID: 33924574 PMCID: PMC8069938 DOI: 10.3390/molecules26082245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera L.) is commonly consumed around the world and has recently become an economical crop in Eastern Thailand, especially the Barhi cultivar that can be consumed as fresh fruit. To maintain genetic qualities, date palm is populated through cell culture. This leads to high production costs, while access to this technique is limited. Increasing date palm population by simple seed planting is currently of interest as an alternative for local farmers. Nevertheless, information on nutritive values, bioactive compounds, and health-promoting bioactivities of seed originating from date palm fruit is unavailable. Effects of different planting origins (cell culture origin (CO) and seed origin (SO)) of date palm fruits at the Khalal stage of Barhi cultivar were investigated for nutritive values, bioactive compounds, and in vitro health-promoting properties via key enzyme inhibitions against obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Waste seeds as a by-product from date palm production were also examined regarding these properties to increase seed marketing opportunities for future food applications and other health-related products. CO and SO exhibited insignificant differences in energy, fat, and carbohydrate contents. SO had higher protein, dietary fiber, vitamin A, vitamin E, and calcium contents than CO, while CO contained higher contents of fructose, glucose and maltose. Higher phenolic contents in SO led to greater enzyme inhibitory activities than CO. Interestingly, seeds of date palm fruits mostly contained higher nutritive values than the flesh. No carotenoids were detected in seeds but higher phenolic contents resulted in greater enzyme inhibitory activities than recorded for fruit flesh. Results suggest that appropriate planting of date palm can support the development of novel date palm fruit products, leading to expansion of economic opportunities and investment in date palm fruit agriculture.
Collapse
Affiliation(s)
- Jeerawan Hinkaew
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Nattapol Tangsuphoom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (J.H.); (A.A.); (Y.S.); (N.T.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
17
|
Qin HZ, Deng LL, Shi YC. Complete chloroplast genome of Kadsura coccinea (Lem.) A.C.Sm. (Schisandraceae): genome structure and evolution. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1222-1223. [PMID: 33855175 PMCID: PMC8018480 DOI: 10.1080/23802359.2021.1904798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kadsura coccinea (Lem.) A.C.Sm. in the Schisandraceae family is woody vine plant, which produce edible red fruits that are rich in nutrients and antioxidant activities. Herein, we assembled the complete chloroplast genome of Kadsura coccinea by next-generation sequencing technologies. The complete chloroplast genome sequence of Kadsura coccinea is 145,413 base pairs (bp) in length, including a pair of inverted repeat regions (IRs, 16,431 bp), one large single-copy region (LSC, 94,511 bp), one small single-copy region (SSC, 18,040 bp). Besides, the complete chloroplast genome contains 126 genes in total, including 82 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that Kadsura coccinea has the closest relationship with Kadsura longipedunculata. Our study lay a foundation for further research of Kadsura coccinea.
Collapse
Affiliation(s)
- Hui-Zhen Qin
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Li-Li Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yan-Cai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
18
|
Wannasaksri W, On-Nom N, Chupeerach C, Temviriyanukul P, Charoenkiatkul S, Suttisansanee U. In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules 2021; 26:molecules26041082. [PMID: 33670795 PMCID: PMC7922288 DOI: 10.3390/molecules26041082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
Adenia viridiflora Craib. is an indigenous edible plant that became an endangered species due to limited consumption of the local population with unknown reproduction and growth conditions. The plant is used as a traditional herb; however, its health applications lack scientific-based evidence. A. viridiflora Craib. plant parts (old leaves and young shoots) from four areas as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN), and Uthai Thani (UT) origins were investigated for phenolic compositions and in vitro health properties through the inhibition of key enzymes relevant to obesity (lipase), diabetes (α-glucosidase and dipeptidyl peptidase-IV), Alzheimer’s disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Phenolics including p-coumaric acid, sinapic acid, naringenin, and apigenin were detected in old leaves and young shoots in all plant origins. Old leaves exhibited higher total phenolic contents (TPCs) and total flavonoid contents (TFCs), leading to higher enzyme inhibitory activities than young shoots. Besides, PN and MN with higher TPCs and TFCs tended to exhibit greater enzyme inhibitory activities than others. These results will be useful to promote this plant as a healthy food with valuable medicinal capacities to support its consumption and agricultural stimulation, leading to sustainable conservation of this endangered species.
Collapse
Affiliation(s)
- Werawat Wannasaksri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
19
|
Chupeerach C, Aursalung A, Watcharachaisoponsiri T, Whanmek K, Thiyajai P, Yosphan K, Sritalahareuthai V, Sahasakul Y, Santivarangkna C, Suttisansanee U. The Effect of Steaming and Fermentation on Nutritive Values, Antioxidant Activities, and Inhibitory Properties of Tea Leaves. Foods 2021; 10:117. [PMID: 33429899 PMCID: PMC7827290 DOI: 10.3390/foods10010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023] Open
Abstract
Fermented tea (Cha-miang in Thai) is a local product made by traditional food preservation processes in Northern Thailand that involve steaming fresh tea leaves followed by fermenting in the dark. Information on changes in nutritive values, bioactive compounds, antioxidant activities, and health properties that occur during the steaming and fermenting processes of tea leaves is, however, limited. Changes in nutritive values, phenolics, antioxidant activities, and in vitro health properties through inhibition of key enzymes that control obesity (lipase), diabetes (α-amylase and α-glucosidase), hypertension (angiotensin-converting enzyme (ACE)), and Alzheimer's disease (cholinesterases (ChEs) and β-secretase (BACE-1)) of fermented tea were compared to the corresponding fresh and steamed tea leaves. Results showed that energy, carbohydrate, and vitamin B1 increased after steaming, while most nutrients including protein, dietary fiber, vitamins (B2, B3, and C), and minerals (Na, K, Ca, Mg, Fe, and Zn) decreased after the steaming process. After fermentation, energy, fat, sodium, potassium, and iron contents increased, while calcium and vitamins (B1, B2, B3, and C) decreased compared to steamed tea leaves. However, the contents of vitamin B1 and iron were insignificantly different between fresh and fermented tea leaves. Five flavonoids (quercetin, kaempferol, cyanidin, myricetin, and apigenin) and three phenolic acids (gallic acid, caffeic acid, and p-coumaric acid) were identified in the tea samples. Total phenolic content (TPC) and antioxidant activities increased significantly after steaming and fermentation, suggesting structural changes in bioactive compounds during these processes. Steamed tea exhibited high inhibition against lipase, α-amylase, and α-glucosidase, while fermented tea possessed high anti-ChE and anti-ACE activities. Fresh tea exhibited high BACE-1 inhibitory activity. Results suggest that tea preparations (steaming and fermentation) play a significant role in the amounts of nutrients and bioactive compounds, which, in turn, affect the in vitro health properties. Knowledge gained from this research will support future investigations on in vivo health properties of fermented tea, as well as promote future food development of fermented tea as a healthy food.
Collapse
Affiliation(s)
- Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Thareerat Watcharachaisoponsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kanyawee Whanmek
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Parunya Thiyajai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Kachakot Yosphan
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (C.C.); (A.A.); (T.W.); (K.W.); (P.T.); (K.Y.); (V.S.); (Y.S.); (C.S.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
20
|
Comparative Polyphenol Composition, Antioxidant and Anticorrosion Properties in Various Parts of Panax ginseng Extracted in Different Solvents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C.A. (P. ginseng) Meyer has been in use since ancient times for its therapeutic activities. Although several studies have investigated the roles of phytoconstituents in human and animal health, no comparative studies have been conducted to test the efficacy of P.ginseng leaf, fruit and root. Therefore, this study aimed to identify the antioxidant and anticorrosion activities of ginseng prepared using five different solvents. The methanolic fruit extract showed comparatively good activity in all assays. The total phenolic content (TPC) was higher in fruit (95.21 mg/g), followed by leaf (39.21 mg/g) extracted in methanol solvent compared other solvents. The total flavonoid content (TFC) of fruit methanolic extract was 50.21 mg/g, which was followed by fruit extracted in ethanol (41.33 mg/g). The same phenomenon was observed in all antioxidant studies. Through Ultrahigh Performance Liquid Chromatography (UHPLC), the presence of 23 phenolic components categorized as hydroxycinnamic acids, hydroxybenzoic acids and a few other groups that play a vital role in antioxidation was identified. Phenols such as chlorogenic acid (1002.2 μg/g), gentisic acid (854.21 μg/g) and rutin (165.32 μg/g) were found in higher amounts in fruit whereas leaf showed significant amounts of m-coumaric acid (185.32 μg/g) and p-coumaric acid (125.24 μg/g). The anti-corrosive property of the fruit extract of the ginseng with methanol as a solvent was analyzed for a copper specimen exposed to 1 M HCl medium and found to have 96% corrosion inhibition efficiency at a 1000-ppm concentration. The smooth surface of the specimen exposed to corrosive media shown in a field emission scanning electron microscope (FESEM) image confirms that the specimen was protected from corrosion, and energy-dispersive X-ray spectroscopy (EDX) spectra show that the loss of Cu is reduced in inhibited metal surface. Atomic force microscopy (AFM) images and surface roughness factor also validate the corrosion inhibition characteristic of ginseng plant extract.
Collapse
|
21
|
Proestos C. The Benefits of Plant Extracts for Human Health. Foods 2020; 9:foods9111653. [PMID: 33198209 PMCID: PMC7696850 DOI: 10.3390/foods9111653] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Nature has always been, and still is, a source of foods and ingredients that are beneficial to human health [...].
Collapse
Affiliation(s)
- Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|