1
|
Ngamsamer C, Muangnoi C, Tongkhao K, Sae-Tan S, Treesuwan K, Sirivarasai J. Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles. Foods 2024; 13:982. [PMID: 38611288 PMCID: PMC11011267 DOI: 10.3390/foods13070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Fermented vegetables are increasingly being recognized as an important dietary component, particularly of plant-based diets, to achieve a sustainable healthy gut because of their microbial diversity and antioxidant properties. However, the functional relevance of fermented vegetables varies based on the raw ingredients used and nutrient supplementation. Therefore, in the present study, we investigated the microbial diversity and antioxidant activity of three formulas of fermented vegetables (standard, supplemented with Lacticaseibacillus rhamnosus GG, and supplemented with polyphenol vitexin) at days 0 and 15. The bacterial community profiles were determined through 16S rRNA sequencing analysis, and antioxidant activity was analyzed using 2,2-diphenyl-1-picrylhydrazyl and by measuring the oxygen radical absorbance capacity, the ferric reducing ability of plasma, and the total phenolic content. The results confirm microbial diversity in the taxonomic composition of the different formulas of fermented vegetables, with different bacteria predominating, particularly lactic acid bacteria including the genera Weissella, Pedicocccus, Leuconostoc, and Lactobacillus. Spearman's correlation analysis showed significant differences in the specific bacteria present in the different formulas of fermented vegetables that conferred antioxidant capacity. Our findings show that supplementation with L. rhamnosus GG and polyphenol vitexin may effectively enhance the functional relevance of foods by promoting cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Chanya Ngamsamer
- Doctoral Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | | | - Kullanart Tongkhao
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (K.T.); (S.S.-T.)
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (K.T.); (S.S.-T.)
| | - Khemmapas Treesuwan
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Jintana Sirivarasai
- Nutrition Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Maoloni A, Cardinali F, Milanović V, Reale A, Boscaino F, Di Renzo T, Ferrocino I, Rampanti G, Garofalo C, Osimani A, Aquilanti L. Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel ( Crithmum maritimum L.) Leaves. Molecules 2023; 28:7207. [PMID: 37894688 PMCID: PMC10609079 DOI: 10.3390/molecules28207207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel spices produced using room-temperature drying, oven drying, microwave drying, and freeze drying. All the assayed methods were able to remove moisture up until water activity values below 0.6 were reached; however, except for microwave drying, none of the assayed methods were effective in reducing the loads of contaminating microorganisms. The metataxonomic analysis highlighted the presence of phytopathogens and even human pathogens, including members of the genera Bacillus, Pseudomonas, Alternaria, and Cryptococcus. When compared to fresh leaves, dried leaves showed increased L* (lightness) and c* (chroma, saturation) values and reduced hue angle. Dried leaves were also characterized by decreased levels of terpene hydrocarbons and increased levels of aldehydes, alcohols, and esters. For the sensory test, the microwave-dried samples obtained the highest appreciation by the trained panel. Overall, the collected data indicated microwave drying as the best option for producing sea fennel spices with low microbial loads, brilliant green color, and high-quality sensory traits.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Anna Reale
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Floriana Boscaino
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Tiziana Di Renzo
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| |
Collapse
|
3
|
Zucchini M, Maoloni A, Lodolini EM, Ferrocino I, Aquilanti L, Neri D. Knot formation and spread along the shoot stem in 13 olive cultivars inoculated with an indigenous pathobiome of 7 species of Pseudomonas including Pseudomonas savastanoi. PLoS One 2023; 18:e0289875. [PMID: 37566625 PMCID: PMC10420344 DOI: 10.1371/journal.pone.0289875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Olive knot is a widely spread disease among olive (Olea europaea L.) trees. Pseudomonas savastanoi pv. savastanoi is recognized as the primary causative agent of the disease however, recent evidence indicated that consortia of bacteria (pathobiome), may favor its development. Several factors are involved in the host-plant relationship and affect the intensity of the symptoms. Among these the presence of wounds, or damages to the plants' tissues may affect the intensity and propagation of the disease. It remains unknown whether or not bacteria move from an infected wound to another not infected one via shoot tissues. The present investigation focused on the susceptibility to olive knot of several cultivars after inoculating artificial wounds with selected Pseudomonas species, while spreading the disease from these to wounds on the same stem, that had not been purposefully inoculated. The pathobiome for the inoculum was prepared with 7 species of Pseudomonas (including Pseudomonas savastanoi pv. savastanoi), isolated from knot samples collected from two different, heavily infected olive orchards. The inoculation was done after the manual execution of 10 horizontal wounds on the stem of potted plants of 13 olive cultivars grown in the greenhouse. Only the lowest 5 wounds were inoculated. The inoculated wounds showed a maximum percentage of knots after 187 days. All 13 cultivars showed knots yet, the cultivar with the most severe disease level to Pseudomonas savastanoi pv. savastanoi was 'Rosciola colli Esini'. The metataxonomic analysis performed on the olive knots removed after 225 days confirmed the dominance of the inoculated species Pseudomonas savastanoi in all the assayed cultivars. The not inoculated wounds did not show the knot disease likely because the bacterium's inability to transmigrate from the inoculated wounds to the non-inoculated ones.
Collapse
Affiliation(s)
- Matteo Zucchini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Enrico Maria Lodolini
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Torino, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Davide Neri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Lee HW, Yoon SR, Dang YM, Kang M, Lee K, Ha JH, Bae JW. Presence of an ultra-small microbiome in fermented cabbages. PeerJ 2023; 11:e15680. [PMID: 37483986 PMCID: PMC10358336 DOI: 10.7717/peerj.15680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm3. They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. Methods The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. Results To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H' = 1.32) was not lower than that in NM (average H' = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Miran Kang
- Practical Technology Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Kwangho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hyung Ha
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Page CA, Pérez-Díaz IM, Pan M, Barrangou R. Genome-Wide Comparative Analysis of Lactiplantibacillus pentosus Isolates Autochthonous to Cucumber Fermentation Reveals Subclades of Divergent Ancestry. Foods 2023; 12:2455. [PMID: 37444193 DOI: 10.3390/foods12132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lactiplantibacillus pentosus, commonly isolated from commercial cucumber fermentation, is a promising candidate for starter culture formulation due to its ability to achieve complete sugar utilization to an end pH of 3.3. In this study, we conducted a comparative genomic analysis encompassing 24 L. pentosus and 3 Lactiplantibacillus plantarum isolates autochthonous to commercial cucumber fermentation and 47 lactobacillales reference genomes to determine species specificity and provide insights into niche adaptation. Results showed that metrics such as average nucleotide identity score, emulated Rep-PCR-(GTG)5, computed multi-locus sequence typing (MLST), and multiple open reading frame (ORF)-based phylogenetic trees can robustly and consistently distinguish the two closely related species. Phylogenetic trees based on the alignment of 587 common ORFs separated the L. pentosus autochthonous cucumber isolates from olive fermentation isolates into clade A and B, respectively. The L. pentosus autochthonous clade partitions into subclades A.I, A.II, and A.III, suggesting substantial intraspecies diversity in the cucumber fermentation habitat. The hypervariable sequences within CRISPR arrays revealed recent evolutionary history, which aligns with the L. pentosus subclades identified in the phylogenetic trees constructed. While L. plantarum autochthonous to cucumber fermentation only encode for Type II-A CRISPR arrays, autochthonous L. pentosus clade B codes for Type I-E and L. pentosus clade A hosts both types of arrays. L. pentosus 7.8.2, for which phylogeny could not be defined using the varied methods employed, was found to uniquely encode for four distinct Type I-E CRISPR arrays and a Type II-A array. Prophage sequences in varied isolates evidence the presence of adaptive immunity in the candidate starter cultures isolated from vegetable fermentation as observed in dairy counterparts. This study provides insight into the genomic features of industrial Lactiplantibacillus species, the level of species differentiation in a vegetable fermentation habitat, and diversity profile of relevance in the selection of functional starter cultures.
Collapse
Affiliation(s)
- Clinton A Page
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Ilenys M Pérez-Díaz
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| |
Collapse
|
6
|
Maoloni A, Cardinali F, Milanovic V, Osimani A, Garofalo C, Ferrocino I, Corvaglia MR, Cocolin L, Aquilanti L. Microbial dynamics and key sensory traits of laboratory-scale co-fermented green olives (Olea europaea L. cv. Ascolana tenera) and sea fennel (Crithmum maritimum L.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Laksana AJ, Choi YM, Kim JH, Kim BS, Kim JY. Real-Time Monitoring the Effects of Storage Conditions on Volatile Compounds and Quality Indexes of Halal-Certified Kimchi during Distribution Using Electronic Nose. Foods 2022; 11:foods11152323. [PMID: 35954088 PMCID: PMC9368639 DOI: 10.3390/foods11152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The food logistics system is an essential sector for maintaining and monitoring the safety and quality of food products and becoming more crucial, especially during and after the pandemic of COVID-19. Kimchi is a popular traditional fermented food originally from Korea and easily changes because of the storage conditions. This study aims to evaluate the effects and the contributions of temperature to volatile compounds, quality indexes, and the shelf life of Halal-certified Kimchi, and to identify alcohol and find the correlation between the identified variables using an electronic nose and conventional method with the integration of multivariate analysis. Thirty-two volatile compounds (VOCs) were detected and correlated with pH, titratable acidity (TA), and lactic acid bacteria (LAB) counts during storage time. Ethanol was also found in the ripened Kimchi and possibly became the critical point of halal Kimchi products besides total acidity, pH, and LAB. Furthermore, the correlation between pH and benzaldehyde, titratable acidity and 3-methylbutanoic acid, and among lactic acid bacteria with ethanol, acetic acid, ethyl acetate, and 3-methylbutanoic acid properly can be used as a given set of variables in the prediction of food quality during storage and distribution.
Collapse
Affiliation(s)
- Andri Jaya Laksana
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea;
| | - Young-Min Choi
- Enterprise Solution Research Center, Korea Food Research Institute (KFRI), Wanju 55365, Korea;
| | - Jong-Hoon Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
| | - Byeong-Sam Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
| | - Ji-Young Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Korea; (J.-H.K.); (B.-S.K.)
- Correspondence:
| |
Collapse
|
9
|
Rothwell MAR, Zhai Y, Pagán-Medina CG, Pérez-Díaz IM. Growth of ɣ-Proteobacteria in Low Salt Cucumber Fermentation Is Prevented by Lactobacilli and the Cover Brine Ingredients. Microbiol Spectr 2022; 10:e0103121. [PMID: 35543556 PMCID: PMC9241618 DOI: 10.1128/spectrum.01031-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
This study investigated the ability of ɣ-proteobacteria, indigenous to fresh cucumber, to grow in the expressed fruit juice (CJM) and fermentation. It was hypothesized that fresh cucumbers can support prolific growth of ɣ-proteobacteria but that the cover brine composition and acid production by the competing lactobacilli in the fermentation of the fruit act as inhibitory agents. The ɣ-proteobacteria proliferated in CJM with an average maximum growth rate (μmax) of 0.3895 ± 0.0929 and doubling time (Td) of 1.885 ± 0.465/h. A significant difference was found between the ɣ-proteobacteria μmax and Td relative to Lactiplantibacillus pentosus LA0445 (0.2319 ± 0.019; 2.89/h) and Levilactobacillus brevis 7.2.43 (0.221 ± 0.015; 3.35/h) but not Lactiplantibacillus plantarum 3.2.8 (0.412 ± 0.119; 1.87/h). While inoculation level insignificantly altered the μmax and Td of the bacteria tested; it impacted the length of lag and stationary phases for the lactobacilli. Unlike the lactobacilli, the ɣ-proteobacteria were inhibited in CJM supplemented with a low salt fermentation cover brine containing calcium chloride, acetic acid and potassium sorbate. The ɣ-proteobacteria, P. agglomerans, was unable to proliferate in cucumber fermentations brined with calcium chloride at a pH of 6.0 ± 0.1 and the population of Enterobacteriaceae was outcompeted by the lactobacilli within 36 h. Together these observations demonstrate that the prolific growth of ɣ-proteobacteria in CJM is not replicated in cucumber fermentation. While the ɣ-proteobacteria growth rate is faster that most lactobacilli in CJM, their growth in cucumber fermentation is prevented by the cover brine and the acid produced by the indigenous lactobacilli. Thus, the lactobacilli indigenous to cucumber and cover brine composition influence the safety and quality of fermented cucumbers. IMPORTANCE While the abundance of specific ɣ-proteobacteria species varies among vegetable type, several harbor Enterobacteriaceae and Pseudomonadaceae that benefit the plant system. It is documented that such bacterial populations decrease in density early in vegetable fermentations. Consequently, it is assumed that they do not contribute to the quality of finished products. This study explored the viability of ɣ-proteobacteria in CJM, used as a model system, CJM supplemented with fermentation cover brine and cucumber fermentation, which are characterized by an extremely acidic endpoint pH (3.23 ± 0.17; n = 391). The data presented demonstrates that fresh cucumbers provide the nutrients needed by ɣ-proteobacteria to proliferate and reduce pH to 4.47 ± 0.12. However, ɣ-proteobacteria are unable to proliferate in cucumber fermentation. Control of ɣ-proteobacteria in fermentations depends on the cover brine constituents and the indigenous competing lactobacilli. This knowledge is of importance when developing guidelines for the safe fermentation of vegetables, particularly with low salt.
Collapse
Affiliation(s)
- Madison A. R. Rothwell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Yawen Zhai
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Christian G. Pagán-Medina
- U.S. Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, North Carolina, USA
| | - Ilenys M. Pérez-Díaz
- U.S. Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Thilakarathna WPDW, Yu CHJ, Rupasinghe HPV. Variations in nutritional and microbial composition of napa cabbage kimchi during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. P. D. Wass Thilakarathna
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - Cindy H. J. Yu
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| |
Collapse
|
11
|
Sabater C, Cobo-Díaz JF, Álvarez-Ordóñez A, Ruas-Madiedo P, Ruiz L, Margolles A. Novel methods of microbiome analysis in the food industry. Int Microbiol 2021; 24:593-605. [PMID: 34686940 DOI: 10.1007/s10123-021-00215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The study of the food microbiome has gained considerable interest in recent years, mainly due to the wide range of applications that can be derived from the analysis of metagenomes. Among these applications, it is worth mentioning the possibility of using metagenomic analyses to determine food authenticity, to assess the microbiological safety of foods thanks to the detection and tracking of pathogens, antibiotic resistance genes and other undesirable traits, as well to identify the microorganisms responsible for food processing defects. Metataxonomics and metagenomics are currently the gold standard methodologies to explore the full potential of metagenomes in the food industry. However, there are still a number of challenges that must be solved in order to implement these methods routinely in food chain monitoring, and for the regulatory agencies to take them into account in their opinions. These challenges include the difficulties of analysing foods and food-related environments with a low microbial load, the lack of validated bioinformatics pipelines adapted to food microbiomes and the difficulty of assessing the viability of the detected microorganisms. This review summarizes the methods of microbiome analysis that have been used, so far, in foods and food-related environments, with a specific focus on those involving Next-Generation Sequencing technologies.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain. .,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
12
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
13
|
Pharmacophore-inspired discovery of FLT3 inhibitor from kimchi. Food Chem 2021; 361:130139. [PMID: 34062461 DOI: 10.1016/j.foodchem.2021.130139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/16/2021] [Indexed: 01/27/2023]
Abstract
Globally consumed kimchi is manufactured through fermenting cruciferous vegetables containing indole glucosinolates (IG). But few reports describe the IG metabolism during the fermentation. Here, we show that indole-3-carbinol (I3C), a breakdown product of IG, is transformed during the kimchi fermentation into 3,3'-diindolylmethane (DIM) and 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1). LTr1 was found to kill the acute myeloid leukemia (AML) cells with FMS-like tyrosine kinase 3 (FLT3) receptor mutations, by inhibiting the FLT3 phosphorylation and the expression of downstream proteins (STAT5, ERK, and AKT). In the immune-depleted mice xenografted with human MV4-11 cells, LTr1 was demonstrated to reduce the tumor growth and synergize with sorafenib, an anti-AML agent in clinic. The work updates the chemical and biological knowledge about kimchi, and in particular establishes LTr1 as an FLT3 inhibitor that is effective and synergistic with sorafenib in treating AML.
Collapse
|