1
|
Kim JE, Min KS, Go J, Park HY, Choi YK, Lee IB, Shin J, Cho HJ, Kim HS, Hwang DY, Oh WK, Kim KS, Lee CH. Water extract of Humulus japonicus improves age‑related cognitive decline by inhibiting acetylcholinesterase activity and the acetylcholine signaling pathway. Mol Med Rep 2025; 31:131. [PMID: 40116124 PMCID: PMC11938412 DOI: 10.3892/mmr.2025.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
The aging process is associated with a decline in certain cognitive abilities, including learning and memory. This age‑related cognitive decline is associated with a reduction in neurogenesis and alterations in the cholinergic system. Humulus japonicus (HJ), an ornamental plant in the family Cannabaceae, has been reported to exert beneficial effects against neurodegenerative pathophysiologies in mouse models of disorders such as Alzheimer's and Parkinson's disease. Despite the increasingly aging populations of numerous societies, no study has yet investigated the effects of HJ on cognitive decline associated with normal aging. The present study therefore aimed to examine the protective potential of HJ water (HJW) extract against age‑related cognitive decline and scopolamine‑induced cognitive impairment. The analyses revealed that the oral administration of HJW markedly improved novel objective recognition and spatial learning in the novel object recognition and Morris water maze tests, respectively, in aged mice. The administration of 600 mg/kg HJW further increased neurogenesis and CA1 thickness in the hippocampi of aged mice. In scopolamine‑induced cognitive impairment, administration of 400 or 600 mg/kg HJW markedly increased novel object recognition performance in scopolamine‑treated mice. The inhibitory effect of HJW on acetylcholinesterase (AChE) and the activation effects of HJW on the calcium/calmodulin‑dependent kinase (CaMK)IIα‑cAMP response element‑binding protein (CREB) and AKT‑glycogen synthase kinase‑3 β (GSK3β) pathways were further demonstrated. Overall, these results indicate that HJW administration improves cognitive function through the regulation of AChE activity and CaMKIIα‑CREB and AKT‑GSK3β pathways.
Collapse
Affiliation(s)
- Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaewon Shin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ju Cho
- NHB Co., Ltd., Seoul 04735, Republic of Korea
| | | | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Dos Santos JG, Fernandes CC, Silva NBS, Calefi GG, Martins CHG, Volpini GA, Crotti AEM, Ribeiro AB, Esperandim TR, Tavares DC, Batalini C, Miranda MLD. Volatile compounds of hexane extract from Pterodon pubescens Benth seeds and its significant in vitro potential against different bacterial strains. Nat Prod Res 2025; 39:1428-1433. [PMID: 38143320 DOI: 10.1080/14786419.2023.2297405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Pterodon pubescens Benth is a Brazilian medicinal plant (sucupira, in Brazilian Portuguese). This paper aims to determine the volatile composition and antibacterial activities of hexane extract from P. pubescens seeds (HE-PP). Antibacterial activities were screened by the microdilution broth method in 96-well culture plates and MIC values were expressed as µg/mL. HE-PP was active against several oral bacteria whose MIC values ranged between 12.5 µg/mL and 50 µg/mL and against three mycobacterial strains (MIC = 125 µg/mL and 500 µg/mL). In addition, HE-PP was active against Xanthomonas citri strain (MIC = 100 µg/mL). Cytotoxic activity of the extract was evaluated in human tumour and non-tumour cell lines. HE-PP showed selective cytotoxicity to cervical adenocarcinoma (HeLa cells - IC50 = 53.47 µg/mL). Its major constituents were identified by GC-MS and GC-FID: E-caryophyllene, vouacapane, E-geranylgeraniol and dehydroabietol. Results reinforce the biological potential of HE-PP against a broad spectrum of pathogenic and phytopathogenic bacteria.
Collapse
Affiliation(s)
- Jaciel G Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Cassia C Fernandes
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, GO, Brazil
| | - Nagela B S Silva
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Gabriel G Calefi
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Carlos H G Martins
- Laboratório de Ensaios Antimicrobiano (LEA), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Guilherme A Volpini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Mayker L D Miranda
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Uberlândia Centro, MG, Brazil
| |
Collapse
|
3
|
Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025; 13:454. [PMID: 40002867 PMCID: PMC11853317 DOI: 10.3390/biomedicines13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Alexa D. Reberio
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Nushrat J. Ansari
- Department of Radiology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal;
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
| | - Joyeeta T. Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
4
|
Prajapati D, Hakim M, Patel M, Ansari MJ, Alfarraj S, Chauhan S, Bhatt V, Yadav VK, Sahoo DK, Thummar K, Patel A. Evaluating the Effectiveness of a Novel Pongamia pinnata Derived Herbal Mouth-Dissolving Film for Treating Oral Disorders and Evaluating Its Anticancer Properties. Cell Biochem Funct 2025; 43:e70049. [PMID: 39876524 DOI: 10.1002/cbf.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The present study aimed to optimize a mouth-dissolving film (MDF) made from Pongamia pinnata stem bark extract to increase patient compliance and accelerate oral disease therapy. Several stem bark extracts were prepared, and karanjin was used as an herbal marker for the extracts. The ethanolic extract showed the maximum yield (12.10% ± 0.09%) and cytotoxic activity against human oral cancer (KB 3-1) and embryonic kidney cell lines. The MDF formulation was focused on incorporating a fixed amount of the extract and varying concentrations of HPMC E5 polymer, along with evaluating the performance of plasticizers like PEG 400 and propylene glycol (PG). An optimized formulation was determined based on disintegration time, wetting time, and folding endurance. The formulation consisted of HPMC E5 as a film-forming polymer, PG as a superior plasticizer, ascorbic acid as an antioxidant, and other ingredients contributing to solubility, dispersion, sweetening, and appearance. High-performance thin-layer chromatography-mass spectrometry analysis confirmed higher levels of karanjin in the optimized formulation, ensuring its successful incorporation and stability. Taste masking evaluations indicate a favorable taste profile and a high potential for patient compliance. The stability study displayed no significant changes in the physical characteristics of the film, affirming its stability and quality. In conclusion, the developed herbal-based optimized MDF presents a promising drug delivery system, offering enhanced patient compliance, taste masking, and stability. The MDF holds great potential for effective treatment and management of oral diseases, providing convenience and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Devang Prajapati
- Graduate School of Pharmacy, Gujarat Technological University (GTU), Gandhinagar, India
| | - Masuma Hakim
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Saleh Alfarraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sanjay Chauhan
- Graduate School of Pharmacy, Gujarat Technological University (GTU), Gandhinagar, India
| | - Vaibhav Bhatt
- Graduate School of Pharmacy, Gujarat Technological University (GTU), Gandhinagar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kashyap Thummar
- Graduate School of Pharmacy, Gujarat Technological University (GTU), Gandhinagar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
5
|
Ferraz APCR, Figueiredo PDO, Yoshida NC. Black Mulberry ( Morus nigra L.): A Review of Attributes as an Anticancer Agent to Encourage Pharmaceutical Development. Adv Pharmacol Pharm Sci 2024; 2024:3784092. [PMID: 39529942 PMCID: PMC11554416 DOI: 10.1155/2024/3784092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Recent considerations of natural sources as potential anticancer agents have arisen due to the origins of numerous drugs commonly used in chemotherapy. Plant-based drugs, in particular, have attracted attention for offering the advantage of low adverse effects. Among these, the black mulberry plant (Morus nigra L.) stands out as a natural source of polyphenols, widely used to treat metabolic dysfunctions and confer benefits on human health. This study explores the potential of this plant as an anticancer agent, examining its effectiveness based on the type of application of the plant extracts or isolated substances, extraction methods, and its potential biological effects on cancer cells. Consequently, this study contributes to a better understanding of the distribution of phytochemicals in M. nigra and their applications in the context of cancer field. Among the compounds found in black mulberry are flavonoids, chlorogenic acid, cryptochlorogenic acid, and protocatechuic acid, along with cyanidin-3-O-glucoside as the main anthocyanin on the fruit. The phytochemicals derived from M. nigra exhibit antinociceptive and antimicrobial activities, while also showing protective effects, such as antioxidant properties that underline their potential as anticancer agents. The black mulberry's roots, stem bark, pulp, and leaves are particularly rich sources of anti-inflammatory compounds. Ethanol and methanol extraction methods appear to be the most effective in cancer management, offering compounds that facilitate the integration of apoptosis induction, cell growth inhibition, and cytotoxicity modulation. These results collectively represent the salient biological attributes that positioned black mulberry as a promising anticancer agent. Therefore, these findings highlight the multifaceted potential of M. nigra as an anticancer agent, making a compelling case for further research to advance prospects in the medical field.
Collapse
Affiliation(s)
| | | | - Nídia Cristiane Yoshida
- Federal University of Mato Grosso do Sul (UFMS), Institute of Chemistry, INQUI, Campo Grande 79074-460/549, Brazil
| |
Collapse
|
6
|
Tran GB, Pham TV, Tuan Le A, Nguyen NH, Vo NHH, Do BH. Chemical composition and the anti-inflammatory effect of volatile compounds from Anaxagorea luzonensis A. Gray. Z NATURFORSCH C 2024; 79:329-336. [PMID: 38869184 DOI: 10.1515/znc-2023-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
Anaxagorea luzonensis A. Gray, a member of the Annonaceae family, has been used to treat a variety of illnesses for a long time. For the first time, A. luzonensis volatile compounds (ALVCs) were extracted from the leaves, and the components were identified using gas chromatography-mass spectrometry (GC-MS). Further, the main compositions of ALVCs were also assessed for their ability to bind with anti-inflammatory proteins using a docking model. In addition, in vitro tests e.g. inhibition of protein degradation and the inhibition of nitric oxide release using RAW264.7 macrophage cells were utilized for evaluating the anti-inflammatory activity. The results showed that the principal compounds of ALVCs were bulnesol (34.1 %), cubitene (17.8 %), β-eudesmol (10.4 %), epi-longipinanol (5.9 %), and (Z)-nerolidyl acetate (5.5 %). Three compounds viz. bulnesol, cubitene, and β-eudesmol bound firmly to cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), as shown by the in silico analysis, similar to the positive control diclofenac. ALVCs effectively inhibited protein degradation with the IC50 of 31 ± 2.3 μg/mL and inhibited nitric oxide production with the IC50 of 43.30 ± 3.37 μg/mL. These findings showed that ALVCs might have a promising anti-inflammatory effect by blocking several inflammatory proteins.
Collapse
Affiliation(s)
- Gia Buu Tran
- Faculty of Pharmacy, 469882 Ton Duc Thang University , Ho Chi Minh City, Vietnam
| | - Ty Viet Pham
- Faculty of Chemistry, University of Education, 95414 Hue University , 34 Le Loi, Hue City, Vietnam
| | - Anh Tuan Le
- Mien Trung Institute for Scientific Research, Vietnam National Museum of Nature, VAST, 321 Huynh Thuc Khang, Thua Thien Hue, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, 486019 Ho Chi Minh City Open University , 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Huy Hoang Vo
- Faculty of Pharmacy, 469882 Ton Duc Thang University , Ho Chi Minh City, Vietnam
| | - Bich Hang Do
- Faculty of Pharmacy, 469882 Ton Duc Thang University , Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Cvetanović Kljakić A, Lončar B, Sinan KI, Etienne OK, Božunović J, Gašić U, Koyuncu I, Yuksekdag O, Zengin G. UHPLC-MS/MS analysis, cytotoxic, enzyme inhibition, and antioxidant properties of Lantana camara L. extracts obtained by conventional and nonconventional methods. Arch Pharm (Weinheim) 2024; 357:e2400091. [PMID: 38570869 DOI: 10.1002/ardp.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Lantana camara is widely known as a garden plant, but its use for various medicinal purposes is widespread in traditional medicine. In the frame of this study, L. camara was subjected to several different extraction techniques, including supercritical carbon dioxide extraction, accelerated solvent extraction (ASE), homogenizer-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, maceration, and Soxhlet extraction. The investigation encompasses the analysis of the chemical composition alongside assessments of biological activities, such as antioxidant and enzyme-inhibition potential and cytotoxicity of the obtained extracts. The obtained results showed that the extract obtained by accelerated-solvent extraction was the richest in the content of total phenols and of individual compounds. Of the 17 components identified in total, hispidulin was detected in the highest concentration (5.43-475.97 mg/kg). In the antioxidant assays, the extracts obtained by accelerated-solvent and microwave extraction possessed the highest level of antioxidant and antiradical protection. All obtained extracts showed enzyme-inhibitory action on amylase, glucosidase, tyrosinase, and cholinesterase, showing a high potential for application against diseases induced by excessive activity of these enzymes. Cytotoxic analysis was performed on normal and tumor cells, whereby the obtained IC50 values were in the range of 7.685-79.26 µg/mL, showing the high cytotoxicity of the obtained extracts. Using Z score analysis, ASE resulted in an optimal combination of tested quality characteristics of the L. camara extracts.
Collapse
Affiliation(s)
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | | | - Ouattara Katinan Etienne
- Laboratoire de Botanique et Valorisation de la Diversite vegetale, UFR science de la nature, Universite Nangui Abrogoua, Abidjan, Ivory Coast
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
8
|
Mahmoud OA, Ayoub IM, Eldahshan OA, Singab ANB. The impact of seasonal variation on the composition of the volatile oil of Polyalthia suberosa (Roxb.) Thwaites leaves and evaluation of its acetylcholinesterase inhibitory activity. BMC Complement Med Ther 2024; 24:159. [PMID: 38609961 PMCID: PMC11015646 DOI: 10.1186/s12906-024-04443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Polyalthia suberosa (Roxb.) Thwaites (Annonaceae) is a medicinal plant that has been reported for its various pharmacological potentials, such as its anti-inflammatory, analgesic, antioxidant, and neuropharmacological activities. This study aimed to analyze the leaf essential oils of P. suberosa (PSLO) collected in different seasons, to evaluate the acetylcholinesterase inhibitory activity, and to corroborate the obtained results via in-silico molecular docking studies. METHODS The leaf essential oils of P. suberosa collected in different seasons were analyzed separately by GC/MS. The acetylcholinesterase inhibitory activity of the leaves oil was assessed via colorimetric assay. In-silico molecular docking studies were elucidated by virtual docking of the main compounds identified in P. suberosa leaf essential oil to the active sites in human acetylcholinesterase crystal structure. RESULTS A total of 125 compounds were identified where D-limonene (0.07 - 24.7%), α-copaene (2.25 - 15.49%), E-β-caryophyllene (5.17 - 14.42%), 24-noroleana-3,12-diene (12.92%), β-pinene (0.14 - 8.59%), and α-humulene (2.49-6.9%) were the most abundant components. Results showed a noteworthy influence of the collection season on the chemical composition and yield of the volatile oils. The tested oil adequately inhibited acetylcholinesterase enzyme with an IC50 value of 91.94 µg/mL. Additionally, in-silico molecular docking unveiled that palmitic acid, phytol, p-cymene, and caryophyllene oxide demonstrated the highest fitting scores within the active sites of human acetylcholinesterase enzyme. CONCLUSIONS From these findings, it is concluded that P. suberosa leaf oil should be evaluated as a food supplement for enhancing memory.
Collapse
Affiliation(s)
- Orchid A Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
Iglesias-Guevara D, Sánchez-Torres P. Characterization of antifungal properties of avocado leaves and majagua flowers extracts and their potential application to control Alternaria alternata. Int J Food Microbiol 2024; 413:110579. [PMID: 38277871 DOI: 10.1016/j.ijfoodmicro.2024.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Plant extracts are used as an alternative to a wide range of foods against different types of fungal pathogens. In the present study, the extracts of avocado leaves (Persea americana) and majagua flowers (Talipariti elatum) were tested according to their antifungal activity against different fungi. The most promising extracts were those of majagua flowers that were applied lyophilized and in aqueous extract, being very effective against Alternaria alternata and reaching a 50 % in vitro reduction. Antifungal properties were also evaluated during infection of apples by A. alternata. A decrease in infection progression was confirmed with up to a 30 % reduction in disease incidence and a 20 % reduction in disease severity. Majagua extracts were also tested combined with edible pectin coatings, greatly increasing their effectiveness up 60 % reduction. Thus, extracts of majagua could provide a feasible alternative to control fungal pathogens during postharvest.
Collapse
Affiliation(s)
- Dairon Iglesias-Guevara
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain; Faculty of Pharmacy and Food (IFAL), Havana University, Havana, Cuba
| | - Paloma Sánchez-Torres
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
10
|
Rahmani Z, Karimi M, Saffari I, Mirzaei H, Nejati M, Sharafati Chaleshtori R. Nanoemulsion and nanoencapsulation of a hydroethanolic extract of Nettle ( Urtica dioica) and Wormwood ( Artemisia absinthium): comparison of antibacterial and anticancer activity. Front Chem 2024; 12:1266573. [PMID: 38292020 PMCID: PMC10824895 DOI: 10.3389/fchem.2024.1266573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction: Nanoemulsion and nanoencapsulation are attractive novel methods that can be used for incorporating active plant extracts in food preparations and pharmaceutical formulations. In the current study, we aimed to investigate the anticancer and antibacterial effects of hydroethanolic extracts of Nettle (NE), Wormwood (WE), and the combination of the two plants (CNWE), as well as their nanoemulsion forms (NN, NW, CNNW) and nanoencapsulation forms (CN, CW, and CCNW). Methods: The morphology and structure of the nanoemulsion and nanoencapsulation preparations were assessed utilizing dynamic light scattering (DLS) along with transmission electron microscopy (TEM). The antibacterial activity of the prepared formulations were assessed by determining minimum inhibitory concentration (MIC), zone of inhibition diameter, minimum bactericidal concentration (MBC), along with biofilm growth inhibition against Salmonaella typhimurium and Klebsiella. pneumoniae. The anticancer activity was evaluated via a MTT assay in the colon cancer cell line (HCT116). Results: The nanoemulsion and nanoencapsulation particle size varied between 10 and 50 nm and 60 and 110 nm, respectively. The MIC values were between 11.25 and 95 µg/mL along with MBC values between 11.25 and 190 µg/mL. The highest inhibition of biofilm formation was observed with CCNW against K. pneumoniae (∼78.5%) and S. typhimurium (∼73%). In descending order, the inhibition of biofilm formation was CCNW > CW > CN > CNNW > NN > NW > CNWE > NE > WE against the tested bacteria. The IC50 values for NE, WE, CNWE, NN, NW, CNNW, CN, CW, and CCNW were determined as 250, 170, 560, 380, 312, 370, 250, 420, and 700 µg/mL, respectively. Exposure to a high concentration of NW resulted in a significantly lower HCT116 viability compared to other groups. Taken together, CNNW, and CCNW showed the highest antibacterial and anticancer activitiy. Discussion: Nanoemulsion and nanoencapsulation were effective ways to increase the antibacterial and anticancer activity of the extracts and could be used in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zeinab Rahmani
- Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Iman Saffari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Mattova S, Simko P, Urbanska N, Kiskova T. Bioactive Compounds and Their Influence on Postnatal Neurogenesis. Int J Mol Sci 2023; 24:16614. [PMID: 38068936 PMCID: PMC10706651 DOI: 10.3390/ijms242316614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Since postnatal neurogenesis was revealed to have significant implications for cognition and neurological health, researchers have been increasingly exploring the impact of natural compounds on this process, aiming to uncover strategies for enhancing brain plasticity. This review provides an overview of postnatal neurogenesis, neurogenic zones, and disorders characterized by suppressed neurogenesis and neurogenesis-stimulating bioactive compounds. Examining recent studies, this review underscores the multifaceted effects of natural compounds on postnatal neurogenesis. In essence, understanding the interplay between postnatal neurogenesis and natural compounds could bring novel insights into brain health interventions. Exploiting the therapeutic abilities of these compounds may unlock innovative approaches to enhance cognitive function, mitigate neurodegenerative diseases, and promote overall brain well-being.
Collapse
Affiliation(s)
| | | | | | - Terezia Kiskova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (S.M.); (P.S.); (N.U.)
| |
Collapse
|
12
|
Islam M, Malakar S, Rao MV, Kumar N, Sahu JK. Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: a review. Food Sci Biotechnol 2023; 32:1763-1782. [PMID: 37781053 PMCID: PMC10541372 DOI: 10.1007/s10068-023-01346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Herbal plants comprise potent bioactives, and they have a potential for the development of functional foods. Ultrasonication technology can be used to enhance the efficiency and quality of these bioactivities. The present review discussed the ultrasound-assisted novel extraction technologies (supercritical carbon dioxide (CO2) and high pressurized liquid), including mechanistic understanding, influencing factors, extract process efficiency, and the recovery of bioactives with an industrial perspective. The strong observations of this study are the novel ultrasound-induced extraction process variables, such as ultrasound amplitude, sonication time, temperature, solid-solvent ratio, and pressure, are significantly influenced and must be optimized for maximum recovery of bioactives. The novel green technologies (ultrasound and assisted) could remarkably improve the extraction efficiency and enhance the quality of green extract. This review will support technological understanding about the impact on process parameters for the extraction of bioactives for the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Makdud Islam
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Madaraboina Venkateswara Rao
- Department of Food Technology, Vignan’s Foundation for Science Technology and Research, Vadlamudi, Andhra Pradesh India 522213
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Jatindra K. Sahu
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi New Delhi, India
| |
Collapse
|
13
|
da Silva Cordeiro ML, de Queiroz Aquino-Martins VG, da Silva AP, Naliato GFS, Silveira ER, Theodoro RC, da Santos DYAC, Rocha HAO, Scortecci KC. Exploring the Antioxidant Potential of Talisia esculenta Using In Vitro and In Vivo Approaches. Nutrients 2023; 15:3855. [PMID: 37686887 PMCID: PMC10490396 DOI: 10.3390/nu15173855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Medicinal plants, such as Talisia esculenta, are rich in antioxidant biomolecules, which are used in the treatment and prevention of many diseases. The antioxidant potential of T. esculenta extracts obtained from leaves and fruit peels was investigated using biochemical and 3T3 cell line assays as well as in vivo assays using an organism model Tenebrio molitor. Four extracts were tested: hydroethanolic extracts from leaves (HF) and from fruit peels (HC), and infusion extracts from leaves (IF) and from fruit peels (IC). The biochemical assays demonstrated an antioxidant capacity verified by TAC, reducing power, DPPH, and copper chelating assays. None of the extracts exhibited cytotoxicity against 3T3 cells, instead offering a protection against CuSO4-induced oxidative stress. The antioxidant activity observed in the extracts, including their role as free radical scavengers, copper chelators, and stress protectors, was further confirmed by T. molitor assays. The CLAE-DAD analysis detected phenolic compounds, including gallic acid, rutin, and quercitrin, as the main constituents of the samples. This study highlights that leaf and fruit peels extracts of T. esculenta could be effective protectors against ROS and copper-induced stress in cellular and invertebrate models, and they should be considered as coadjutants in the treatment and prevention of diseases related to oxidative stress and for the development of natural nutraceutical products.
Collapse
Affiliation(s)
- Maria Lúcia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Ariana Pereira da Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Georggia Fatima Silva Naliato
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Elielson Rodrigo Silveira
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Raquel Cordeiro Theodoro
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Deborah Yara Alves Cursino da Santos
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| |
Collapse
|
14
|
Quintero-Rincón P, Mesa-Arango AC, Flórez-Acosta OA, Zapata-Zapata C, Stashenko EE, Pino-Benítez N. Exploring the Potential of Extracts from Sloanea medusula and S. calva: Formulating Two Skincare Gels with Antioxidant, Sun Protective Factor, and Anti- Candida albicans Activities. Pharmaceuticals (Basel) 2023; 16:990. [PMID: 37513902 PMCID: PMC10384365 DOI: 10.3390/ph16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sloanea is a plant genus, native to tropical regions, used in medicinal practices for its anti-inflammatory properties. This study aimed to determine the antioxidant activity, sun protective factor (SPF), and antifungal of extracts obtained from two species of Sloanea and to develop extract-based gels with antioxidants, photoprotective, and anti-Candida albicans effects. Ethanolic extracts from S. medusula and S. calva collected in Chocó, Colombia, were used for antioxidant activity and SPF determination using the DPPH assay and the Mansur equation, respectively. Extracts were characterized using HPLC-MS and used to prepare the gels. The viscosity of the extract-based gels was evaluated using an MCR92 rheometer. In addition, the anti-Candida activity of extracts against five yeasts and anti-C. albicans of gels were evaluated following the Clinical and Laboratory Standards Institute M27, 4th Edition. High DPPH radical scavenging activity (42.4% and 44.7%) and a high SPF value (32.5 and 35.4) were obtained for the extracts of S. medusula and S. calva, respectively. Similarly, extract-based gels showed significant DPPH radical scavenging activity of 54.5% and 53.0% and maximum SPF values of 60 and 57. Extract from S. medusula showed an important antifungal activity against C. albicans (minimal inhibitory concentration (MIC) of 2 µg/mL). In contrast, S. calva extract was active against C. krusei, C. albicans (MIC of 2 µg/mL) and C. tropicalis (MIC of 4 µg/mL). Sloanea medusula gel (0.15%) exhibited an important C. albicans growth inhibition (98%), while with S. calva gel (0.3%) growth inhibition was slightly lower (76%). Polyphenolic and triterpenoid compounds were tentatively identified for S. medusula and S. calva, respectively. Both extracts can be considered promising sources for developing photoprotective gels to treat skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Patricia Quintero-Rincón
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Ana C Mesa-Arango
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Oscar A Flórez-Acosta
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Carolina Zapata-Zapata
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Nayive Pino-Benítez
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
| |
Collapse
|
15
|
Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int J Mol Sci 2023; 24:10738. [PMID: 37445916 DOI: 10.3390/ijms241310738] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
16
|
Abd El-Aziz M, Salama HH, Sayed RS. Plant extracts and essential oils in the dairy industry: A review. FOODS AND RAW MATERIALS 2023:321-337. [DOI: 10.21603/2308-4057-2023-2-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Plants have been used as food additives worldwide to enhance the sensory qualities of foods and extend their shelf life by reducing or eliminating foodborne pathogens. They also serve as therapeutic agents due to their beneficial effects on human health through their anti-cancerous, anti-inflammatory, antioxidant, and immune-modulatory properties.
Plants can be added to food as a dry powder, grated material, paste, juice, or as an extract that can be produced by a variety of methods. Plant extracts and essential oils are concentrated sources of bioactive phytochemicals that can be added to food in small amounts in a variety of forms. These forms include liquid, semi-solid, or dry powder for easy and uniform diffusion. Encapsulation can protect bioactive compounds from temperature, moisture, oxidation, and light, as well as allow for controlling the release of the encapsulated ingredients. Nanoemulsions can enhance the bioactivity of active components.
This review explains how plant extracts and essential oils are used in the dairy industry as antimicrobial materials, analyzing their impact on starter bacteria; as natural antioxidants to prevent the development of off-flavors and increase shelf life; and as technological auxiliaries, like milk-clotting enzymes, stabilizers, and flavoring agents. Therefore, plant extracts and essential oils are a better choice for the dairy industry than plants or their parts due to a wide range of applications, homogeneous dispersion, and ability to control the concentration of the bioactive ingredients and enhance their efficiency.
Collapse
|
17
|
Tasić T, Milanković V, Batalović K, Breitenbach S, Unterweger C, Fürst C, Pašti IA, Lazarević-Pašti T. Application of Viscose-Based Porous Carbon Fibers in Food Processing-Malathion and Chlorpyrifos Removal. Foods 2023; 12:2362. [PMID: 37372573 DOI: 10.3390/foods12122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h-1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.
Collapse
Affiliation(s)
- Tamara Tasić
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Vedran Milanković
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Katarina Batalović
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Stefan Breitenbach
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Christoph Unterweger
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
| | - Christian Fürst
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
| | - Igor A Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Kalpoutzakis E, Chatzimitakos T, Athanasiadis V, Mitakou S, Aligiannis N, Bozinou E, Gortzi O, Skaltsounis LA, Lalas SI. Determination of the Total Phenolics Content and Antioxidant Activity of Extracts from Parts of Plants from the Greek Island of Crete. PLANTS (BASEL, SWITZERLAND) 2023; 12:1092. [PMID: 36903954 PMCID: PMC10005234 DOI: 10.3390/plants12051092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Oxidative damages are responsible for many adverse health effects and food deterioration. The use of antioxidant substances is well renowned, and as such, much emphasis is placed on their use. Since synthetic antioxidants exhibit potential adverse effects, plant-derived antioxidants are a preferable solution. Despite the myriads of plants that exist and the fact that numerous studies have been carried out so far, there are many species that have not been examined so far. Many plants under research exist in Greece. Trying to fill this research gap, the total phenolics content and antioxidant activity of seventy methanolic extracts from parts of Greek plants were evaluated. The total phenolics content was measured by the Folin-Ciocalteau assay. Their antioxidant capacity was calculated by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging test, the Rancimat method based on conductometric measurements, and the thermoanalytical method DSC (Differential Scanning Calorimetry). The tested samples were obtained from several parts of fifty-seven Greek plant species belonging to twenty-three different families. Both a remarkably high phenolic content (with gallic acid equivalents varying between 311.6 and 735.5 mg/g of extract) and radical scavenging activity (IC50 values ranged from 7.2 to 39.0 μg/mL) were found in the extract of the aerial parts of Cistus species (C. creticus subsp. creticus, C. creticus subsp. eriocephalus, C. monspeliensis, C. parviflorus and C. salviifolius), Cytinus taxa (C. hypocistis subsp. hypocistis, C. hypocistis subsp. orientalis and C. ruber), and Sarcopoterium spinosum. Furthermore, the sample of Cytinus ruber showed the highest protection factor (PF = 1.276) regarding the Rancimat method, which was similar to that of butylated hydroxytoluene (BHT) (PF = 1.320). The results indicated that these plants are rich in antioxidant compounds, potentiating their use either as food additives to enhance the antioxidant properties of food products, or protect them from oxidation, or as sources for the preparation of food supplements with antioxidant properties.
Collapse
Affiliation(s)
- Eleftherios Kalpoutzakis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | | | - Vassilis Athanasiadis
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Eleni Bozinou
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| | - Olga Gortzi
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Leandros A. Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Greece
| | - Stavros I. Lalas
- Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
19
|
Stoyanova N, Spasova M, Manolova N, Rashkov I, Kamenova-Nacheva M, Staleva P, Tavlinova-Kirilova M. Electrospun PLA-Based Biomaterials Loaded with Melissa officinalis Extract with Strong Antioxidant Activity. Polymers (Basel) 2023; 15:1070. [PMID: 36904311 PMCID: PMC10007429 DOI: 10.3390/polym15051070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
In the present study, the plant extract Melissa officinalis (M. officinalis) was successfully loaded in polymer fibrous materials on the basis of a biodegradable polyester-poly(L-lactide) (PLA) and biocompatible polyether-polyethylene glycol (PEG) by applying the electrospinning method. The optimal process conditions for the preparation of hybrid fibrous materials were found. The extract concentration was varied-0, 5 or 10 wt% in respect of the polymer weight, in order to study its influence on the morphology and the physico-chemical properties of the obtained electrospun materials. All the prepared fibrous mats were composed of defect-free fibers. The mean fiber diameters of the PLA, PLA/M. officinalis (5 wt%) and PLA/M. officinalis (10 wt%) were 1370 ± 220 nm, 1398 ± 233 nm and 1506 ± 242 nm, respectively. The incorporation of the M. officinalis into the fibers resulted in slight increase of the fiber diameters and in increase of the water contact angle values to 133°. The presence of the polyether in the fabricated fibrous material assisted the wetting of the materials imparting them with hydrophilicity (the value of the water contact angle become 0°). Extract-containing fibrous materials displayed strong antioxidant activity as determined by the 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method. The DPPH solution color changed to yellow and the absorbance of the DPPH radical dropped by 88.7% and 91% after being in contact with PLA/M. officinalis and PLA/PEG/M. officinalis mats, respectively. These features revealed the M. officinalis-containing fibrous biomaterials promising candidates for pharmaceutical, cosmetic and biomedical use.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariana Kamenova-Nacheva
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria
| | - Plamena Staleva
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria
| | - Maya Tavlinova-Kirilova
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
| |
Collapse
|
20
|
Malka O, Malishev R, Bersudsky M, Rajendran M, Krishnamohan M, Shaik J, Chamovitz DA, Tikhonov E, Sultan E, Koren O, Apte RN, Rosental B, Voronov E, Jelinek R. Tryptophol Acetate and Tyrosol Acetate, Small-Molecule Metabolites Identified in a Probiotic Mixture, Inhibit Hyperinflammation. J Innate Immun 2023; 15:531-547. [PMID: 36809756 PMCID: PMC10315057 DOI: 10.1159/000529782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Probiotic fermented foods are perceived as contributing to human health; however, solid evidence for their presumptive therapeutic systemic benefits is generally lacking. Here we report that tryptophol acetate and tyrosol acetate, small-molecule metabolites secreted by the probiotic milk-fermented yeast Kluyveromyces marxianus, inhibit hyperinflammation (e.g., "cytokine storm"). Comprehensive in vivo and in vitro analyses, employing LPS-induced hyperinflammation models, reveal dramatic effects of the molecules, added in tandem, on mice morbidity, laboratory parameters, and mortality. Specifically, we observed attenuated levels of the proinflammatory cytokines IL-6, IL-1α, IL-1β, and TNF-α and reduced reactive oxygen species. Importantly, tryptophol acetate and tyrosol acetate did not completely suppress proinflammatory cytokine generation, rather brought their concentrations back to baseline levels, thus maintaining core immune functions, including phagocytosis. The anti-inflammatory effects of tryptophol acetate and tyrosol acetate were mediated through downregulation of TLR4, IL-1R, and TNFR signaling pathways and increased A20 expression, leading to NF-kB inhibition. Overall, this work illuminates phenomenological and molecular details underscoring anti-inflammatory properties of small molecules identified in a probiotic mixture, pointing to potential therapeutic avenues against severe inflammation.
Collapse
Affiliation(s)
- Orit Malka
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ravit Malishev
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Marina Bersudsky
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Manikandan Rajendran
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Mathumathi Krishnamohan
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Jakeer Shaik
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Daniel A. Chamovitz
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Evgeni Tikhonov
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Eliya Sultan
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Benyamin Rosental
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Elena Voronov
- Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology Ben Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
21
|
Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses 2022; 14:v14102257. [PMID: 36298811 PMCID: PMC9607631 DOI: 10.3390/v14102257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Ficus rubiginosa plant extract showed antimicrobial activity, but no evidence concerning its antiviral properties was reported. The antiviral activity of the methanolic extract (MeOH) and its n-hexane (H) and ethyl acetate (EA) fractions against Herpes simplex virus-1 (HSV-1), Human coronavirus (HCoV) -229E, and Poliovirus-1 (PV-1) was investigated in the different phases of viral infection in the VERO CCL-81 cell line. To confirm the antiviral efficacy, a qPCR was conducted. The recorded cytotoxic concentration 50% was 513.1, 298.6, and 56.45 µg/mL for MeOH, H, and EA, respectively, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay after 72 h of treatment. The Ficus rubiginosa leaf extract inhibited the replication of HSV-1 in the early stages of infection, showing a complete inhibition up to 0.62, 0.31, and 1.25 µg/mL. Against HCoV-229E, a total inhibition up to 1.25 µg/mL for MeOH and H as well as 5 µg/mL for EA was observed. Otherwise, no activity was recorded against PV-1. The leaf extract could act directly on the viral envelope, destructuring the lipid membrane and/or directly blocking the enriched proteins on the viral surface. The verified gene inhibition suggested that the treatments with M, H, and EA impaired HSV-1 and HCoV-229E replication, with a greater antiviral efficiency against HSV-1 compared to HCoV-229E, possibly due to a greater affinity of Ficus rubiginosa towards membrane glycoproteins and/or the different lipid envelopes.
Collapse
|
22
|
Polyphenols from Plants: Phytochemical Characterization, Antioxidant Capacity, and Antimicrobial Activity of Some Plants from Different Sites of Greece. SEPARATIONS 2022. [DOI: 10.3390/separations9080186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are present in many plants and herbs, and the scientific community and consumers are aware of their health-promoting effects. Plants of Greek origin were studied for their polyphenol content and their antioxidant and antimicrobial activities. Gas chromatography–mass spectrometry (GC–MS) and high-performance liquid chromatography coupled to a diode array detector (HPLC–DAD) were used for the identification and characterization of plant polyphenols. For GC–MS, a silylation procedure was employed. Ferulic acid, quercetin, and catechin were the most abundant polyphenols. The Rancimat test, FRAP (Ferric-reducing Antioxidant power) assay, and DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay were used to study the antioxidant capacity, which was proven for all studied plants. The antimicrobial activity was studied against specific pathogenic microorganisms. Pelargonium purpureum and Sideritis scardica plant extracts inhibited most microorganisms such as L. monocytogenes and E. coli. Extracts of studied plants showed both antioxidant and antimicrobial activities; hence, they can be considered to be used by the food industry.
Collapse
|
23
|
Phucharoenrak P, Muangnoi C, Trachootham D. A Green Extraction Method to Achieve the Highest Yield of Limonin and Hesperidin from Lime Peel Powder ( Citrus aurantifolia). Molecules 2022; 27:820. [PMID: 35164083 PMCID: PMC8840237 DOI: 10.3390/molecules27030820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Green extraction is aimed at reducing energy consumption by using renewable plant sources and environmentally friendly bio-solvents. Lime (Citrus aurantifolia) is a rich source of flavonoids (e.g., hesperidin) and limonoids (e.g., limonin). Manufacturing of lime products (e.g., lime juice) yields a considerable amount of lime peel as food waste that should be comprehensively exploited. The aim of this study was to develop a green and simple extraction method to acquire the highest yield of both limonin and hesperidin from the lime peel. The study method included ethanolic-aqueous extraction and variable factors, i.e., ethanol concentrations, pH values of solvent, and extraction temperature. The response surface methodology was used to optimize extraction conditions. The concentrations of limonin and hesperidin were determined by using UHPLC-MS/MS. Results showed that the yields of limonin and hesperidin significantly depended on ethanol concentrations and extraction temperature, while pH value had the least effect. The optimal extraction condition with the highest amounts of limonin and hesperidin was 80% ethanol at pH 7, 50 °C, which yields 2.072 and 3.353 mg/g of limonin and hesperidin, respectively. This study illustrates a green extraction process using food waste, e.g., lime peel, as an energy-saving source and ethanol as a bio-solvent to achieve the highest amount of double bioactive compounds.
Collapse
Affiliation(s)
- Pakkapong Phucharoenrak
- Master of Science Program in Toxicology and Nutrition for Food Safety, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | | | | |
Collapse
|