1
|
Wu D, Yang Z, Li J, Huang H, Xia Q, Ye X, Liu D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn ( Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024; 13:482. [PMID: 38338617 PMCID: PMC10855374 DOI: 10.3390/foods13030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 μg/g), epigallocatechin (105.49 ± 0.69 μg/g), and protocatechuic acid (27.9 ± 2.38 μg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Zhihao Yang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Jiong Li
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| |
Collapse
|
2
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
3
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
4
|
Recycling of fig peels to enhance the quality of handmade pasta. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Skroza D, Šimat V, Vrdoljak L, Jolić N, Skelin A, Čagalj M, Frleta R, Generalić Mekinić I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants (Basel) 2022; 11:1784. [PMID: 36139858 PMCID: PMC9495677 DOI: 10.3390/antiox11091784] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The total antioxidant potential of a sample cannot be predicted from the antioxidant activity of its compounds; thus, scientists usually explain the overall activity through their combined effects (synergistic, antagonistic, or additive). Phenolic compounds are one of the most powerful and widely investigated antioxidants, but there is a lack of information about their molecular interactions. This study aimed to investigate the individual and combined antioxidant activity of equimolar mixtures (binary, ternary, quaternary, and quinary) of 10 phenolic acids (protocatechuic, gentisic, gallic, vanillic, syringic, p-coumaric, caffeic, ferulic, sinapic, and rosmarinic acid) at different concentrations using ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Gallic acid showed the highest antioxidant activity, determined using the FRAP assay (494-5033 µM Fe2+) and rosmarinic acid with the ORAC assay (50-92 µM Trolox Equivalents (TE)), while the lowest antioxidant potential was observed for p-coumaric acid (FRAP 24-113 µM Fe2+ and ORAC 20-33 µM TE). The synergistic effect (by FRAP) in the equimolar mixtures of hydroxybenzoic acids was confirmed for a large number of tested mixtures, especially at low concentrations. All mixtures containing gentisic acid showed a synergistic effect (28-89% difference). Using the ORAC method, only two mixtures of hydroxybenzoic acids showed an antagonistic effect, namely a mixture of gentisic + syringic acids (-24% difference) and gallic + vanillic acids (-30% difference), while all other mixtures showed a synergistic effect in a range of 26-236% difference. Among mixtures of hydroxycinnamic acids, the highest synergistic effect was observed for the mixtures of p-coumaric + ferulic acids and caffeic + sinapic acids with differences of 311% and 211%, respectively. The overall antioxidant activity of phenolic acids could be explained by the number or position of hydroxyl and/or methoxy functional groups as well as the compound concentration, but the influence of other parameters such as dissociation, intramolecular hydrogen bonds, and electron donating or withdrawing effect should not be neglected.
Collapse
Affiliation(s)
- Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Lucija Vrdoljak
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Nina Jolić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Anica Skelin
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Roberta Frleta
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, HR-21000 Split, Croatia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
6
|
Fathy HM, Abd El-Maksoud AA, Cheng W, Elshaghabee FMF. Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods 2022; 11:foods11172677. [PMID: 36076870 PMCID: PMC9455927 DOI: 10.3390/foods11172677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Citrus peel, a fruit-processing waste, is a substantial source of naturally occurring health-promoting compounds, including polyphenols, and has great potential as a dietary supplement for enhancing the functional properties of food. The present work aimed to investigate the effects of sour orange (SO), sweet orange (SWO), and lemon (LO) peels on the typical physiochemical, antioxidant, antibacterial, and probiotic properties of synbiotic yoghurt fermented by acidophilus-bifidus-thermophilus (ABT)-type cultures during cold storage (0−28 days). High-performance liquid chromatography-diode array detection (HPLC-DAD) analysis showed that the total phenolic content in the SO peel were more than 2-fold higher than that in the SWO and LO peel. The predominant phenolic compounds were myricetin (2.10 mg/g dry weight) and o-coumaric acid (1.13 mg/g) in SO peel, benzoic acid (0.81 mg/g) and naringin (0.72 mg/g) in SWO peel, and benzoic acid (0.76 mg/g) and quercetin (0.36 mg/g) in LO peel. Only 0.5% (w/w) of citrus peel addition did not reduce the overall acceptance of ABT synbiotic yoghurt but led to increased acidity and decreased moisture during cold storage (14 and 28 days). Additionally, compared to control samples without citrus peel addition, supplementation with citrus peels improved the antioxidant property of the ABT synbiotic yoghurt. ABT milks with SO and SWO peel addition had significantly stronger DPPH radical scavenging activities than that with LO peel addition (p < 0.05). Antibacterial analysis of ABT synbiotic yoghurt with citrus peel addition showed that the diameters of inhibition zones against S. aureus, B. subtilis, and E. coli increased by 0.6−1.9 mm relative to the control groups, suggesting the enhancement of antibacterial activities by citrus peels. The viabilities of probiotic starter cultures (L. acidophilus, S. thermophilus, and Bifidobacterial sp.) were also enhanced by the incorporation of citrus peels in synbiotic yoghurt during cold storage. Hence, our results suggest that citrus peels, especially SO and SWO peels, could be recommended as a promising multifunctional additive for the development of probiotic and synbiotic yoghurt with enhanced antioxidant and antibacterial properties, as well as probiotic viability.
Collapse
Affiliation(s)
- Hayam M. Fathy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | | | - Weiwei Cheng
- Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Nanshan District, Shenzhen 518060, China
- Correspondence: ; Tel./Fax: +86-755-2653-9262
| | | |
Collapse
|
7
|
Yuniati N, Kusumiyati K, Mubarok S, Nurhadi B. The Role of Moringa Leaf Extract as a Plant Biostimulant in Improving the Quality of Agricultural Products. PLANTS 2022; 11:plants11172186. [PMID: 36079567 PMCID: PMC9460049 DOI: 10.3390/plants11172186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Ensuring high-quality agricultural products has become important in agriculture since society’s standard of living has risen. Meanwhile, Moringa oleifera L. leaf extract (MLE) has been used as a plant biostimulant to improve product quality. The effectiveness of MLE is associated with its beneficial components, consisting of nutrients, phytohormones, secondary metabolites, amino acids, and bioactive compounds. Previous studies have been carried out to find the effects of MLE application on the quality of different crops, including basil, kale, spinach, maize, radish, brinjal, pepper, tomato, grape, strawberry, and more. The results are generally positive concerning physical, nutritional, and chemical qualities. This review comprises recent findings regarding MLE application as a plant biostimulant to increase quality attributes, with its underlying mechanism.
Collapse
Affiliation(s)
- Nita Yuniati
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| | - Kusumiyati Kusumiyati
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
- Correspondence:
| | - Syariful Mubarok
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| | - Bambang Nurhadi
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
9
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Abstract
The single cell protein (SCP) technique has become a popular technology in recent days, which addresses two major issues: increasing world protein deficiency with increasing world population and the generation of substantial industrial wastes with an increased production rate. Global fruit production has increased over the decades. The non-edible parts of fruits are discarded as wastes into the environment, which may result in severe environmental issues. These fruit wastes are rich in fermentable sugars and other essential nutrients, which can be effectively utilized by microorganisms as an energy source to produce microbial protein. Taking this into consideration, this review explores the use of fruit wastes as a substrate for SCP production. Many studies reported that the wastes from various fruits such as orange, sweet orange, mango, banana, pomegranate, pineapple, grapes, watermelon, papaya, and many others are potential substrates for SCP production. These SCPs can be used as a protein supplement in human foods or animal feeds. This paper discusses various aspects in regard to the potential of fruit wastes as a substrate for SCP production.
Collapse
|
11
|
Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115272. [PMID: 35405251 DOI: 10.1016/j.jep.2022.115272] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Weber ex F. H. Wigg.), as a garden weed grown globally, has long been consumed as a therapeutic herb. Its folkloric uses include treatments of digestive disorders (dyspepsia, anorexia, stomach disorders, gastritis and enteritis) and associate complex ailments involving uterine, liver and lung disorders. AIM OF THE STUDY The present study aims to critically assess the current state of research and summarize the potential roles of dandelion and its constituents in gastrointestinal (GI) -protective actions. A focus is placed on the reported bioactive components, pharmacological activities and modes of action (including molecular mechanisms and interactions among bioactive substances) of dandelion products/preparations and derived active constituents related to GI protection. MATERIALS AND METHODS The available information published prior to August 2021 was reviewed via SciFinder, Web of Science, Google Scholar, PubMed, Elsevier, Wiley On-line Library, and The Plant List. The search was based on the ethnomedical remedies, pharmacological activities, bioactive compounds of dandelion for GI protection, as well as the interactions of the components in dandelion with the gut microbiota or biological regulators, and with other ingested bioactive compounds. The key search words were "Taraxacum" and "dandelion". RESULTS T. coreanum Nakai, T. mongolicum and T. officinale are the most commonly used species for folkloric uses, with the whole plant, leaves and root of dandelion being used more frequently. GI-protective substances of dandelion include taraxasterol, taraxerol, caffeic acid, chicoric acid, chlorogenic acid, luteolin and its glucosides, polysaccharides, inulin, and β-sitosterol. Dandelion products and derived constituents exhibit pharmacological effects against GI disorders, mainly including dyspepsia, gastroesophageal reflux disease, gastritis, small intestinal ulcer, ulcerative colitis, liver diseases, gallstones, acute pancreatitis, and GI malignancy. The underlying molecular mechanisms may include immuno-inflammatory mechanisms, apoptosis mechanism, autophagy mechanism, and cholinergic mechanism, although interactions of dandelion's constituents with GI health-related biological entities (e.g., GI microbiota and associated biological modulators) or other ingested bioactive compounds shouldn't be ignored. CONCLUSION The review reveals some in vivo and in vitro studies on the potential of dandelion derived products as complementary and alternative medicines/therapeutics against GI disorders. The whole herb may alleviate some symptoms related GI immuno-inflammatory basing on the abundant anti-inflammatory and anti-oxide active substances. Dandelion root could be a nontoxic and effective anticancer alternative, owing to its abundant terpenoids and polysaccharides. However, research related to GI protective dandelion-derived products remains limited. Besides the need of identifying bioactive compounds/complexes in various dandelion species, more clinical studies are also required on the metabolism, bioavailability and safety of these substances to support their applications in food, medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
12
|
Palka A, Skotnicka M. The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules 2022; 27:molecules27134239. [PMID: 35807483 PMCID: PMC9268491 DOI: 10.3390/molecules27134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Inulin is a popular prebiotic that is often used in the production of ice cream, mainly to improve its consistency. It also reduces the hardness of ice cream, as well as improving the ice cream’s organoleptic characteristics. Inulin can also improve the texture of sorbets, which are gaining popularity as an alternative to milk-based ice cream. Sorbets can be an excellent source of natural vitamins and antioxidants. The aim of this study was to evaluate the effect of the addition of inulin on the sensory characteristics and health-promoting value of avocado, kiwi, honey melon, yellow melon and mango sorbets. Three types of sorbets were made—two with inulin (2% and 5% wt.) and the other without—using fresh fruit with the addition of water, sucrose and lemon juice. Both the type of fruit and the addition of inulin influenced the sorbet mixture viscosity, the content of polyphenols, vitamin C, acidity, ability to scavenge free radicals using DPPH reagent, melting resistance, overrun and sensory evaluation of the tested sorbets (all p < 0.05). The addition of inulin had no impact on the color of the tested sorbets, only the type of fruit influenced this feature. In the sensory evaluation, the mango sorbets were rated the best and the avocado sorbets were rated the worst. Sorbets can be a good source of antioxidant compounds. The tested fruits sorbets had different levels of polyphenol content and the ability to scavenge free radicals. Kiwi sorbet had the highest antioxidant potential among the tested fruits. The obtained ability to catch free radicals and the content of polyphenols proved the beneficial effect of sorbets, particularly as a valuable source of antioxidants. The addition of inulin improved the meltability, which may indicate the effect of inulin on the consistency. Further research should focus on making sorbets only from natural ingredients and comparing their health-promoting quality with the ready-made sorbets that are available on the market, which are made from ready-made ice cream mixes.
Collapse
Affiliation(s)
- Agnieszka Palka
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
- Correspondence:
| | - Magdalena Skotnicka
- Department of Commodity Science, Faculty of Health Science, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
13
|
Tirado-Kulieva VA, Gutiérrez-Valverde KS, Villegas-Yarlequé M, Camacho-Orbegoso EW, Villegas-Aguilar GF. Research trends on mango by-products: a literature review with bibliometric analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Luntraru CM, Apostol L, Oprea OB, Neagu M, Popescu AF, Tomescu JA, Mulțescu M, Susman IE, Gaceu L. Reclaim and Valorization of Sea Buckthorn (Hippophae rhamnoides) By-Product: Antioxidant Activity and Chemical Characterization. Foods 2022; 11:foods11030462. [PMID: 35159612 PMCID: PMC8834190 DOI: 10.3390/foods11030462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The by-product resulting from the production of the sea-buckthorn (Hippophae rhamnoides) juice may be a functional food ingredient, being a valuable source of bioactive compounds, such as polyphenols, flavonoids, minerals, and fatty acids. For checking this hypothesis, two extracts were obtained by two different methods using 50% ethyl alcohol solvent, namely through maceration–recirculation (E-SBM) and through ultrasound extraction (E-SBUS), followed by concentration. Next, sea-buckthorn waste (SB sample), extracts (E-SBM and E-SBUS samples) and the residues obtained from the extractions (R-SBM and R-SBUS samples) were characterized for the total polyphenols, flavonoid content, antioxidant capacity, mineral contents, and fatty acids profile. The results show that polyphenols and flavonoids were extracted better by the ultrasound process than the other methods. Additionally, the antioxidant activity of the E-SBUS sample was 91% higher (expressed in Trolox equivalents) and approximately 45% higher (expressed in Fe2+ equivalents) than that of the E-SBM sample. Regarding the extraction of minerals, it was found that both concentrated extracts had almost 25% of the RDI value of K and Mg, and also that the content of Zn, Mn, and Fe is significant. Additionally, it was found that the residues (R-SBM and R-SBUS) contain important quantities of Zn, Cu, Mn, Ca, and Fe. The general conclusion is that using the ultrasound extraction method, followed by a process of concentrating the extract, a superior recovery of sea-buckthorn by-product resulting from the juice extraction can be achieved.
Collapse
Affiliation(s)
- Cristina Mihaela Luntraru
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Livia Apostol
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Oana Bianca Oprea
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Mihaela Neagu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Adriana Florina Popescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Justinian Andrei Tomescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Mihaela Mulțescu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Iulia Elena Susman
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- CSCBAS &CE-MONT Centre/INCE-Romanian Academy, 010071 Bucharest, Romania
- Assoc. m. Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
15
|
Healthy Properties of a New Formulation of Pomegranate-Peel Extract in Mice Suffering from Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27030914. [PMID: 35164175 PMCID: PMC8838218 DOI: 10.3390/molecules27030914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a “therapeutic” protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of “in vivo” clinical symptoms. “Ex vivo” histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).
Collapse
|
16
|
Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The consumption of plant-based dairy alternatives has increased rapidly around the world as a result of numerous positive health effects. Little information is available about the potential use of watermelon seed milk in the manufacture of yoghurt. The present study was undertaken to investigate the remedial action of yoghurt enriched with watermelon seed milk in renal injured hyperuricemic rats. A new yoghurt, substituting cow’s milk with different proportions of watermelon seed milk was prepared, followed by evaluation of its acceptability and functionality. Four different types of yoghurt were prepared from cow’s milk containing 3% fat, with different proportions of blended watermelon seed milk (0.0, 25, 50 and 75%). Sensorial traits, i.e., appearance, flavor, body and texture, and overall acceptability demonstrated that the blended treatment (50% cow’s milk and 50% watermelon seed milk.) was the most acceptable. This blend was then tested as an anti-hyperuricemia agent in rats. In this respect, twenty-four male albino rats were assigned into four groups (n = 6). The first group was solely administered a standard diet, and served as the negative control. The other rats (n = 18) received a basal diet including 20 g/kg dietary potassium oxonate in order to induce hyperuricemia. The hyperuricemic rats were then divided into three groups; the first group did not receive any treatment and served as the positive control, while the second and third groups were administered 10% cow’s milk yoghurt and 10% watermelon seed milk yoghurt, respectively. Interestingly, the results showed that the hyperuricemic group receiving a diet supplemented with 10% watermelon seed milk yoghurt was not significantly different from the negative control in the measured biological parameters, and saw a significant improvement in renal function compared to the positive control. The biologically favorable action of watermelon seed milk yoghurt could be attributed to its potential promotion of antioxidant status via enhancement of the activities of superoxide dismutase, catalase, and glutathione transferase. Collectively, this study concluded that watermelon seed milk can be used in yoghurt manufacturing in proportions of up to 50%, and may improve kidney function as an anti-hyperuricemic agent.
Collapse
|
17
|
BOZDOGAN N, ORMANLI E, KUMCUOGLU S, TAVMAN S. Pear pomace powder added quinoa-based gluten-free cake formulations: effect on pasting properties, rheology, and product quality. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
19
|
Iqbal A, Schulz P, Rizvi SS. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Skaltsi A, Marinopoulou A, Poriazi A, Petridis D, Papageorgiou M. Development and optimization of gluten‐free biscuits with carob flour and dry apple pomace. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alexia Skaltsi
- Central Research Laboratory for the Physical and Chemical Testing of Foods Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Anna Marinopoulou
- Central Research Laboratory for the Physical and Chemical Testing of Foods Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Antonia Poriazi
- Central Research Laboratory for the Physical and Chemical Testing of Foods Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Dimitris Petridis
- Central Research Laboratory for the Physical and Chemical Testing of Foods Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Maria Papageorgiou
- Central Research Laboratory for the Physical and Chemical Testing of Foods Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| |
Collapse
|