1
|
Liu X, Cheng Y, Sun T, Lu Y, Huan S, Liu S, Li W, Li Z, Liu Y, Rojas OJ, McClements DJ, Bai L. Recent Advances in Plant-Based Edible Emulsion Gels for 3D-Printed Foods. Annu Rev Food Sci Technol 2025; 16:63-79. [PMID: 39899848 DOI: 10.1146/annurev-food-111523-121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
3D printing has emerged as a suitable technology for creating foodstuff with functional, sensorial, and nutritional attributes. There is growing interest in creating plant-based foods as alternatives to address current demands, especially to tailor consumer preferences. Consequently, plant-derived edible inks for additive manufacturing have emerged as suitable options, including emulsion gels (or emulgels). These gels can be formulated entirely from plant-derived lipids, proteins, polysaccharides, and/or other ingredients to form complex fluids that belong to the category of soft matter. This review summarizes the most recent advances in the areas of formation, structuring, properties, and applications of plant-based emulsion gels for 3D-printed food. These semisolid materials can be extruded to the set or solidified into structures with predesigned shapes, fidelity, and sensory attributes across the senses (taste, smell, sight, and touch) along with nutrition values. Emulsion gels can be formed by either solely gelling the continuous phase or combining this process with the formation of a particle network through aggregation and close packing. The current challenges facing the development of edible inks using plant-based materials are critically discussed to stimulate further advances in the rapidly growing field of personalized 3D-printed foods.
Collapse
Affiliation(s)
- Xiyue Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Yanpeng Cheng
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Tiexin Sun
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Zhiguo Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Yang Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA;
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China;
| |
Collapse
|
2
|
Padhiary M, Barbhuiya JA, Roy D, Roy P. 3D printing applications in smart farming and food processing. SMART AGRICULTURAL TECHNOLOGY 2024; 9:100553. [DOI: 10.1016/j.atech.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
4
|
Auyeskhan U, Azhbagambetov A, Sadykov T, Dairabayeva D, Talamona D, Chan MY. Reducing meat consumption in Central Asia through 3D printing of plant-based protein-enhanced alternatives-a mini review. Front Nutr 2024; 10:1308836. [PMID: 38299187 PMCID: PMC10827926 DOI: 10.3389/fnut.2023.1308836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
3D food printing (3DFP) is emerging as a vital innovation in the food industry's pursuit of sustainability. 3DFP has evolved to significantly impact food production, offering the capability to create customized, nutritionally balanced foods. Central Asia has a higher than global average level of meat consumption per capita, which might be influenced by its historical and cultural background of nomadism. This dietary trend might potentially result in negative impacts on both the environment and human health outcomes, as it leads to increased greenhouse gas emissions and increased risk of chronic diseases. Reducing meat consumption holds the potential to address these sustainability and health issues. A possible strategy to reduce meat consumption and promote plant-based foods is 3D Food Printing (3DFP), which can rely on plant-protein sources from the region to create appealing and tasty alternatives for these populations. This review summarizes recent studies on plant protein-rich materials for 3DFP as a substitute to meet the growing global demand for meat as well as the 3DFP printing parameters associated with the different plant-based proteins currently used (e.g., lentils, soybeans, peas, and buckwheat). The findings revealed that buckwheat, a dietary staple in Central Asia, can be a promising choice for 3DFP technology due to its widespread consumption in the region, gluten-free nature, and highly nutritious profile.
Collapse
Affiliation(s)
- Ulanbek Auyeskhan
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
- Department of Intelligent Systems & Cybersecurity, Astana IT University, Astana, Kazakhstan
| | - Arman Azhbagambetov
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Temirlan Sadykov
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Damira Dairabayeva
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Didier Talamona
- Department of Mechanical & Aerospace Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Mei-Yen Chan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Dushina E, Popov S, Zlobin A, Martinson E, Paderin N, Vityazev F, Belova K, Litvinets S. Effect of Homogenized Callus Tissue on the Rheological and Mechanical Properties of 3D-Printed Food. Gels 2024; 10:42. [PMID: 38247765 PMCID: PMC10815391 DOI: 10.3390/gels10010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of the study was to develop ink enriched with a high content of lupine callus tissue (CT) suitable for 3D printing. Printable ink obtained using mashed potatoes (20 g/100 mL) and a 3% agar solution was used as the parent CT-free ink (CT0). Viscosity increased from 9.6 to 75.4 kPa·s during the cooling of the CT0 ink from 50 to 20 °C, while the viscosity of the ink with 80 g/100 mL of CT (CT80) increased from 0.9 to 5.6 kPa·s under the same conditions. The inclusion of CT was shown to decrease the hardness of 3D-printed food gel from 0.32 ± 0.03 to 0.21 ± 0.03 N. The storage modulus G' value was 7.9 times lower in CT80 samples than in CT0 samples. The values of fracture stress for CT80 and CT0 inks were 1621 ± 711 and 13,241 ± 2329 Pa, respectively. The loss tangent and the limiting strain did not differ in CT0 and CT80, although the value of the fracture strain was 1.6 times higher in the latter. Thus, the present study demonstrates that CT may be added to printing ink in order to enhance food with plant cell material and enable the 3D printing of specially shaped foods.
Collapse
Affiliation(s)
- Elena Dushina
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Andrey Zlobin
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Ekaterina Martinson
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Kseniya Belova
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Litvinets
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| |
Collapse
|
6
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
7
|
Zhong L, Lewis JR, Sim M, Bondonno CP, Wahlqvist ML, Mugera A, Purchase S, Siddique KHM, Considine MJ, Johnson SK, Devine A, Hodgson JM. Three-dimensional food printing: its readiness for a food and nutrition insecure world. Proc Nutr Soc 2023; 82:468-477. [PMID: 37288524 DOI: 10.1017/s0029665123003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations.
Collapse
Affiliation(s)
- Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Mark L Wahlqvist
- Monash Asia Institute, Monash University, Melbourne, VIC, Australia
- School of Public Health, National Defence Medical Centre, Taipei, Taiwan, Republic of China
| | - Amin Mugera
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sharon Purchase
- Business School, University of Western Australia, Crawley, WA, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | | | - Amanda Devine
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Zhu W, Iskandar MM, Baeghbali V, Kubow S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023; 12:3287. [PMID: 37685220 PMCID: PMC10487194 DOI: 10.3390/foods12173287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional printing is one of the most precise manufacturing technologies with a wide variety of applications. Three-dimensional food printing offers potential benefits for food production in terms of modifying texture, personalized nutrition, and adaptation to specific consumers' needs, among others. It could enable innovative and complex foods to be presented attractively, create uniquely textured foods tailored to patients with dysphagia, and support sustainability by reducing waste, utilizing by-products, and incorporating eco-friendly ingredients. Notable applications to date include, but are not limited to, printing novel shapes and complex geometries from candy, chocolate, or pasta, and bio-printed meats. The main challenges of 3D printing include nutritional quality and manufacturing issues. Currently, little research has explored the impact of 3D food printing on nutrient density, bioaccessibility/bioavailability, and the impact of matrix integrity loss on diet quality. The technology also faces challenges such as consumer acceptability, food safety and regulatory concerns. Possible adverse health effects due to overconsumption or the ultra-processed nature of 3D printed foods are major potential pitfalls. This review describes the state-of-the-art of 3D food printing technology from a nutritional perspective, highlighting potential applications and current limitations of this technology, and discusses the potential nutritional risks and benefits of 3D food printing.
Collapse
Affiliation(s)
- Wenxi Zhu
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, Kent ME4 4TB, UK;
| | - Stan Kubow
- School of Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada; (W.Z.); (M.M.I.)
| |
Collapse
|
9
|
Enrichment of 3D-Printed k-Carrageenan Food Gel with Callus Tissue of Narrow-Leaved Lupin Lupinus angustifolius. Gels 2023; 9:gels9010045. [PMID: 36661811 PMCID: PMC9857940 DOI: 10.3390/gels9010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of the study is to develop and evaluate the printability of k-carrageenan inks enriched with callus tissue of lupin (L. angustifolius) and to determine the effect of two lupin calluses (LA14 and LA16) on the texture and digestibility of 3D-printed gel. The results demonstrated that the enriched ink was successfully 3D printed at concentrations of 33 and 50 g/100 mL of LA14 callus and 33 g/100 mL of LA16 callus. The feasibility of 3D printing is extremely reduced at higher concentrations of callus material in the ink. The hardness, cohesiveness, and gumminess of the 3D-printed gel with LA16 callus were weakened compared to the gel with LA14 callus. The results of rheological measurements showed that an increase in the content of LA16 callus interfered with the formation of a k-carrageenan gel network, while LA14 callus strengthened the k-carrageenan gel with increasing concentration. Gel samples at different concentrations of LA14 and LA16 calluses formed a spongy network structure, but the number of pores decreased, and their size increased, when the volume fraction occupied by LA14 and LA16 calluses increased. Simple polysaccharides, galacturonic acid residues, and phenolic compounds (PCs) were released from A-FP gels after sequential in vivo oral and in vitro gastrointestinal digestion. PCs were released predominantly in the simulated intestinal and colonic fluids. Thus, incorporating lupin callus into the hydrocolloid ink for food 3D printing can be a promising approach to developing a gelling material with new mechanical, rheological, and functional properties.
Collapse
|
10
|
Yoha KS, Moses JA. 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams. Foods 2023; 12:foods12010212. [PMID: 36613427 PMCID: PMC9818343 DOI: 10.3390/foods12010212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
With increasing evidence of their relevance to resource recovery, waste utilization, zero waste, a circular economy, and sustainability, food-processing waste streams are being viewed as an aspect of both research and commercial interest. Accordingly, different approaches have evolved for their management and utilization. With excellent levels of customization, three-dimensional (3D) printing has found numerous applications in various sectors. The focus of this review article is to explain the state of the art, innovative interventions, and promising features of 3D printing technology for the valorization of agri-food processing waste streams. Based on recent works, this article covers two aspects: the conversion of processing waste streams into edible novel foods or inedible biodegradable materials for food packing and allied applications. However, this application domain cannot be limited to only what is already established, as there are ample prospects for several other application fields intertwining 3D food printing and waste processing. In addition, this article presents the key merits of the technology and emphasizes research needs and directions for future work on this disruptive technology, specific to food-printing applications.
Collapse
|
11
|
Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review. Foods 2022; 11:foods11244111. [PMID: 36553853 PMCID: PMC9777955 DOI: 10.3390/foods11244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing technology enables the personalization and on-demand production of edible products of individual specifications. Four-dimensional printing technology expands the application scope of 3D printing technology, which controllably changes the quality attributes of 3D printing products over time. The concept of 5D/6D printing technology is also gradually developing in the food field. However, the functional value of food printing technology remains largely unrealized on a commercial scale due to limitations of printability and printing efficiency. This review focuses on recent developments in breaking through these barriers. The key factors and improvement methods ranging from ink properties and printer design required for successful printing of personalized foods (including easy-to-swallow foods, specially shaped foods, and foods with controlled release of functional ingredients) are identified and discussed. Novel evaluation methods for printability and printing precision are outlined. Furthermore, the design of printing equipment to increase printing efficiency is discussed along with some suggestions for cost-effective commercial printing.
Collapse
|
12
|
Tesikova K, Jurkova L, Dordevic S, Buchtova H, Tremlova B, Dordevic D. Acceptability Analysis of 3D-Printed Food in the Area of the Czech Republic Based on Survey. Foods 2022; 11:3154. [PMID: 37430902 PMCID: PMC9601544 DOI: 10.3390/foods11203154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of the research was to observe consumer perceptions of 3D food printing and to highlight possible applications of this production. The questionnaire survey took place in the Czech Republic and was attended by 1156 respondents. The questionnaire was divided into six sections: (1) Socio-Demographic Data; (2) 3D Common Printing Awareness; (3) 3D Food Printing Awareness; (4) 3D Food Printing, Worries and Understanding; (5) Application; (6) Investments. Although awareness of 3D food printing is increasing, a very small fraction of respondents had encountered printed food in person (1.5%; n = 17). Respondents expressed concerns about the health benefits and the reduced prices of novel foods, and they perceived printed foods as ultra-processed foods (56.0%; n = 647). Concerns have also been raised about job losses due to the introduction of new technology. On the contrary, they perceived that quality raw materials would be used to prepare printed foods (52.4%; n = 606). Most respondents believed that printed foods would be visually appealing and would find application in several food industry sectors. Most respondents believed that 3D food printing is the future of the food sector (83.8%; n = 969). The gained results can be helpful for 3D food printer producers, as well as for future experiments dealing with 3D food printing issues.
Collapse
Affiliation(s)
- Karolina Tesikova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Jurkova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| | - Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| | - Hana Buchtova
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| | - Bohuslava Tremlova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Palackeho Trida 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
13
|
Zhang L, Noort M, van Bommel K. Towards the creation of personalized bakery products using 3D food printing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:1-35. [PMID: 35595391 DOI: 10.1016/bs.afnr.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bakery products with interesting color, shape and texture have been created using 3D food printing. Current research focuses on the development of new formulations and the optimization of the printing and post-printing treatment processes, in order to obtain high-quality 3D-printed bakery products. Knowledge about food rheology is useful for the development of dough formulations with good 3D-printability. Additives such as hydrocolloids could improve the printability of dough, and novel ingredients are introduced via 3D printing to produce functional bakery products with potential health benefits. One of the main future promises of 3D printing lies in its ability to produce bakery products that are personalized in terms of sensorial properties and nutritional composition, in order to meet the preferences and dietary requirements of individual consumers. This chapter addresses the most recent developments in 3D-printed bakery foods and highlights some important research topics to further advance this field.
Collapse
Affiliation(s)
- Lu Zhang
- Wageningen University & Research, Laboratory of Food Process Engineering, Wageningen, The Netherlands.
| | - Martijn Noort
- Wageningen University & Research, Wageningen Food & Biobased Research, Wageningen, The Netherlands
| | - Kjeld van Bommel
- Equipment for Additive Manufacturing Department, Netherlands Organisation for Applied Scientific Research (TNO), Eindhoven, The Netherlands
| |
Collapse
|
14
|
|
15
|
Ma Y, Zhang L. Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Chen X, Zhang M, Teng X, Mujumdar AS. Recent Progress in Modeling 3D/4D Printing of Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Extrusion-Based 3D Food Printing: Technological Approaches, Material Characteristics, Printing Stability, and Post-processing. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09293-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|