1
|
Ouili AS, Mogmenga I, Ouattara A, Tidiane Compaoré CO, Maiga Y, Nikiema M, Ouattara AS. Assessment of the Probiotic Properties of Pediococcus acidilactici, Pediococcus pentosaceus, and Lactiplantibacillus plantarum Strains Isolated From Fermented Maize Grains. J Food Prot 2025; 88:100514. [PMID: 40268120 DOI: 10.1016/j.jfp.2025.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This study aimed to evaluate the probiotic properties of 11 lactic acid bacteria (LAB) strains isolated from corn kernels. After phenotypic and biochemical characterization confirmed by 16S rRNA gene sequencing, the results revealed that eight isolates (AA1, AA4, AA5, AA7, AA8, BB1, Z3, and Z4) belonged to Pediococcus acidilactici, two (Z2 and Z5) to Pediococcus pentosaceus, and one (AA6) to Lactiplantibacillus plantarum. Antibiotic sensitivity analysis showed general resistance to ciprofloxacin, gentamicin, and colistin, but strains such as AA4, AA6, Z2, and AA1 were sensitive to ampicillin, amoxicillin/clavulanic acid, and ceftriaxone. No signs of hemolytic activity were observed, confirming the safety of the strains. Simulated gastrointestinal tolerance tests demonstrated high survival rates: between 55.64% and 96.61% under 0.3% pepsin at pH 2.5, between 91.24% and 96.67% with bile salts (0.3%), and between 72.95% and 99.66% with phenol (0.4%). Autoaggregation capacities ranged from 54.87% to 90.57%, and coaggregation rates with E. coli and S. enterica were also significant. The strains exhibited hydrophobicity rates between 46.65% and 77.17%, notable antioxidant capacities (58.46-69.6%), and inhibited the growth of foodborne pathogens. Finally, enzymatic profiles revealed proteolytic and lipolytic activities. The isolates Z2 and Z3 stand out due to their wide range of probiotic characteristics, making them promising candidates for future research.
Collapse
Affiliation(s)
- Amidou S Ouili
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
| | - Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre Universitaire de Banfora, Université Nazi BONI, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Assiètta Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Cheik Omar Tidiane Compaoré
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Ynoussa Maiga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Mahamadi Nikiema
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Institut Supérieur de Développement Durable (ISDD), Université Yembila Abdoulaye Toguyeni, BP 54 Fada N'Gourma, Burkina Faso
| | - Aboubakar Sidiki Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
2
|
Angelin J, Kavitha M. Structural characterization and in vitro anti-inflammatory activity of exopolysaccharide produced by Pediococcus pentosaceus 4412. Int Immunopharmacol 2025; 150:114301. [PMID: 39970712 DOI: 10.1016/j.intimp.2025.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Probiotic-derived exopolysaccharides (EPSs) exert significant beneficial effects by regulating the human immune system. In this study, EPS-4412 was extracted from Pediococcus pentosaceus 4412, which was isolated from fermented Manilkara zapota juice. After purification by ion exchange and gel filtration chromatography, its average molecular mass and total carbohydrate content were measured to be 74 kDa and 95.6 ± 0.28 %, respectively. EPS-4412 was characterized as a neutral heteropolysaccharide, primarily composed of mannose with traces of glucose and rhamnose, in a molar ratio of 90.5: 3.48:1, as determined by ultra-high-performance liquid chromatography (UPLC). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of functional groups, OH, CH, CO, and C-O-C in EPS-4412. The existence of α- and β-glycosidic linkages, such as →2)-α-D-Manp-(1→, →3)-α-D-Manp-(1→, →6)-α-D-Manp-(1→, →5)-α-D-Manp-(1→, →4)-α-D-Manp-(1→, →6)-α-D-Glcp-(1 → and →2)-β-D-Rhap-(1 → was elucidated using nuclear magnetic resonance (NMR) spectroscopy. EPS-4412 was further characterized as smooth, glossy, irregular, compact, stacked flaky structures, semi-crystalline, and thermally stable at 252.86 °C using analytical techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In vitro anti-inflammatory activity on LPS-stimulated macrophages of EPS-4412 manifested the inhibition of proinflammatory cytokines (IL-6 and TNF-α) and stimulation of the anti-inflammatory cytokine IL-10. Hence, EPS-4412 could be potentially used as a natural additive in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- J Angelin
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Zioga E, Holdt SL, Gröndahl F, Bang-Berthelsen CH. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol 2025; 25:2. [PMID: 39757166 DOI: 10.1186/s12896-024-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources. The overarching aim is the deeper understanding of the selection criteria when designing starter cultures for seaweed fermentation. RESULTS By employing high-throughput analytical workflows, the screening processing time is minimized, and among the different strains from a well-characterized strain collection, it was possible to distinguish between strong acidifiers and to replicate similar results when the volumes were scaled from 96-well plates to lab-scale fermentations (40 mL) of whole seaweed. Lactiplantibacillus plantarum, Lacticaseibacillus paracasei and, to a lesser extent, Lacticaseibacillus rhamnosus were among the fastest strains to reach the lowest endpoint pH values (< 4.5) in less than 48 h. Although the results regarding proteolytic capacity were not sufficient to prove that the candidates can also provide some flavor generation by the cleavage of proteins, NFICC1746 and NFICC2041 exhibited potential in releasing free alanine, glutamate and asparate as free amino acids. CONCLUSIONS With the described methodology, a large number of terrestrial lactic acid bacteria (LAB) isolates were screened for their performance and possible application for fermentation of brown sewaeeds. With a a fast conversion of sugars to organic acids, three potential new plant-isolated strains from NFICC, specifically Lactiplantibacillus plantarum ssp. argentoratensis (NFICC983), Lacticaseibacillus paracasei (NFICC1746) and Lacticaseibacillus rhamnosus (NFICC2041), were identified as promising candidates for future synthetic consortia aimed at application in bioprocessed seaweed. The combination of such strains will be the future focus to further optimize robust seaweed fermentations.
Collapse
Affiliation(s)
- Evangelia Zioga
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Susan Løvstad Holdt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | | |
Collapse
|
4
|
Zaghloul EH, Halfawy NME. Marine Pediococcus pentosaceus E3 Probiotic Properties, Whole-Genome Sequence Analysis, and Safety Assessment. Probiotics Antimicrob Proteins 2024; 16:1925-1936. [PMID: 38748306 PMCID: PMC11573859 DOI: 10.1007/s12602-024-10283-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 11/19/2024]
Abstract
Probiotics play a significant role in enhancing health, and they are well known for bacteriocins production. Evaluating probiotics' whole-genome sequence provides insights into their consumption outcomes. Thus, genomic studies have a significant role in assessing the safety of probiotics more in-depth and offer valuable information regarding probiotics' functional diversity, metabolic pathways, and health-promoting mechanisms. Marine Pediococcus pentosaceus E3, isolated from shrimp gut, exhibited beneficial properties, indicating its potential as a probiotic candidate. Phenotypically, E3 strain was susceptible to most antibiotics assessed, tolerant to low pH and high bile salt conditions, and revealed no hemolysin activity. Interestingly, E3-neutralized CFS revealed significant antibacterial activity against pathogens under investigation. Therefore, the concentrated CFS was prepared and evaluated as a natural biopreservative and showed outstanding antimicrobial activity. Furthermore, integrated-based genome assessment has provided insight into probiotic characteristics at the genomic level. Whole-genome sequencing analysis revealed that the E3 genome possesses 1805 protein-coding genes, and the genome size was about 1.8 Mb with a G + C content of 37.28%. Moreover, the genome revealed the absence of virulence factors and clinically related antibiotic genes. Moreover, several genes consistent with probiotic microorganisms' features were estimated in the genome, including stress response, carbohydrate metabolism, and vitamin biosynthesis. In addition, several genes associated with survival and colonization within the gastrointestinal tract were also detected across the E3 genome. Therefore, the findings suggest that insights into the genetic characteristics of E3 guarantee the safety of the strain and facilitate future development of E3 isolate as a health-promoting probiotic and source of biopreservative.
Collapse
Affiliation(s)
- Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Nancy M El Halfawy
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Li S, Li Y, Sui D, Ren Q, Ai C, Li M, Zhao S, Li H, Song S, Ren X. Anti-Inflammatory Effects of Novel Probiotic Lactobacillus rhamnosus RL-H3-005 and Pedicoccus acidilactici RP-H3-006: In Vivo and In Vitro Evidence. Foods 2024; 13:3676. [PMID: 39594091 PMCID: PMC11593918 DOI: 10.3390/foods13223676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Probiotics have garnered escalating attention in the treatment and prevention of inflammatory disorders. In this study, Lactobacillus rhamnosus RL-H3-005 (RL5) and Pediococcus acidilactici RP-H3-006 (RP6), which possess anti-inflammatory effects and favorable probiotic attributes, were selected through the comparison of an RAW264.7 inflammatory cell model screening and in vitro probiotic properties. Subsequently, it was implemented in an animal model of dextran sulfate sodium (DSS)-induced colitis. The results demonstrated that RL5 and RP6 could inhibit the release of proinflammatory factors in RAW264.7 inflammatory cells and exhibited excellent environmental adaptability, adhesion, safety, and antibacterial activity. Additionally, RL5 and RP6 provided protective effects on the intestines of mice with acute colitis by reducing the levels of intestinal inflammation and oxidative stress. Concurrently, supplementation with RL5 and RP6 modulated the composition of the gut microbiota in mice. These discoveries suggest that RL5 and RP6 can be used as a novel probiotic for alleviating intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaomeng Ren
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116304, China; (S.L.); (Q.R.); (S.Z.); (S.S.)
| |
Collapse
|
6
|
Yang H, Meng Y, Han X, Meng X, Yang B, Zhang C, Wang X, Yu J, Al-Asmari F, Dablool AS, Sameeh MY, Shi C. Changes in the ability of Listeria monocytogenes to resist thermal treatment and simulated gastric condition after exposure to sequential stresses in minced meat. Food Res Int 2024; 192:114765. [PMID: 39147557 DOI: 10.1016/j.foodres.2024.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
In this study, Listeria monocytogenes from minced pork was evaluated for changes in resistance to thermal treatment and gastric fluid following environmental stresses during food processing. Bacteria were exposed to cold stress, followed by successive exposures to different stressors (lactic acid (LA), NaCl, or Nisin), followed by thermal treatments, and finally, their gastrointestinal tolerance was determined. Adaptation to NaCl stress reduced the tolerance of L. monocytogenes to subsequent LA and Nisin stress. Adaptation to LA stress increased bacterial survival in NaCl and Nisin-stressed environments. Bacteria adapted to Nisin stress showed no change in tolerance to subsequent stress conditions. In addition, treatment with NaCl and LA enhanced the thermal tolerance of L. monocytogenes, but treatment with Nisin decreased the thermal tolerance of the bacteria. Almost all of the sequential stresses reduced the effect of a single stress on bacterial thermal tolerance. The addition of LA and Nisin as a second step of stress reduced the tolerance of L. monocytogenes to gastric fluid, whereas the addition of NaCl enhanced its tolerance. The results of this study are expected to inform processing conditions and sequences for meat preservation and processing and reduce uncertainty in risk assessment of foodborne pathogens due to stress adaptation.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yujie Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co. Ltd., Yangling 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Anas S Dablool
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Makkah 25100, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 24831, Saudi Arabia
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
7
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
8
|
Prajapati K, Prajapati J, Patel D, Patel R, Varshnei A, Saraf M, Goswami D. Multidisciplinary advances in kombucha fermentation, health efficacy, and market evolution. Arch Microbiol 2024; 206:366. [PMID: 39098983 DOI: 10.1007/s00203-024-04086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Kombucha, a fermented tea beverage, has seen a significant rise in global popularity. This increase is attributed to its reported health benefits and extensive cultural heritage. The comprehensive review examines kombucha through microbiology, biochemistry, and health sciences, highlighting its therapeutic potential and commercial viability. Central to kombucha production is the symbiotic culture of bacteria and yeasts (SCOBY), which regulates a complex fermentation process, resulting in a bioactive-rich elixir. The study examines the microbial dynamics of SCOBY, emphasizing the roles of various microorganisms. It focuses the contributions of acetic acid bacteria, lactic acid bacteria, and osmophilic yeasts, including genera such as Saccharomyces, Schizosaccharomyces, Zygosaccharomyces, Brettanomyces/Dekkera, and Pichia. These microorganisms play crucial roles in producing bioactive compounds, including organic acids, polyphenols, and vitamins. These bioactive compounds confer therapeutic properties to kombucha. These properties include antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, cancer prevention, hepatoprotective, and detoxifying effects. The review also explores the growing market for kombucha, driven by consumer demand for functional beverages and opportunities for innovative product development. It emphasizes the necessity of standardized production to ensure safety and validate health claims. Identifying research gaps, the review highlights the importance of clinical trials to verify therapeutic benefits. Ultimately, this study integrates traditional knowledge with scientific research, providing directions for future studies and commercial expansion, emphasizing the role of kombucha in health and wellness.
Collapse
Affiliation(s)
- Karan Prajapati
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dhaval Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anish Varshnei
- Department of Research & Development, Latambarcem Brewers Private Limited, Bicholim, Goa, 403503, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
9
|
Morales D, de la Fuente-Nieto L, Marco P, Tejedor-Calvo E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles ( Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods 2024; 13:2162. [PMID: 38998667 PMCID: PMC11241703 DOI: 10.3390/foods13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The organoleptic and bioactive properties of truffles place these fungi as interesting materials for use in the of design functional foods based on fruiting bodies outside commercial standards. Moreover, kombucha beverages have become more popular in the Western world, leading to novel drinks using alternative substrates instead of tea leaves. In this work, two truffle species (Tuber melanosporum, TMEL; Tuber aestivum, TAES) and three different symbiotic consortia of bacteria and yeasts (SCOBYs: SC1, SC2, and SC3) were tested. Fermentation (21 days) was monitored in terms of physicochemical (pH, viscosity), biochemical (total carbohydrates, alcohol, soluble proteins, phenolic compounds), and sensory attributes (volatile organic compounds, VOCs). The obtained pH ranges were adequate, alcohol levels were undetectable or very low, and sugar content was lower than in traditional kombuchas or other beverages. In most cases, the usual bottling time could be applied (7-10 days), although longer fermentations are recommended (14 days) to reach higher protein and phenolic compounds contents. Truffle kombuchas produced up to 51 volatile organic compounds (alcohols, acids, esters, ketones, and aldehydes, among others), with TMEL showing a more complex profile than TAES. During the first week, acidic compound production was observed, especially acetic acid. Similar behavior in the VOC profile was reported with different SCOBYs.
Collapse
Affiliation(s)
- Diego Morales
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Laura de la Fuente-Nieto
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Instituto Agroalimentario de Aragón (IA2), University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
10
|
Chan S, Jantama K, Prasitpuriprecha C, Wansutha S, Phosriran C, Yuenyaow L, Cheng KC, Jantama SS. Harnessing Fermented Soymilk Production by a Newly Isolated Pediococcus acidilactici F3 to Enhance Antioxidant Level with High Antimicrobial Activity against Food-Borne Pathogens during Co-Culture. Foods 2024; 13:2150. [PMID: 38998655 PMCID: PMC11241325 DOI: 10.3390/foods13132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a newly isolated Pediococcus acidilactici F3 was used as probiotic starter for producing fermented soymilk to enhance antioxidant properties with high antimicrobial activity against food-borne pathogens. The objectives of this study were to investigate optimized fermentation parameters of soymilk for enhancing antioxidant property by P. acidilactici F3 and to assess the dynamic antimicrobial activity of the fermented soymilk during co-culturing against candidate food-borne pathogens. Based on central composite design (CCD) methodology, the maximum predicted percentage of antioxidant activity was 78.9% DPPH inhibition. After model validation by a 2D contour plot, more suitable optimum parameters were adjusted to be 2% (v/v) inoculum and 2.5 g/L glucose incubated at 30 °C for 18 h. These parameters could provide the comparable maximum percentage of antioxidant activity at 74.5 ± 1.2% DPPH inhibition, which was up to a 23% increase compared to that of non-fermented soymilk. During 20 days of storage at 4 °C, antioxidant activities and viable cells of the fermented soymilk were stable while phenolic and organic contents were slightly increased. Interestingly, the fermented soymilk completely inhibited food-borne pathogens, Salmonella Typhimurium ATCC 13311, and Escherichia coli ATCC 25922 during the co-culture incubation. Results showed that the soymilk fermented by P. acidilactici F3 may be one of the alternative functional foods enriched in probiotics, and the antioxidation and antimicrobial activities may retain nutritional values and provide health benefits to consumers with high confidence.
Collapse
Affiliation(s)
- Sitha Chan
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Chutinun Prasitpuriprecha
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Supasson Wansutha
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
- Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Chutchawan Phosriran
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Laddawan Yuenyaow
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 404327, Taiwan
| | - Sirima Suvarnakuta Jantama
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
11
|
O’Sullivan EN, O’Sullivan DJ. Viability and Diversity of the Microbial Cultures Available in Retail Kombucha Beverages in the USA. Foods 2024; 13:1707. [PMID: 38890935 PMCID: PMC11172315 DOI: 10.3390/foods13111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a two-stage fermented sweetened tea beverage that uses yeast and lactic acid bacteria (LAB) to convert sugars into ethanol and lactate and acetic acid bacteria (AAB) to oxidize ethanol to acetate. Its popularity as a beverage grew from claims of health benefits derived from this vibrant microbial bioconversion. While recent studies have shed light on the diversity of cultures in Kombucha fermentation, there is limited information on the diversity, and especially viability, of cultures in retail beverages that advertise the presence of Kombucha and probiotic cultures. In this study, 12 Kombucha beverages produced by different manufacturers throughout the US were purchased and microbially characterized. Eight of the beverages contained viable Kombucha cultures, while 3 of the remaining 4 had viable Bacillus cultures as added probiotics. Amplicon profiling revealed that all contained Kombucha yeast and bacteria cells. The dominant yeasts detected were Lachancea cidri (10/12), Brettanomyces (9/12), Malassezia (6/12), and Saccharomyces (5/12). Dominant LAB included Liquorilactobacillus and Oenococcus oeni, and AAB were Komagataeibacter, Gluconobacter, and Acetobacter. One beverage had a significant amount of Zymomonas mobilis, an ethanol-producing bacterium from Agave cactus. While Kombucha beverages differ in the types and viability of cultures, all except one beverage contained detectable viable cells.
Collapse
Affiliation(s)
| | - Daniel J. O’Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA;
| |
Collapse
|
12
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Zheng SS, Wang CY, Hu YY, Yang L, Xu BC. Enhancement of fermented sausage quality driven by mixed starter cultures: Elucidating the perspective of flavor profile and microbial communities. Food Res Int 2024; 178:113951. [PMID: 38309873 DOI: 10.1016/j.foodres.2024.113951] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The metabolic activities of microorganisms play a crucial role in the quality development of fermented sausage. This study investigated the effect of inoculation with different combinations of starter cultures (Lactiplantibacillus plantarum YR07, Latilactobacillus sakei L.48, Staphylococcus xylosus S.14, and Mammaliicoccus sciuri S.18) on the quality of sausages. Inoculation with mixed starter cultures promoted protein degradation to generate amino acids and the conversion to volatile compounds, which enhanced the flavor development in fermented sausages. The bacterial community analyses demonstrated that the inoculation of mixed starter cultures could inhibit the growth of spoilage and pathogenic bacteria, thereby reducing the total content of biogenic amines. The correlation analysis between the core bacteria and characteristic volatile compounds revealed that fermented sausages inoculated with Lactobacillus and coagulase negative staphylococci exhibited significant positive correlations with the majority of key characteristic volatile compounds. In four treatments, inoculation with L. plantarum YR07 and M. sciuri S.18 greatly promoted the formation of characteristic volatile compounds (3-hydroxy-2-butanone, hexanal, and 1- octen-3ol). Therefore, the combined inoculation of L. plantarum YR07 and M. sciuri S.18 is promising to enhance fermented sausage's flavor profile and safety.
Collapse
Affiliation(s)
- Sha-Sha Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chun-Yu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ying-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
14
|
Pihurov M, Păcularu-Burada B, Cotârleț M, Grigore-Gurgu L, Borda D, Stănciuc N, Kluz M, Bahrim GE. Kombucha and Water Kefir Grains Microbiomes' Symbiotic Contribution to Postbiotics Enhancement. Foods 2023; 12:2581. [PMID: 37444320 DOI: 10.3390/foods12132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented products (FPs) obtained by the microbiome's contribution can be included in functional products due to their meta-biotics (pre-, pro-, post-, and paraprobiotics) as a result of complex and synergistic associations as well as due to the metabolic functionality. In this study, consortia of both SCOBY and WKG were involved in the co-fermentation of a newly formulated substrate that was further analysed, aiming at increasing the postbiotic composition of the FPs. Plackett-Burman (PBD) and Response Surface Methodology (RSM) techniques were employed for the experimental designs to select and optimise several parameters that have an influence on the lyophilised starter cultures of SCOBY and WKG activity as a multiple inoculum. Tea concentration (1-3%), sugar concentration (5-10%), raisins concentration (3-6%), SCOBY lyophilised culture concentration (0.2-0.5%), WKG lyophilised culture concentration (0.2-0.5%), and fermentation time (5-7 days) were considered the independent variables for mathematical analysis and fermentation conditions' optimisation. Antimicrobial activity against Bacillus subtilis MIUG B1, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Aspergillus niger MIUG M5, antioxidant capacity (DPPH), pH and the total acidity (TA) were evaluated as responses. The rich postbiotic bioactive composition of the FP obtained in optimised biotechnological conditions highlighted the usefulness of the artisanal co-cultures, through their symbiotic metabolic interactions for the improvement of bioactive potential.
Collapse
Affiliation(s)
- Marina Pihurov
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Mihaela Cotârleț
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Maciej Kluz
- Department of Bioenergetics and Food Analysis and Microbiology, University of Rzeszow, 35601 Rzeszow, Poland
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| |
Collapse
|
15
|
Wang B, Rutherfurd-Markwick K, Naren N, Zhang XX, Mutukumira AN. Microbiological and Physico-Chemical Characteristics of Black Tea Kombucha Fermented with a New Zealand Starter Culture. Foods 2023; 12:2314. [PMID: 37372525 DOI: 10.3390/foods12122314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Kombucha is a popular sparkling sugared tea, fermented by a symbiotic culture of acetic acid bacteria (AAB) and yeast. The demand for kombucha continues to increase worldwide, mainly due to its perceived health benefits and appealing sensory properties. This study isolated and characterised the dominant AAB and yeast from a starter culture and kombucha broth after 0, 1, 3, 5, 7, 9, 11, and 14 days of fermentation at ambient temperature (22 °C). Yeast and AAB were isolated from the Kombucha samples using glucose yeast extract mannitol ethanol acetic acid (GYMEA) and yeast extract glucose chloramphenicol (YGC) media, respectively. The phenotypic and taxonomic identification of AAB and yeast were determined by morphological and biochemical characterisation, followed by a sequence analysis of the ribosomal RNA gene (16S rRNA for AAB and ITS for yeast). The changes in the microbial composition were associated with variations in the physico-chemical characteristics of kombucha tea, such as pH, titratable acidity, and total soluble solids (TSS). During fermentation, the acidity increased and the TSS decreased. The yield, moisture content, and water activity of the cellulosic pellicles which had developed at the end of fermentation were attributed to the presence of AAB. The dominant AAB species in the cellulosic pellicles and kombucha broth were identified as Komagataeibacter rhaeticus. The yeast isolates belonged to Debaryomyces prosopidis and Zygosaccharomyces lentus.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| | | | - Naran Naren
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Anthony N Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
16
|
Coulibaly WH, Kouadio NR, Camara F, Diguță C, Matei F. Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiol 2023; 23:152. [PMID: 37231432 DOI: 10.1186/s12866-023-02899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Probiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast. RESULTS Twelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose. CONCLUSION The explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| | - N'goran Richard Kouadio
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Fatoumata Camara
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Camelia Diguță
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania.
| | - Florentina Matei
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| |
Collapse
|
17
|
Diguță CF, Mihai C, Toma RC, Cîmpeanu C, Matei F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022; 12:foods12010124. [PMID: 36613340 PMCID: PMC9818403 DOI: 10.3390/foods12010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.
Collapse
Affiliation(s)
- Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Constanța Mihai
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Correspondence:
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Carmen Cîmpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
18
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. Kombucha: Production and Microbiological Research. Foods 2022; 11:3456. [PMID: 36360067 PMCID: PMC9658962 DOI: 10.3390/foods11213456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a sparkling sugared tea commonly prepared using a sugared tea infusion and fermented at ambient temperature for several days using a cellulose pellicle also called tea fungus that is comprised of acetic acid bacteria and yeast. Consumption of Kombucha has been reported as early as 220 B.C. with various reported potential health benefits and appealing sensory properties. During Kombucha fermentation, sucrose is hydrolysed by yeast cells into fructose and glucose, which are then metabolised to ethanol. The ethanol is then oxidised by acetic acid bacteria (AAB) to produce acetic acid which is responsible for the reduction of the pH and also contributes to the sour taste of Kombucha. Characterisation of the AAB and yeast in the Kombucha starter culture can provide a better understanding of the fermentation process. This knowledge can potentially aid in the production of higher quality products as these microorganisms affect the production of metabolites such as organic acids which are associated with potential health benefits, as well as sensory properties. This review presents recent advances in the isolation, enumeration, biochemical characteristics, conventional phenotypic identification system, and modern genetic identification techniques of AAB and yeast present in Kombucha to gain a better understanding of the microbial diversity of the beverage.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| | | | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
20
|
Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int J Food Microbiol 2022; 377:109783. [PMID: 35728418 DOI: 10.1016/j.ijfoodmicro.2022.109783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 01/10/2023]
Abstract
In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.
Collapse
|
21
|
Mgomi FC, Yuan L, Wang Y, Rao S, Yang Z. Physiological properties, survivability and genomic characteristics of
Pediococcus pentosaceus
for application as a starter culture. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fedrick C Mgomi
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Lei Yuan
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Yang Wang
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Sheng‐Qi Rao
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Zhen‐Quan Yang
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| |
Collapse
|
22
|
Preparation and Characterization of Calcium-Incorporated Rosa roxburghii Tratt and Its Efficacy on Bone Mineral Density in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5122396. [PMID: 35497912 PMCID: PMC9045994 DOI: 10.1155/2022/5122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
The deficiency of traditional calcium preparation will gradually be replaced by the new type of calcium preparation. Rosa roxburghii fruit (R. roxburghii) is popular for its rich nutrients and functional ingredients. The fermentation broth of R. roxburghii, involving amino acids, flavonoids, triterpenes, polysaccharides, and other compounds, is favorable for calcium chelation. Thus, this study fabricated calcium-incorporated R. roxburghii (FECa) and further illustrated its efficacy on bone mineral density (BMD) in rats. The calcium holding capacity of FECa was identified and confirmed using AAS. Ion complexation of FECa was characterized using 1H-NMR, UV, SEM and EDS, and FTIR. The calcium contents of femurs were increased by 36%, and the bone trabeculae of femurs were significantly increased. Net calcium balance was enhanced to further improve BMD by oral administration of FECa. The above results indicate that FECa can be a potential and efficient calcium supplementation agent.
Collapse
|
23
|
Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JPP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol 2022; 13:782175. [PMID: 35369445 PMCID: PMC8970348 DOI: 10.3389/fmicb.2022.782175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Biology and Biotechnology of Microorganisms, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias De Oliveira Carvalho
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwar
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Almeida Costa
- Computational Biology and Biotechnological Information Management Center (NBCGIB), State University of Santa Cruz, Ilhéus, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Pablo Ivan P. Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-Bahia), Salvador, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kombucha, a domesticated consortium of several microorganisms grown on sugared tea, has been valued as a nutritive health aid for over a millennium. In this study, three cultures of kombucha were obtained from diverse sources. Different inoculation methods were compared, and the wet and dry weights of the nascent pellicles were measured when cultured on several carbon sources. In addition, the anti-bacterial properties of the fermented kombucha teas were tested against Escherichia coli and Staphylococcus epidermis. Inoculation with macerated pellicles gave the fastest kombucha growth. The best carbon sources for growth of the nascent kombucha pellicles were sucrose, glucose, and fructose. On maltose, galactose, and lactose, not only did the kombucha pellicles grow poorly but 25% were also contaminated by common airborne molds. Good growth of the kombucha cultures was correlated with low pH of the fermented tea. Antibacterial effects of concentrated fermented teas and vinegar were similar to those of 1 mmol ampicillin against Escherichia coli or 0.01 mmol penicillin against Staphylococcus epidermis. When the pH of concentrated kombucha teas was neutralized, their bactericidal effects were no better than unfermented controls.
Collapse
|
25
|
Astó E, Huedo P, Altadill T, Aguiló García M, Sticco M, Perez M, Espadaler-Mazo J. Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Front Microbiol 2022; 12:741391. [PMID: 35095783 PMCID: PMC8790238 DOI: 10.3389/fmicb.2021.741391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are a common concern during the first year of life. Recognized as gut-brain axis disorders by Rome IV criteria, FGIDs etiology is linked to altered gut-brain interaction, intestinal physiology, and microbiota. In this regard, probiotics have emerged as a promising therapy for infant FGIDs. In this study, we have investigated the probiotic potential of the strains Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041-isolated from healthy children's feces-in the treatment of FGIDs. To this scope, genome sequences of both strains were obtained and subjected to in silico analyses. No virulence factors were detected for any strain and only the non-transferable erm(49) gene, which confers resistance to erythromycin and clindamycin, was identified in the genome of B. longum KABP042. Safety of both strains was confirmed by acute oral toxicity in rats. In vitro characterization revealed that the strains tolerate gastric and bile challenges and display a great adhesion capacity to human intestinal cells. The two strains mediate adhesion by different mechanisms and, when combined, synergically induce the expression of Caco-2 tight junction proteins. Moreover, growth inhibition experiments demonstrated the ability of the two strains alone and in combination to antagonize diverse Gram-negative and Gram-positive bacterial pathogens during sessile and planktonic growth. Pathogens' inhibition was mostly mediated by the production of organic acids, but neutralization experiments strongly suggested the presence of additional antimicrobial compounds in probiotic culture supernatants such as the bacteriocin Lantibiotic B, whose gene was detected in the genome of B. longum KABP042. Finally, an exploratory, observational, pilot study involving 36 infants diagnosed with at least one FGID (infant colic and/or functional constipation) showed the probiotic formula was well tolerated and FGID severity was significantly reduced after 14 days of treatment with the 2 strains. Overall, this work provides evidence of the probiotic and synergic properties of strains B. longum KABP042 and P. pentosaceus KABP041, and of their potential to treat pediatric FGIDs. Clinical Trial Registration: [www.ClinicalTrials.gov], [identifier NCT04944628].
Collapse
Affiliation(s)
- Erola Astó
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Tatiana Altadill
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Maura Sticco
- Pediatric Primary Care Local Health Authority, ASL Caserta, Caserta, Italy
| | - Marta Perez
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | | |
Collapse
|
26
|
Dynamics of physiological responses of potentially probiotic fruit-derived Limosilactobacillus fermentum in apple and orange juices during refrigeration storage and exposure to simulated gastrointestinal conditions. Arch Microbiol 2021; 204:38. [DOI: 10.1007/s00203-021-02672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
|
27
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
28
|
Kaashyap M, Cohen M, Mantri N. Microbial Diversity and Characteristics of Kombucha as Revealed by Metagenomic and Physicochemical Analysis. Nutrients 2021; 13:nu13124446. [PMID: 34960001 PMCID: PMC8704692 DOI: 10.3390/nu13124446] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Kombucha is a fermented tea made from a Symbiotic Culture of Bacteria and Yeast (SCOBY) with a long history of use as a health tonic. It is likely that most health benefits come from the tea and fermentation metabolites from specific microbial communities. Despite its growing importance as a functional health drink, the microbial ecosystem present in kombucha has not been fully documented. To characterize the microbial composition and biochemical properties of 'The Good Brew' original base kombucha, we used metagenomics amplicon (16S rRNA and ITS) sequencing to identify the microbial communities at the taxonomic level. We identified 34 genera with 200 microbial species yet described in kombucha. The dominance of organic acid producing microorganisms Acetobacter, Komagataeibacter and Starmerella are healthy for the human gut and their glucose metabolising activities have a putative role in preventing conditions such as diabetes and obesity. Kombucha contains high protein (3.31 µg/mL), high phenolic content (290.4 mg/100 mL) and low sugars (glucose: 1.87 g/L; sucrose 1.11 g/L; fructose: 0.05 g/L) as compared to green tea. The broad microbial diversity with proven health benefits for the human gut suggests kombucha is a powerful probiotic. These findings are important to improve the commercial value of kombucha and uncover the immense prospects for health benefits.
Collapse
Affiliation(s)
- Mayank Kaashyap
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC 3083, Australia;
| | - Marc Cohen
- The Good Brew Co., Brunswick, Melbourne, VIC 3056, Australia;
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC 3083, Australia;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
29
|
Seleshe S, Ameer A, Kang SN. Incorporation of Selected Strains of Pediococcus spp. on Quality Characteristics of Dry Fermented Sausage during Fermentation and Ripening. Food Sci Anim Resour 2021; 41:1078-1094. [PMID: 34796332 PMCID: PMC8564329 DOI: 10.5851/kosfa.2021.e60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
This research investigated the physio-chemical and microbial quality
characteristics of dry fermented sausage from selected
Pediococcus strains: P. acidiliactici
(PE1) and P. pentosaceus (PE2) as compared to commercial
starter culture (COS) during fermentation and ripening. Treatments showed no
substantial variation (p<0.05) in water activity (aw) values
across the study period. PE1 and PE2 treatments exhibited similar
(p>0.05) pH values and presented remarkable (p<0.05) lower
volatile basic nitrogen (VBN) and thiobarbituric acid reactive (TBARS) content
than COS treatment throughout the ripening period. However, the pH values in COS
batch were considerably lower than others. PE1 samples presented a significant
highest (p<0.05) counts both in lactic acid bacteria (LAB) and total
plate count (TPC) than COS and PE2 treatments at 7 days fermentation, and it
resulted in a similar and higher TPC count as COS after the ripening period.
After the ripening process, treatments are ordered based on LAB counts as
follows: COS>PE1>PE2. All batches presented similar redness and
yellowness attributes since the 7 days of fermentation and in lightness across
the study period. Treatments were similar (p>0.05) in springiness and
chewiness traits across the study period and in hardness characteristics in the
ripened products. Cohesiveness was higher in PE1 and COS batches. No variation
(p>0.05) in aroma and sourness sensory attributes of treatments. The
color attribute was highest (p<0.05) in PE1 and PE2 treatments and PE1
had the highest overall acceptability. The overall outstanding merit exhibited
by PE1 can be utilized in the commercial production of high-quality dry
fermented sausage.
Collapse
Affiliation(s)
- Semeneh Seleshe
- Department of Animal Resource, Daegu University, Gyeongsan 38453, Korea
| | - Ammara Ameer
- Department of Animal Resource, Daegu University, Gyeongsan 38453, Korea
| | - Suk Nam Kang
- Department of Animal Resource, Daegu University, Gyeongsan 38453, Korea
| |
Collapse
|
30
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
31
|
Jiang S, Cai L, Lv L, Li L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 2021; 20:45. [PMID: 33593360 PMCID: PMC7885583 DOI: 10.1186/s12934-021-01537-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzhi Cai
- The Infectious Diseases Department, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|