1
|
Akhtar W, Ceci AT, Longo E, Marconi MA, Lonardi F, Boselli E. Dealcoholized wine: Techniques, sensory impacts, stability, and perspectives of a growing industry. Compr Rev Food Sci Food Saf 2025; 24:e70171. [PMID: 40243128 PMCID: PMC12004437 DOI: 10.1111/1541-4337.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
The category of dealcoholized wine is receiving mounting interest within the wine industry related to the ability to retain sensory characteristics similar to regular wine while reducing or completely removing the alcohol level. This option has led health-conscious consumers to seek a lower alcohol alternative without compromising the authentic wine experience. This review provides a comprehensive overview of the various dealcoholization techniques that are being used in the production of dealcoholized and partial dealcoholized wine, specifically examining reverse osmosis, osmotic distillation, vacuum distillation, spinning cone column, pervaporation, and diafiltration along with the effects of these methods on chemical and sensory characteristics of wine, involving flavor, aroma, mouthfeel, and finish. Various aspects of the impact of dealcoholization on wine stability were explored, including chemical, microbial, oxidative, and color stability. Furthermore, the market analysis of dealcoholized wine products including present and future growth in different regions is reported. Understanding these factors is of utmost importance for dealcoholized wine's growing advancement and market success, as it endeavors to accommodate various customer demands and preferences in a swiftly changing beverage environment.
Collapse
Affiliation(s)
- Wasim Akhtar
- Oenolab, NOI Techpark, Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Adriana Teresa Ceci
- Oenolab, NOI Techpark, Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Edoardo Longo
- Oenolab, NOI Techpark, Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | | | - Francesco Lonardi
- R&D Department, Ju.Cla.S s.r.lSettimo di Pescantina VeronaVeronaItaly
| | - Emanuele Boselli
- Oenolab, NOI Techpark, Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
- International Competence Center on Food Fermentations, Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| |
Collapse
|
2
|
Thanasi V, Santos M, Marques R, Ribeiro N, Barros P, Ricardo-da-Silva JM, Reis M, Catarino S. 137Cs Analysis by Gamma Spectrometry and Its Potential for Dating Portuguese Old Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9835-9845. [PMID: 40210209 DOI: 10.1021/acs.jafc.4c11229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Analytical methods for dating wines often involve assessments of anthropogenic 14C, 137Cs, and cosmogenic 14C. Having in mind the commercial and historical significance of rare and aged wines, this study focuses on noninvasive and nondestructive 137Cs detection. The approach relies on measuring gamma-emitting radionuclides within the energy range of 46.5-1836 keV using Hyper Pure Germanium (HPGe) detectors, specifically calibrated for horizontally positioned sealed wine bottles. The 137Cs dating method was optimized to achieve low detection limits and was validated for accuracy. All the activities were normalized to the same arbitrary date, and each sample was measured twice. For the first time, Portuguese fortified and nonfortified wines were analyzed for 137Cs content. Wines from the 1960-1965 vintages exhibited 137Cs levels between 0.51 Bq/L and 1.74 Bq/L, varying by wine region and type. Fortified wines consistently showed lower 137Cs levels than nonfortified wines, likely due to differences in the production process. The method is particularly effective for distinguishing wines produced around the 1963 bomb peak and a few subsequent years, though further research is needed to expand its applicability to other periods.
Collapse
Affiliation(s)
- Vasiliki Thanasi
- LEAF-Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Marta Santos
- Center of Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
- Laboratório de Protecção e Segurança Radiológica (LPSR), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rosa Marques
- Center of Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Natália Ribeiro
- Instituto dos Vinhos do Douro e do Porto, I.P., Rua de Ferreira Borges, 27, 4050-253 Porto, Portugal
| | - Paulo Barros
- Instituto dos Vinhos do Douro e do Porto, I.P., Rua de Ferreira Borges, 27, 4050-253 Porto, Portugal
| | - Jorge M Ricardo-da-Silva
- LEAF-Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mário Reis
- Center of Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
- Laboratório de Protecção e Segurança Radiológica (LPSR), Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Sofia Catarino
- LEAF-Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- CeFEMA - Centre of Physics and Engineering of Advanced Materials Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Gagliardi M, Tori G, Sanmartin C, Cecchini M. The effect of probe density coverage on the detection of oenological tannins in quartz crystal microbalance with dissipation monitoring (QCM-D) experiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1476-1483. [PMID: 38308593 DOI: 10.1002/jsfa.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Polyphenols are a group of compounds found in grapes, musts, and wines. Their levels are crucial for grape ripening, proper must fermentation, and final wine characteristics. Standard chemical analysis is commonly used to detect these compounds, but it is costly, time consuming, and requires specialized laboratories and operators. To address this, this study explores a functionalized acoustic sensor for detecting oenological polyphenols. RESULTS The method involves utilizing a quartz crystal microbalance with dissipation monitoring (QCM-D) to detect the target analyte by using a gelatin-based probe layer. The sensor is functionalized by optimizing the probe coverage density to maximize its performance. This is achieved by using 12-mercaptododecanoic acid (12-MCA) to immobilize the probe onto the gold sensor surface, and dithiothreitol (DTT) as a reducing and competitive binding agent. The concentration of 12-MCA and DTT in the solutions is varied to control the probe density. QCM-D measurements demonstrate that the probe density can be effectively adjusted using this approach, ranging from 0.2 × 1013 to 2 × 1013 molecules cm-2. This study also investigates the interaction between the probe and tannins, confirming the ability of the sensor to detect them. Interestingly, the lower probe coverage achieves higher detection signals when normalized to probe immobilization signals. Moreover, significant changes in mechanical properties of the functionalization layer are observed after the interaction with samples. CONCLUSION The combination of QCM-D with gelatin functionalization holds great promise for future applications in the wine industry. It offers real-time monitoring capabilities, requires minimal sample preparation, and provides high sensitivity for quality control purposes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Giorgia Tori
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
4
|
Rapa M, Di Fabio M, Boccacci Mariani M, Giannetti V. Characterization of Native Sicilian Wines by Phenolic Contents, Antioxidant Activity and Chemometrics. Molecules 2025; 30:534. [PMID: 39942638 PMCID: PMC11820501 DOI: 10.3390/molecules30030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Sicily, an island rich in history and tradition, is renowned for its unique viticultural landscape, where native vines have been cultivated for centuries. The commercial value of Sicilian wines is rooted in their distinctive flavors and aromas and the cultural heritage they embody. This paper delves into the characterization of native Sicilian wines according to their phenolic contents, antioxidant activity, and chemometrics. Nero d'Avola and Syrah showed the highest phenolic content and the highest antioxidant activity. Among the white wines, the Catarratto and Zibbibo samples were richer in antioxidants than the Grillo ones. In the Principal Component Analysis, it was possible to note the grouping of the red and white wines in the first component and an early grouping according to variety in the second one. Furthermore, the variable examined allowed for a suitable classification model (up to 83%) to be built for the Nero d'Avola, Syrah, Grillo, and Zibibbo wines through a Linear Discriminant Analysis. The findings highlight how these phenolic profiles contribute to the distinctiveness and marketability of Sicilian wines, offering a deeper appreciation of their value within the global wine industry.
Collapse
Affiliation(s)
- Mattia Rapa
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161 Rome, Italy; (M.D.F.); (M.B.M.); (V.G.)
| | | | | | | |
Collapse
|
5
|
Ćorković I, Pichler A, Šimunović J, Kopjar M. A Comprehensive Review on Polyphenols of White Wine: Impact on Wine Quality and Potential Health Benefits. Molecules 2024; 29:5074. [PMID: 39519715 PMCID: PMC11547695 DOI: 10.3390/molecules29215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Polyphenols are associated with various beneficial health effects. These compounds are present in edible plants such as fruits and vegetables, and the human body absorbs them through the consumption of foods and beverages. Wine is recognized as a rich source of these valuable compounds, and it has been well established that polyphenols present in red wine possess numerous biologically active functions related to health promotion. Therefore, most scientific research has been focused on red wine polyphenols, whereas white wine polyphenols have been neglected. This review presents the summarized information about the most abundant polyphenols in white wines, their concentration, their impact on wine quality and their potential health effects, such as neuroprotective and cardioprotective activities, antioxidant potential, antimicrobial activity and their positive effects on lipids. These findings are an effort to help compensate for the relative lack of relevant data in the scientific literature regarding white wine polyphenols.
Collapse
Affiliation(s)
- Ina Ćorković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| |
Collapse
|
6
|
Diela A, Pagkali V, Kokkinos C, Calokerinos A, Economou A. Multiplexed colorimetric assay of antioxidants in wines with paper-based sensors fabricated by pen plotting. Talanta 2024; 277:126425. [PMID: 38897008 DOI: 10.1016/j.talanta.2024.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
This work reports the development of low-cost and rapid multiplexed colorimetric assay of antioxidants (total phenolics, antioxidant capacity, flavonoids and anthocyanins) in wines at daisy-shaped fluidic paper-based analytical devices (PADs). The desired fluidic patterns were formed on paper by pen drawing and colorimetric reagents were immobilized at the 6 peripheral test zones. The sample was added at the central sample zone, migrated to the test zones and reacted with the immobilized reagents producing characteristic colors that were captured and analyzed. The paper-based approach was applied to the analysis of several wine samples and the results were statistically correlated to standard solution-based colorimetric assays, indicating that it could be reliably used for ranking wines according to their antioxidants content. In addition, the paper-based analytical methodology is simple, instrument-free, portable, cost-effective, rapid and environment friendly.
Collapse
Affiliation(s)
- Anna Diela
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Varvara Pagkali
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Christos Kokkinos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Antony Calokerinos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece.
| |
Collapse
|
7
|
Pintać Šarac D, Torović L, Orčić D, Mimica-Dukić N, Đorđević T, Lesjak M. Comprehensive study of phenolic profile and biochemical activity of monovarietal red and white wines from Fruška Gora region, Serbia. Food Chem 2024; 448:139099. [PMID: 38547704 DOI: 10.1016/j.foodchem.2024.139099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
This paper presents a comprehensive study of commercially available monovarietal red and white wines from Fruška Gora mountain in Serbia, conducted to characterize their chemical and biochemical properties. Namely, 72 wines of 18 different Vitis vinifera varieties, including international, domestic and autochthonous ones, were assessed. Phenolic profile of wines was determined qualitatively, using spectrophotometric methods, and quantitatively, using LC-MS/MS and HPLC-UV/VIS methods. Quantified phenolic compounds pointed out differences between red and white wines, where some compounds stood out as distinctive characteristic of analyzed varieties, while others served as chemotaxonomic markers of the Fruška Gora region. Antioxidant and inhibitory properties towards acetylcholinesterase were evaluated for all wines and their relation to phenolic composition was investigated. This study is valuable since chemical and biochemical properties of domestic and autochthonous Fruška Gora varieties are reported for the first time. Also, international varieties studied herein gave distinctive information about the terroir of Fruška Gora region, which is scarce in scientific literature.
Collapse
Affiliation(s)
| | - Ljilja Torović
- University of Novi Sad Faculty of Medicine, Novi Sad, Serbia
| | - Dejan Orčić
- University of Novi Sad Faculty of Sciences, Novi Sad, Serbia
| | | | | | - Marija Lesjak
- University of Novi Sad Faculty of Sciences, Novi Sad, Serbia
| |
Collapse
|
8
|
Scutarașu EC, Niță RG, Vlase L, Zamfir CI, Cioroiu BI, Colibaba LC, Muntean D, Luchian CE, Vlase AM, Cotea V. Maximizing Wine Antioxidants: Yeast's Contribution to Melatonin Formation. Antioxidants (Basel) 2024; 13:916. [PMID: 39199162 PMCID: PMC11351232 DOI: 10.3390/antiox13080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin is commonly found in various fruits, juices, and some fermented beverages. Its concentration in wine is influenced by soil properties, climatic factors, and yeast activity. Even if it is found in fermented beverages in relatively low proportions, melatonin still holds significant nutritional value, giving anti-aging properties, anti-inflammatory actions, and antidepressant effects. In this context, this article focuses on evaluating the impact of different Saccharomyces and non-Saccharomyces yeast species on the formation of melatonin and its contribution to wines' total antioxidant capacity. Considering that the antioxidant activity of wine is usually related to the content of phenolic compounds, ten such compounds were analyzed. The evaluation of bioactive compounds was performed using high-performance liquid chromatography (HPLC) coupled with mass spectrometry. The total antioxidant capacity of wine samples was evaluated by the ABTS+ method. The administration of bâtonnage products increased the efficiency of non-Saccharomyces yeasts. The mixtures of Saccharomyces and non-Saccharomyces yeasts generated higher values for melatonin. The results confirm a significant impact from the grape variety and the specific yeast strains on the melatonin concentration. Also, a strong dependence between antioxidant activity and melatonin levels was observed. Given the limited existing studies on the presence of melatonin in wines, new perspectives are needed for future exploration and understanding.
Collapse
Affiliation(s)
- Elena Cristina Scutarașu
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania; (E.C.S.); (R.G.N.); (L.C.C.); (V.C.)
| | - Răzvan George Niță
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania; (E.C.S.); (R.G.N.); (L.C.C.); (V.C.)
| | - Laurian Vlase
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, V. Babeș Street, 400000 Cluj Napoca, Romania; (L.V.); (D.M.)
| | - Cătălin Ioan Zamfir
- Research Center of Oenology, Romanian Academy, Iași Branch, 9th M. Sadoveanu Alley, 700505 Iași, Romania; (C.I.Z.); (B.I.C.)
| | - Bogdan Ionel Cioroiu
- Research Center of Oenology, Romanian Academy, Iași Branch, 9th M. Sadoveanu Alley, 700505 Iași, Romania; (C.I.Z.); (B.I.C.)
| | - Lucia Cintia Colibaba
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania; (E.C.S.); (R.G.N.); (L.C.C.); (V.C.)
| | - Dana Muntean
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, V. Babeș Street, 400000 Cluj Napoca, Romania; (L.V.); (D.M.)
| | - Camelia Elena Luchian
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania; (E.C.S.); (R.G.N.); (L.C.C.); (V.C.)
| | - Ana Maria Vlase
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, V. Babeș Street, 400000 Cluj Napoca, Romania; (L.V.); (D.M.)
| | - Valeriu Cotea
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania; (E.C.S.); (R.G.N.); (L.C.C.); (V.C.)
| |
Collapse
|
9
|
Zhang L, Wang Z, Zhang C, Zhou S, Yuan C. Metabolomics analysis based on UHPLC-QqQ-MS/MS to discriminate grapes and wines from different geographical origins and climatological characteristics. Food Chem X 2024; 22:101396. [PMID: 38699585 PMCID: PMC11063387 DOI: 10.1016/j.fochx.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
With the proliferation of the consumer's awareness of wine provenance, wines with unique origin characteristics are increasingly in demand. This study aimed to investigate the influence of geographical origins and climatological characteristics on grapes and wines. A total of 94 anthocyanins and 78 non-anthocyanin phenolic compounds in grapes and wines from five Chinese viticultural vineyards (CJ, WH, QTX, WW, and XY) were identified by UHPLC-QqQ-MS/MS. Chemometric methods PCA and OPLS-DA were established to select candidate differential metabolites, including flavonols, stilbenes, hydroxycinnamic acids, peonidin derivatives, and malvidin derivatives. CCA showed that malvidin-3-O-glucoside had a positive correlation with mean temperature, and quercetin-3-O-glucoside had a negative correlation with precipitation. In addition, enrichment analysis elucidated that the metabolic diversity in different origins mainly occurred in flavonoid biosynthesis. This study would provide some new insights to understand the effect of geographical origins and climatological characteristics on phenolic compounds in grapes and wines.
Collapse
Affiliation(s)
- Lin Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Cui Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
- Xinjiang Bainian Manor Wines & Spirits Co., Ltd, China
| | - Shubo Zhou
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
10
|
Frigerio J, Campone L, Giustra MD, Buzzelli M, Piccoli F, Galimberti A, Cannavacciuolo C, Ouled Larbi M, Colombo M, Ciocca G, Labra M. Convergent technologies to tackle challenges of modern food authentication. Heliyon 2024; 10:e32297. [PMID: 38947432 PMCID: PMC11214499 DOI: 10.1016/j.heliyon.2024.e32297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
The authentication process involves all the supply chain stakeholders, and it is also adopted to verify food quality and safety. Food authentication tools are an essential part of traceability systems as they provide information on the credibility of origin, species/variety identity, geographical provenance, production entity. Moreover, these systems are useful to evaluate the effect of transformation processes, conservation strategies and the reliability of packaging and distribution flows on food quality and safety. In this manuscript, we identified the innovative characteristics of food authentication systems to respond to market challenges, such as the simplification, the high sensitivity, and the non-destructive ability during authentication procedures. We also discussed the potential of the current identification systems based on molecular markers (chemical, biochemical, genetic) and the effectiveness of new technologies with reference to the miniaturized systems offered by nanotechnologies, and computer vision systems linked to artificial intelligence processes. This overview emphasizes the importance of convergent technologies in food authentication, to support molecular markers with the technological innovation offered by emerging technologies derived from biotechnologies and informatics. The potential of these strategies was evaluated on real examples of high-value food products. Technological innovation can therefore strengthen the system of molecular markers to meet the current market needs; however, food production processes are in profound evolution. The food 3D-printing and the introduction of new raw materials open new challenges for food authentication and this will require both an update of the current regulatory framework, as well as the development and adoption of new analytical systems.
Collapse
Affiliation(s)
- Jessica Frigerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Marco Davide Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Marco Buzzelli
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Flavio Piccoli
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Malika Ouled Larbi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| | - Gianluigi Ciocca
- Department of Informatics Systems and Communication, University of Milano-Bicocca, viale Sarca, 336, 20216, Milano, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20216, Milano, Italy
| |
Collapse
|
11
|
Topi D, Topi A, Guclu G, Selli S, Uzlasir T, Kelebek H. Targeted analysis for the detection of phenolics and authentication of Albanian wines using LC-DAD/ESI-MS/MS combined with chemometric tools. Heliyon 2024; 10:e31127. [PMID: 38845971 PMCID: PMC11154223 DOI: 10.1016/j.heliyon.2024.e31127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
In recent years, Albania has seen a significant increase in wine production, which can be attributed to the growing interest in the diversity of native grape varieties. Among the most popular grape varieties are Kallmet, Shesh i zi (ShiZ), Shesh i bardhë (ShiB), and Cerruje, which are known for their distinctive wines as well as the planted area. A study was conducted to investigate the influence of the territory and vintage on phenolic compounds of single-variety wines from these grape varieties. Liquid chromatography identified and quantified thirty-one phenolic compounds, sub-grouped into flavonoids and non-flavonoids, with diode-array detection coupled to electrospray ionization tandem mass spectrometry (LC-DAD-ESI/MSn). Within the red wines group, the ShiZ variety wine presented the highest phenolic content (1037 mg/L), followed by Kallmet cv. (539 mg/L); conversely, in the white wine group, the ShiB wines (699 mg/L) were distinguished from the Cerruje variety. Gallic acid was the main phenolic compound, followed by procyanidin B3. ShiB and ShiZ had the highest levels, at 215 and 136 mg/L, respectively. Among flavanols, (+)-catechin was found in the highest levels, with the maximum in Kallmet cv. red wine (58.9 mg/L), followed by (-)-epicatechin (29.1 mg/L). The ShiB wine had the highest content of flavonols, with quercetin-3-O-glucuronide and quercetin-3-O-glucoside as the main contributors. The highest quantity of stilbenoids belonged to Kallmet red wine (1.59 mg/L). Applying Principal Component Analysis (PCA) in red and white wine groups made a good separation possible according to variety and region. However, a separation according to vintage year was not successful.
Collapse
Affiliation(s)
- Dritan Topi
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Tirana, 1016, Albania
| | - Ardiana Topi
- Department of Informatics and Technology, Faculty of Engineering, Informatics, and Architecture, European University of Tirana, Tirana, 1000, Albania
| | - Gamze Guclu
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, Adana, 01250, Turkey
| | - Turkan Uzlasir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
12
|
Benucci I, Lombardelli C, Tamborra P, Muganu M, Esti M. Authenticity Markers of Aged Red Wines from Aglianico, Uva di Troia, Negroamaro and Primitivo Grapes. Foods 2024; 13:1866. [PMID: 38928808 PMCID: PMC11202789 DOI: 10.3390/foods13121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The wide ampelographic treasure of Italian wine grape varieties is driving research towards suitable approaches for the varietal authenticity control of wine. In this paper, Aglianico, Negroamaro, Primitivo and Uva di Troia red wines, which were produced experimentally by single-grape winemaking from non-aromatic grapes native to southern Italy, were analyzed with respect to berry markers, namely anthocyanins, hydroxycinnamic acids (HPLC-DAD), shikimic acid (HPLC-UV) and glycosidic aroma precursors (GC-MS). The study confirms that, just as for the berries, useful varietal authenticity markers for red wine, even after aging, turn out to be hydroxycinnamic acids, relative amounts of acylated forms of anthocyanins, and shikimic acid, together with some grape glycosidic precursors from terpenes and C13- norisoprenoids. Principal Component Analysis was used as a valuable tool to highlight the results.
Collapse
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo de Lellis Snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.M.)
| | - Claudio Lombardelli
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo de Lellis Snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.M.)
| | - Pasquale Tamborra
- Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, CREA-VE Via Casamassima 148, 70010 Turi, Italy;
| | - Massimo Muganu
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo de Lellis Snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.M.)
| | - Marco Esti
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo de Lellis Snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.M.)
| |
Collapse
|
13
|
Wang G, Kumar Y. Mechanisms of the initial stage of non-enzymatic oxidation of wine: A mini review. J Food Sci 2024; 89:2530-2545. [PMID: 38563093 DOI: 10.1111/1750-3841.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Non-enzymatic oxidation is a primary factor affecting wine quality during bottling or aging. Although red and white wines exhibit distinct responses to oxidation over time, the fundamental mechanisms driving this transformation remain remarkably uniform. Non-enzymatic oxidation of wine commences with the intricate interplay between polyphenols and oxygen, orchestrating a delicate redox dance with iron and copper. Notably, copper emerges as an accelerant in this process. To safeguard wine integrity, sulfur dioxide (SO2) is routinely introduced to counteract the pernicious effects of oxidation by neutralizing hydrogen peroxide and quinone. In this comprehensive review, the initial stages of non-enzymatic wine oxidation are examined. The pivotal roles played by polyphenols, oxygen, iron, copper, and SO2 in this complex oxidative process are systematically explored. Additionally, the effect of quinone formation on wine characteristics and the intricate dynamics governing oxygen availability are elucidated. The potential synergistic or additive effects of iron and copper are probed, and the precise balance between SO2 and oxygen is scrutinized. This review summarizes the mechanisms involved in the initial stages of non-enzymatic oxidation of wine and anticipates the potential for further research.
Collapse
Affiliation(s)
- Guanghao Wang
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Yogesh Kumar
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| |
Collapse
|
14
|
Gao F, Guan L, Zeng G, Hao X, Li H, Wang H. Preliminary characterization of chemical and sensory attributes for grapes and wines of different cultivars from the Weibei Plateau region in China. Food Chem X 2024; 21:101091. [PMID: 38235346 PMCID: PMC10792196 DOI: 10.1016/j.fochx.2023.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chemical and sensory attributes play a vital role in evaluating the quality of grapes and wines. This study compared basic physicochemical parameters, organic acids, phenolic compounds, and aroma profiles of grapes and wines of six cultivars using chemometrics. The results showed that the reducing sugar contents of Beibinghong, Gongniang, and Granoir grapes were significantly higher than those of others cultivars, whereas their juice yields were significantly lower. The phenolic compound contents in Moldova, Beibinghong, and Gongniang grape skins and wines were higher than those in others cultivars. The organic acid contents in Beibinghong grape and Dunkelfelder wine were highest. Beibinghong and Gongniang grapes and wines showed richer aldehyde and ester concentrations. Beibinghong wine obtained the highest sensory scores. Ethyl decanoate, coumaric acid, and methyl dodecanoate were characteristic variables distinguishing wine cultivars, exhibiting important contributions to their sensory characteristics. These findings were useful for viticulturists and winemakers to select grape varieties.
Collapse
Affiliation(s)
- Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxiao Guan
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guihua Zeng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Hao
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Li
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Wang
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Lee SB. Quality Characteristics and Antioxidant Activities of Six Types of Korean White Wine. Foods 2023; 12:3246. [PMID: 37685179 PMCID: PMC10486741 DOI: 10.3390/foods12173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The cultivation of European grape cultivars suitable for winemaking in Korea presents challenges due to factors such as climate, soil conditions, precipitation, and sunlight. Consequently, Korea has traditionally resorted to adding sugar to its wine production to counteract the low sugar content in Korean grapes, yielding lower-quality wines. However, recent success in the cultivation of five European grape cultivars and the development of the domestic grape cultivar Cheongsoo have increased the possibility of achieving high-quality Korean wines. This study aimed to explore the potential of European grape cultivars and Cheongsoo as wine grapes in Korea. This study also conducted sensory evaluation and analyzed the physicochemical properties of the grapes and wines, including antioxidant capacity and color. Despite originating from the same vineyard, the composition of grapes and wines, including volatile aromatic compounds, significantly differed among the grape cultivars. In particular, Vidal wine exhibited superior antioxidant capacity compared with other wines. Moreover, Cheongsoo wine showed higher levels of essential volatile aromatic compounds, such as monoterpenes, than other wines. Sensory evaluation of these two wines also revealed excellent results. In conclusion, these findings hold promise for enhancing the diversity of Korean white wine and fostering growth in the wine industry.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-7749
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Ganugi P, Caffi T, Gabrielli M, Secomandi E, Fiorini A, Zhang L, Bellotti G, Puglisi E, Fittipaldi MB, Asinari F, Tabaglio V, Trevisan M, Lucini L. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1236199. [PMID: 37711298 PMCID: PMC10497758 DOI: 10.3389/fpls.2023.1236199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Gabrielli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sciences, Technologies and Society, University School for Advanced Studies, IUSS, Pavia, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Florencia Asinari
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
17
|
Miotto SPS, Fensterseifer LC, de Souza Hassemer G, Martins G, Ficagna E, Steffens J, Puton BMS, Backes GT, Valduga E, Cansian RL. Malolactic fermentation of lactic acid bacteria isolated from southern Brazilian red wine. World J Microbiol Biotechnol 2023; 39:201. [PMID: 37202540 DOI: 10.1007/s11274-023-03645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The objective was to isolate lactic acid bacteria (LAB) from southern Brazil's wines and investigate their potential as starter cultures for malolactic fermentation (MLF) in Merlot (ME) and Cabernet Sauvignon (CS) wines through the fermentative capacity. The LAB were isolated from CS, ME, and Pinot Noir (PN) wines in the 2016 and 2017 harvests and evaluated for morphological (color and shape of the colonies), genetic, fermentative (increase in pH, acidity reduction, preservation of anthocyanins, decarboxylation of L-malic acid, yield of L-lactic acid, and content of reduced sugars), and sensory characteristics. Four strains were identified as Oenococcus oeni [CS(16)3B1, ME(16)1A1, ME(17)26, and PN(17)65], one as Lactiplantibacillus plantarum [PN(17)75], and one as Paucilactobacillus suebicus [CS(17)5]. Isolates were evaluated in the MLF and compared to a commercial strain (O. oeni), as well as a control (without inoculation and spontaneous MLF), and standard (without MLF). CS(16)3B1 and ME(17)26 isolates finished the MLF for CS and ME wines, respectively, after 35 days, similar to the commercial strain, and CS(17)5 and ME(16)1A1 isolates ended the MLF in 45 days. In the sensory analysis, ME wines with isolated strains received better scores for flavor and overall quality than the control. Compared to the commercial strain, CS(16)3B1 isolate obtained the highest scores for buttery flavor and taste persistence. CS(17)5 isolate received the higher scores for a fruity flavor and overall quality and the lowest for a buttery flavor. The native LAB displayed MLF potential, regardless of the year and grape species from which they were isolated.
Collapse
Affiliation(s)
- Shana Paula Segala Miotto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Bento Gonçalves. Av. Osvaldo Aranha, 540. Zip code, Bento Gonçalves, 95700-000, RS, Brazil
| | - Letícia Caroline Fensterseifer
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Bento Gonçalves. Av. Osvaldo Aranha, 540. Zip code, Bento Gonçalves, 95700-000, RS, Brazil
| | - Guilherme de Souza Hassemer
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil
| | - Guilherme Martins
- Institut des Sciences de la Vigne et du Vin - ISVV, Université de Bordeaux. 210 Chem. de Leysotte, Villenave-d'Ornon, 33140, France
| | - Evandro Ficagna
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Bento Gonçalves. Av. Osvaldo Aranha, 540. Zip code, Bento Gonçalves, 95700-000, RS, Brazil
| | - Juliana Steffens
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil
| | - Bruna Maria Saorin Puton
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil.
| | - Geciane Toniazzo Backes
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil
| | - Eunice Valduga
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil
| | - Rogério Luis Cansian
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim. Av. Sete de Setembro, 1621. Zip code, Erechim, 99709-910, RS, Brazil
| |
Collapse
|
18
|
An J, Wilson DI, Deed RC, Kilmartin PA, Young BR, Yu W. The importance of outlier rejection and significant explanatory variable selection for pinot noir wine soft sensor development. Curr Res Food Sci 2023; 6:100514. [PMID: 37251636 PMCID: PMC10209686 DOI: 10.1016/j.crfs.2023.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Sensory attributes are essential factors in determining the quality of wines. However, it can be challenging for consumers, even experts, to differentiate and quantify wines' sensory attributes for quality control. Soft sensors based on rapid chemical analysis offer a potential solution to overcome this challenge. However, the current limitation in developing soft sensors for wines is the need for a significant number of input parameters, at least 12, necessitating costly and time-consuming analyses. While such a comprehensive approach provides high accuracy in sensory quality mapping, the expensive and time-consuming studies required do not lend themselves to the industry's routine quality control activities. In this work, Box plots, Tucker-1 plots, and Principal Component Analysis (PCA) score plots were used to deal with output data (sensory attributes) to improve the model quality. More importantly, this work has identified that the number of analyses required to fully quantify by regression models and qualify by classification models can be significantly reduced. Based on regression models, only four key chemical parameters (total flavanols, total tannins, A520nmHCl, and pH) were required to accurately predict 35 sensory attributes of a wine with R2 values above 0.6 simultaneously. In addition, for classification models to accurately predict 35 sensory attributes of a wine at once with prediction accuracy above 70%, only four key chemical parameters (A280nmHCl, A520nmHCl, chemical age and pH) were required. These models with reduced chemical parameters complement each other in sensory quality mapping and provide acceptable accuracy. The application of the soft sensor based on these reduced sets of key chemical parameters translated to a potential reduction in analytical cost and labour cost of 56% for the regression model and 83% for the classification model, respectively, making these models suitable for routine quality control use.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yu
- The University of Auckland, New Zealand
| |
Collapse
|
19
|
Darnal A, Poggesi S, Ceci AT, Mimmo T, Boselli E, Longo E. Effects of pre- and post-fermentative practices on oligomeric cyclic and non-cyclic condensed tannins in wine from Schiava grapes. Curr Res Food Sci 2023; 6:100513. [PMID: 37377493 PMCID: PMC10290995 DOI: 10.1016/j.crfs.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 06/29/2023] Open
Abstract
The effects of a) pre-fermentative freezing of the grapes (- 20 °C for two weeks); b) inoculation of the grape must with Saccharomycescerevisiae yeast, or co-inoculation with Saccharomyces cerevisiae yeast and Oenococcus oenibacteria; c) vinification with or without fermentative maceration, and d) cold stabilization with or without bentonite treatment, were studied on the profile of oligomeric condensed tannins (proanthocyanidins, PAC) with non-cyclic or macrocyclic structures in wines made from Schiava cv., a red grape variety. The samples were evaluated just before inoculation and at the bottling of the wine. Commercial Schiava wines from two different producers stored at six and eighteen months were also studied for the effect of artificially introduced dissolved oxygen, and half of these bottles were subjected to periodic mechanical stress for one year, to see the effects on the PAC profile. Freezing of the grapes increased the extraction of all non-cyclic PAC in the must, whereas tetrameric, pentameric, and hexameric cyclic procyanidins (m/z 1153, m/z 1441, m/z 1729, respectively) were not affected; only a tetrameric cyclic prodelphinidin ( m/z 1169) showed a more similar trend to the non-cyclic PAC. In wines at bottling, cyclic procyanidins were higher in wines obtained by fermentative maceration (as well as most non-cyclic congeners); however, the significance of these differences depended on specific interactions between the factors. In contrast, no effect was found on the cyclic tetrameric prodelphinidin (m/z 1169). Bentonite treatment showed no significant effect on either oligomeric non-cyclic or cyclic PAC profiles. The addition of dissolved oxygen led to a significant decrease in non-cyclic trimeric and tetrameric PAC in the samples with respect to the control ones; however, the addition of dissolved oxygen did not influence the profile of the cyclic PAC. This study sheds new light on the substantial differences in the behaviour of the cyclic and non-cyclic oligomeric PAC in red wine in relation to the vinification process and in the bottle. Cyclic oligomeric PAC were more stable and less influenced by applied factors than linear PAC, again proving to be potential markers for the grape variety of wine.
Collapse
Affiliation(s)
- Aakriti Darnal
- Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Simone Poggesi
- Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
- Food Experience and Sensory Testing (Feast) Lab, Massey University, Palmerston North 4410, New Zealand
| | - Adriana Teresa Ceci
- Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Emanuele Boselli
- Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Edoardo Longo
- Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100, Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
20
|
Carpentieri S, Ferrari G, Pataro G. Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace: Process optimization using response surface methodology. Front Nutr 2023; 10:1158019. [PMID: 37006934 PMCID: PMC10063923 DOI: 10.3389/fnut.2023.1158019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background The application of Pulsed electric fields as a mild and easily scalable electrotechnology represents an effective approach to selectively intensify the extractability of bioactive compounds from grape pomace, one of the most abundant residues generated during the winemaking process. Objective This study addressed the optimization of the pulsed electric fields (PEF)-assisted extraction to enhance the extraction yields of bioactive compounds from red grape pomace using response surface methodology (RSM). Methods The cell disintegration index (Z p ) was identified as response variable to determine the optimal PEF processing conditions in terms of field strength (E = 0.5-5 kV/cm) and energy input (WT = 1-20 kJ/kg). For the solid-liquid extraction (SLE) process the effects of temperature (20-50°C), time (30-300min), and solvent concentration (0-50% ethanol in water) on total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), tannin content (TC), and antioxidant activity (FRAP) of the extracts from untreated and PEF-treated plant tissues were assessed. The phenolic composition of the obtained extracts was determined via HPLC-PDA. Results Results demonstrated that the application of PEF at the optimal processing conditions (E = 4.6 kV/cm, WT = 20 kJ/kg) significantly enhanced the permeabilization degree of cell membrane of grape pomace tissues, thus intensifying the subsequent extractability of TPC (15%), FC (60%), TAC (23%), TC (42%), and FRAP values (31%) concerning the control extraction. HPLC-PDA analyses showed that, regardless of the application of PEF, the most abundant phenolic compounds were epicatechin, p-coumaric acid, and peonidin 3-O-glucoside, and no degradation of the specific compounds occurred upon PEF application. Conclusion The optimization of the PEF-assisted extraction process allowed to significantly enhance the extraction yields of high-value-added compounds from red grape pomace, supporting further investigations of this process at a larger scale.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
- ProdAl Scarl - University of Salerno, Fisciano, SA, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
21
|
Sánchez-García E, Martínez-Falcó J, Alcon-Vila A, Marco-Lajara B. Developing Green Innovations in the Wine Industry: An Applied Analysis. Foods 2023; 12:foods12061157. [PMID: 36981084 PMCID: PMC10047959 DOI: 10.3390/foods12061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Winemaking is an ancestral activity characterized by its strong roots in the culture, heritage, and people of the producing regions. In addition to providing important health benefits, wine is a product that is widely accepted by society. However, the socioeconomic context is evolving at a rapid pace, and new requirements and needs are forcing companies to innovate in order to remain competitive in the markets, especially in terms of sustainability. The main aim of this paper is to analyze the relationship between green transformational leadership and green innovation, as well as the mediating effect of green motivation and green creativity in this relationship. Data were obtained from a sample of 196 Spanish companies belonging to the wine industry and, as a method of analysis, was used partial least squares structural equation modeling PLS-SEM. The results show a positive and significant relationship between green transformational leadership and green innovation in wine companies. Furthermore, green motivation and green creativity exert a mediating effect in this relationship. It is concluded that the managers of wine companies should encourage employee motivation and creativity, especially in ecological terms, by creating an environment conducive to the development of environmentally friendly innovations.
Collapse
|
22
|
Could Collected Chemical Parameters Be Utilized to Build Soft Sensors Capable of Predicting the Provenance, Vintages, and Price Points of New Zealand Pinot Noir Wines Simultaneously? Foods 2023; 12:foods12020323. [PMID: 36673415 PMCID: PMC9857561 DOI: 10.3390/foods12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Soft sensors work as predictive frameworks encapsulating a set of easy-to-collect input data and a machine learning method (ML) to predict highly related variables that are difficult to measure. The machine learning method could provide a prediction of complex unknown relations between the input data and desired output parameters. Recently, soft sensors have been applicable in predicting the prices and vintages of New Zealand Pinot noir wines based on chemical parameters. However, the previous sample size did not adequately represent the diversity of provenances, vintages, and price points across commercially available New Zealand Pinot noir wines. Consequently, a representative sample of 39 commercially available New Zealand Pinot noir wines from diverse provenances, vintages, and price points were selected. Literature has shown that wine phenolic compounds strongly correlated with wine provenances, vintages and price points, which could be used as input data for developing soft sensors. Due to the significance of these phenolic compounds, chemical parameters, including phenolic compounds and pH, were collected using UV-Vis visible spectrophotometry and a pH meter. The soft sensor utilising Naive Bayes (belongs to ML) was designed to predict Pinot noir wines' provenances (regions of origin) based on six chemical parameters with the prediction accuracy of over 75%. Soft sensors based on decision trees (within ML) could predict Pinot noir wines' vintages and price points with prediction accuracies of over 75% based on six chemical parameters. These predictions were based on the same collected six chemical parameters as aforementioned.
Collapse
|
23
|
Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to increased fraud rates through counterfeiting and adulteration of wines, it is important to develop novel non-invasive techniques to assess wine quality and provenance. Assessment of quality traits and provenance of wines is predominantly undertaken with complex chemical analysis and sensory evaluation, which tend to be costly and time-consuming. Therefore, this study aimed to develop a rapid and non-invasive method to assess wine vintages and quality traits using digital technologies. Samples from thirteen vintages from Dookie, Victoria, Australia (2000–2021) of Shiraz were analysed using near-infrared spectroscopy (NIR) through unopened bottles to assess the wine chemical fingerprinting. Three highly accurate machine learning (ML) models were developed using the NIR absorbance values as inputs to predict (i) wine vintage (Model 1; 97.2%), (ii) intensity of sensory descriptors (Model 2; R = 0.95), and (iii) peak area of volatile aromatic compounds (Model 3; R = 0.88). The proposed method will allow the assessment of provenance and quality traits of wines without the need to open the wine bottle, which may also be used to detect wine fraud and provenance. Furthermore, low-cost NIR devices are available in the market with required spectral range and sensitivity, which can be affordable for winemakers and retailers and can be used with the machine learning models proposed here.
Collapse
|
24
|
Martínez-Pérez-Cejuela H, Mesquita RB, Couto JA, Simó-Alfonso E, Herrero-Martínez J, Rangel AOS. Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta 2022; 250:123747. [DOI: 10.1016/j.talanta.2022.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
|
25
|
Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. SEPARATIONS 2022. [DOI: 10.3390/separations9120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Grapes are rich in phenolic compounds, being important for human health with anti-inflammatory, antiatherosclerotic, antimutagenic, anticarcinogenic, antibacterial, antiviral, and antimicrobial activity. The winemaking of the grapes generates significant amounts of waste. These wastes contain bioactive compounds in their biomass that can be used as a source of food improvement or as a source of nutrition supplementation. This study looks at the content of bioactive compounds, the polyphenolic profile, and the antioxidant activity in different white and red grape pomaces. The investigation of bioactive characteristics (total polyphenols, total flavonoids, catechins, tannins, and antioxidant activity) was carried out by UV-Vis spectrophotometric methods, while the individual polyphenolic composition was investigated by target and screening UHPLC-HRMS/MS analysis. Principal components (PCA) and the heat maps analysis allows the discrimination between the grape pomace resulted from white grape cultivars (Muscat Ottonel and Tamaioasa Romaneasca) and red grape pomaces (Cabernet Sauvignon, Merlot, Feteasca Neagra, Burgund Mare, Pinot Nore), with the identification of the specific phenolic compounds for each grape pomace type.
Collapse
|
26
|
Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain high-quality yellow peach wines of varying characteristics, different fermentation strategies, including various pre-fermentative treatments, were applied. This study aimed to determine the effect of different fermentation strategies on the physicochemical properties, monomer phenol content, in vitro antioxidant activity, and volatile compounds of yellow peach wine. The results showed that peach wine P12, fermented with pulp, had higher total phenolic content (TPC), total flavonoid content (TFC), monomer phenol and volatile compound content, and antioxidant activity. Ten monomeric phenols were detected in peach wines, and the content of catechin was the highest. Juice fermentation wine, J12, had a strong floral aroma, and some volatile compounds were released during fermentation when water was added to the pulp, and low alcohol content did not reduce the variety of volatile compounds. The main aroma and common characteristics of the fermented yellow peach wine were dominated by esters, with a relative odor activity value (ROAV) ≥ 1, namely, isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Our results demonstrated that the application of the described fermentation strategies significantly affected the quality and volatile compound content of yellow peach wines. This might assist in the development of a highly diverse yellow peach wine flavor.
Collapse
|
27
|
Chen X, Wang Z, Li Y, Liu Q, Yuan C. Survey of the phenolic content and antioxidant properties of wines from five regions of China according to variety and vintage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ofoedu CE, Ofoedu EO, Chacha JS, Owuamanam CI, Efekalam IS, Awuchi CG. Comparative Evaluation of Physicochemical, Antioxidant, and Sensory Properties of Red Wine as Markers of Its Quality and Authenticity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:8368992. [PMID: 36299559 PMCID: PMC9592215 DOI: 10.1155/2022/8368992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
Abstract
The consumption of red wine by most wine drinkers has increased significantly because of the perceived health benefits which are linked to its inherent quality characteristics. In the quest to determine the conformity of Nigeria's domestic red wine quality with their international counterparts, the quality characteristics of domestic red wines produced in Nigeria were evaluated using foreign red wines as markers of wine quality and authenticity. Foreign and domestic red wines obtained in Nigeria were analyzed for physicochemical, antioxidant, and sensory properties using standard methods. Results showed that the domestic wines had significantly (p < 0.05) higher pH (4.03-4.16) and total sugar content (8.60-9.27%) while the foreign wines had significantly (p < 0.05) higher total titratable acidity (0.76-0.83%), Brix (6.98-8.04 g/100 g), alcohol (14.44-15.21% ABV), and polyphenol content (385.13-412.75 mg/L). Additionally, the domestic wines exhibited significantly (p < 0.05) lower antioxidant capacity compared to the foreign wines. Although the wines' hue angle (27.68°-41.46°) indicated a red colour spectrum in the visible region of the opponent colour chart, the total colour difference (ΔE) between foreign and domestic wines was significant. The sensory characteristics of the wines differed significantly as the panelist rating for overall acceptance ranged from 5.58 to 7.33. This research has provided valuable insight that the domestic wines studied showed a considerable level of authenticity and different levels of quality according to their varying concentration of organic acids, residual sugars, and phenolic compounds.
Collapse
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Technology, Federal University of Technology Owerri, PMB 1526, Owerri, Imo, Nigeria
| | - Ebelechukwu O. Ofoedu
- Department of Food Science and Technology, Federal University of Technology Owerri, PMB 1526, Owerri, Imo, Nigeria
| | - James S. Chacha
- Department of Food Science and Agroprocessing, Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania
| | - Clifford I. Owuamanam
- Department of Food Science and Technology, Federal University of Technology Owerri, PMB 1526, Owerri, Imo, Nigeria
| | - Ifeyinwa S. Efekalam
- Department of Food Science and Technology, Federal University of Technology Owerri, PMB 1526, Owerri, Imo, Nigeria
| | - Chinaza Godswill Awuchi
- School of Natural and Applied Sciences, Kampala International University, Box 20000, Kampala, Uganda
| |
Collapse
|
29
|
Widely Targeted Metabolomics Profiling Reveals the Effect of Powdery Mildew on Wine Grape Varieties with Different Levels of Tolerance to the Disease. Foods 2022; 11:foods11162461. [PMID: 36010461 PMCID: PMC9407376 DOI: 10.3390/foods11162461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew is an economic threat for viticulture because it not only affects grape yield, but also causes a series of impacts on the qualities of fruit and wine, especially the flavors and various metabolites. Different grape varieties may have different levels of powdery mildew resistance/tolerance and their components of their metabolome are also various. In this study, two wine grape varieties, Guipu No.6 (GP6) and Marselan (Mar) with different levels of powdery mildew tolerance, were used to compare the quality differences in metabolism level by using the widely targeted metabolomics method. The results show that GP6 has a better powdery mildew leaf tolerance than Mar. A total of 774 metabolites were detected by using a UPLC-QQQ-MS-based metabolomics approach, and 57 differential metabolites were identified as key metabolites that were accumulated after infection with powdery mildew in GP6 and Mar, including phenolic acids, flavonoids, terpenoids, stilbenes, lipids, nucleotides and derivatives, lignans and coumarins, and quinones. This finding indicates that the defense mechanisms of grape fruit are mainly associated with phenylpropane-flavonoid metabolism. Specifically, stilbenes had greater variations after powdery mildew infection in GP6; while in Mar, the variations of flavonoids, especially kaempferol-3-O-glucuronide and luteolin-7-O-glucuronide, were more remarkable. The above results demonstrate that stilbenes may play a more important role than flavonoids in resisting powdery mildew infection in GP6’s fruits, and the drastic variations of these phenolic compounds in different wine grapes after powdery mildew infection might also lead to quality difference in the flavors. This study can provide new insights into the understanding of the cause of powdery mildew tolerance in different grape varieties and the effects on the quality of wine grapes infected with the disease exerted by metabolism level.
Collapse
|
30
|
Simonetti G, Buiarelli F, Bernardini F, Filippo PD, Riccardi C, Pomata D. Profile of free and conjugated quercetin content in different Italian wines. Food Chem 2022; 382:132377. [PMID: 35158269 DOI: 10.1016/j.foodchem.2022.132377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
Quercetin and its structural derivatives are natural compounds belonging to the flavonoid class, widely distributed in plants. Beneficial physiological activities have been attributed to them, but some require deeper investigation. In this paper the content of quercetin and five analogues (quercetin-3-glucoside, quercetin-3-rutinoside, quercetin-3-ramnoside, quercetin-3-arabinoglucoside, 4'-O-methylquercetin) were determined by HPLC-ESI-MS/MS in wines made of different varieties of red and white vines. The aim was a comparative study focusing on quercetin and on the contribution of related compounds in twenty wines coming from different part of Italy. Wines produced from Sangiovese and Nero d'Avola, monovarietal grapes, were richest in quercetin compounds and our results were compared to our previous study and to other investigations. The proposed method resulted simple, fast, economical, and suitable for the analysis of quercetin analogues without the need of hydrolysis and falls in the optic of a 360° characterization of active wine compounds, with nutraceutical properties.
Collapse
Affiliation(s)
- Giulia Simonetti
- Department of Chemistry University "La Sapienza", P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Buiarelli
- Department of Chemistry University "La Sapienza", P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Flaminia Bernardini
- Department of Economics University "La Sapienza", Via del Castro Laurenziano 9, 00161 Rome Italy
| | | | | | | |
Collapse
|
31
|
Topi D, Kelebek H, Guclu G, Selli S. LC‐DAD‐ESI‐MS/MS characterization of phenolic compounds in wines from
Vitis vinifera
‘
Shesh i bardhë
’ and ‘
Vlosh
’ cultivars. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dritan Topi
- Department of Chemistry Faculty of Natural Sciences University of Tirana Tirana Albania
| | - Hasim Kelebek
- Department of Food Engineering Faculty of Engineering Adana Alparslan Turkes Science and Technology University Adana Turkey
| | - Gamze Guclu
- Department of Food Engineering Faculty of Agriculture Cukurova University Adana Turkey
| | - Serkan Selli
- Department of Food Engineering Faculty of Agriculture Cukurova University Adana Turkey
- Department of Nutrition and Dietetics Faculty of Health Sciences Cukurova University Adana Turkey
| |
Collapse
|
32
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|
33
|
Kowalczyk B, Bieniasz M, Kostecka-Gugała A. The Content of Selected Bioactive Compounds in Wines Produced from Dehydrated Grapes of the Hybrid Variety ‘Hibernal’ as a Factor Determining the Method of Producing Straw Wines. Foods 2022; 11:foods11071027. [PMID: 35407114 PMCID: PMC8997453 DOI: 10.3390/foods11071027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Sweet wines are appreciated worldwide; many are produced by fermenting the must of dehydrated (semi-dried) grapes, using methods that vary from region to region. The aim of this study was to evaluate the basic chemical and oenological characteristics of wines obtained by three technologies of production. The wines were made from a hybrid cultivar ‘Hibernal’, grown under cool climate conditions. ‘Hibernal’ is a hybrid variety. This ‘Hibernal’ variety is widely cultivated in central and eastern Europe, where it is of great economic importance. Wines produced from this variety are popular in local markets. In comparison with the production of varieties belonging to Vitis vinifera, a very small percentage of the ‘Hibernal’ variety is cultivated. The methods used in the experiment for the production of wines were: classical method in the Italian passito style, modification of the passito style with a seven-day maceration of grapes, and a method of production in the Tokaj wine style at five Puttonyos. Basic chemical parameters, acid profile, total phenolic content, antioxidant and antiradical capacities, and quantitative analysis of selected polyphenols was performed. The sensory features and quality of the wines was assessed using a sommelier analysis based on The Wine & Spirit Education Trust guidelines. The results indicated that the seven-day maceration of the dehydrated grapes resulted in the highest polyphenol content, as well as the largest antioxidant and antiradical contents. The oenological evaluation of wines produced by the Tokaj method and Italian passito method with seven-day maceration found that the wines were appreciated due to their rich taste, flavor, and overall quality. The present study confirms the promising opportunities to obtain special sweet wine with a valuable composition and oenological characteristics in regions with cooler climates.
Collapse
Affiliation(s)
- Barbara Kowalczyk
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29-Listopada 54, 31-425 Kraków, Poland
- Correspondence:
| | - Monika Bieniasz
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29-Listopada 54, 31-425 Kraków, Poland;
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29-Listopada 54, 31-425 Kraków, Poland;
| |
Collapse
|
34
|
Tagkouli D, Tsiaka T, Kritsi E, Soković M, Sinanoglou VJ, Lantzouraki DZ, Zoumpoulakis P. Towards the Optimization of Microwave-Assisted Extraction and the Assessment of Chemical Profile, Antioxidant and Antimicrobial Activity of Wine Lees Extracts. Molecules 2022; 27:molecules27072189. [PMID: 35408586 PMCID: PMC9000764 DOI: 10.3390/molecules27072189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Wine lees, a sub-exploited byproduct of vinification, is considered a rich source of bioactive compounds, such as (poly)phenols, anthocyanins and tannins. Thus, the effective and rapid recovery of these biomolecules and the assessment of the bioactive properties of wine lees extracts is of utmost importance. Towards this direction, microwave-assisted extraction (MAE) factors (i.e., extraction time, microwave power and solvent/material ratio) were optimized using experimental design models in order to maximize the (poly)phenolic yield of the extracts. After optimizing the MAE process, the total phenolic content (TPC) as well as the antiradical, antioxidant and antimicrobial activity of the extracts were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR) was employed to investigate the chemical profile of wine lees extracts. Red varieties exhibited higher biological activity than white varieties. The geographical origin and fermentation stage were also considered as critical factors. The white variety Moschofilero presented the highest antioxidant, antiradical and antimicrobial activity, while Merlot and Agiorgitiko samples showed noteworthy activities among red varieties. Moreover, IR spectra confirmed the presence of sugars, amino acids, organic acids and aromatic compounds. Thus, an efficient, rapid and eco-friendly process was proposed for further valorization of wine lees extracts.
Collapse
Affiliation(s)
- Dimitra Tagkouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
| | - Thalia Tsiaka
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Dimitra Z. Lantzouraki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| |
Collapse
|
35
|
Ecogeographic Conditions Dramatically Affect Trans-Resveratrol and Other Major Phenolics’ Levels in Wine at a Semi-Arid Area. PLANTS 2022; 11:plants11050629. [PMID: 35270100 PMCID: PMC8912353 DOI: 10.3390/plants11050629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Grapevines are susceptible and responsive to their surrounding environment. Factors such as climate region and terroir are known to affect polyphenolic compounds in wine and therefore, its quality. The uniqueness of the terroir in Israel is the variety of soil types and the climatic conditions, ranging from Mediterranean to arid climates. Thus, understanding the effects of climate on grapevine performance in Israel may be a test case for the effect of climate change on grapevine at other areas in the future. First, we present a preliminary survey (2012–2014) in different climate zones and terroirs, which showed that trans-resveratrol concentrations in Merlot and Shiraz were high, while those of Cabernet Sauvignon were significantly lower. A further comprehensive countrywide survey (2016) of Merlot wines from 62 vineyards (53 wineries) compared several phenolic compounds’ concentrations between five areas of different climate and terroir. Results show a connection between trans-resveratrol concentrations, variety, and terroir properties. Furthermore, we show that trans-resveratrol concentrations are strongly correlated to humidity levels at springtime, precipitation, and soil permeability. This work can be considered a glimpse into the possible alterations of wine composition in currently moderate-climate wine-growing areas.
Collapse
|
36
|
Abstract
The utilization of native yeast strains associated with a distinct terroir for autochthonous grape types represents a novel trend in winemaking, contributing to the production of unique wines with regional character. Hence, this study aimed to isolate native strains of the yeast H. uvarum from the surface of various fruits and to characterize its fermentation capability in Prokupac grape must. Out of 31 yeasts, 8 isolates were identified as H. uvarum. The isolates were able to grow at low (4 °C) temperatures, SO2 concentrations up to 300 ppm and ethanol concentrations up to 5%. Additionally, they provided a good profile of organic acids during the microvinification of sterile grape must. Although the content of acetic acid (0.54–0.63 g/L) was relatively high, the sniffing test proved that the yeast isolates developed a pleasant aroma characterized as fruity. All H. uvarum isolates produced twice the concentration of glycerol compared to commercial wine yeast Saccharomyces cerevisiae, contributing to the fullness and sweetness of the wine. The results for pure and sequential fermentation protocols confirmed that the selected S-2 isolate has good oenological characteristics, the capability to reduce the ethanol content (up to 1% v/v) and a potential to give a distinctive note to Prokupac-grape wines.
Collapse
|
37
|
Chemical composition of jabuticaba (Plinia jaboticaba) liquors produced from cachaça and cereal alcohol. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Huang J, Wang Y, Ren Y, Wang X, Li H, Liu Z, Yue T, Gao Z. Effect of inoculation method on the quality and nutritional characteristics of low-alcohol kiwi wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Characterization of Musts, Wines, and Sparkling Wines Based on Their Elemental Composition Determined by ICP-OES and ICP-MS. BEVERAGES 2022. [DOI: 10.3390/beverages8010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Samples from the different processing stages in the elaboration of sparkling wine (cava)—including must, base wine, and sparkling wine—of Pinot Noir and Xarel·lo grape varieties from different vineyard qualities (A, B, C, D) have been analyzed by inductively coupled plasma (ICP) techniques to determine their elemental composition. The resulting data has been used to characterize these products according to oenological features and product qualities. For this purpose, box plot diagrams, bar charts, and principal components analysis (PCA) have been used. The study of the behavior of each given species has pointed out the relevance of some elements as markers or descriptors of winemaking processes. Among others, Cu and K are abundant in musts and their concentrations progressively decrease through the cava production process. S levels suddenly increase at the base wine step (and further decay) due to the addition of sulfites as preserving agents. Finally, concentrations of Na, Ca, Fe, and Mg increase from the first fermentation due to the addition of clarifying agents such as bentonite. PCA has been applied to try to extract solid and global conclusions on trends and chemical markers within the groups of samples more easily and efficiently than more conventional approaches.
Collapse
|
40
|
Csutoras C, Bakos-Barczi N, Burkus B. Medium chain fatty acids and fatty acid esters as potential markers of alcoholic fermentation of white wines. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Aroma components of wines play an important role in the sensory quality of wines. In our paper we investigate the effect of commercially available yeast nutrients under different fermentation parameters. Caproic acid, caprylic acid, capric acid, and different fatty acid esters were used as markers of the alcoholic fermentation process. The optimal temperature for the fermentation of different white wines was at 15–16 °C, in the case of examined wines lower concentrations of fatty acids and fatty acid esters were found at this temperature. At 25–26 °C fermentation temperature very high concentrations of fatty acids and fatty acid esters were detected. Applying different nitrogen-containing wine additives we managed to achieve better aroma profiles for white wines even using musts of lower quality.
Collapse
Affiliation(s)
- Cs. Csutoras
- Department of Chemistry and Physics, Eszterhazy Karoly Catholic University, Eszterházy tér. 1, H-3300 Eger, Hungary
| | - N. Bakos-Barczi
- Eger Crown Winehouse Ltd., Bartók Béla út. 162, H-1224 Budapest, Hungary
| | - B. Burkus
- Eger Crown Winehouse Ltd., Bartók Béla út. 162, H-1224 Budapest, Hungary
| |
Collapse
|
41
|
Identification of Tentative Traceability Markers with Direct Implications in Polyphenol Fingerprinting of Red Wines: Application of LC-MS and Chemometrics Methods. SEPARATIONS 2021. [DOI: 10.3390/separations8120233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the potential of using the changes in polyphenol composition of red wine to enable a more comprehensive chemometric differentiation and suitable identification of authentication markers. Based on high performance liquid chromatography-mass spectrometry (HPLC-MS) data collected from Feteasca Neagra, Merlot, and Cabernet Sauvignon finished wines, phenolic profiles of relevant classes were investigated immediately after vinification (Stage 1), after three months (Stage 2) and six months (Stage 3) of storage, respectively. The data were subjected to multivariate analysis, and resulted in an initial vintage differentiation by principal component analysis (PCA), and variety grouping by canonical discriminant analysis (CDA). Based on polyphenol common biosynthesis route and on the PCA correlation matrix, additional descriptors were investigated. We observed that the inclusion of specific compositional ratios into the data matrix allowed for improved sample differentiation. We obtained simultaneous discrimination according to the considered oenological factors (variety, vintage, and geographical origin) as well as the respective clustering applied during the storage period. Subsequently, further discriminatory investigations to assign wine samples to their corresponding classes relied on partial least squares-discriminant analysis (PLS-DA); the classification models confirmed the clustering initially obtained by PCA. The benefits of the presented fingerprinting approach might justify its selection and warrant its potential as an applicable tool with improved authentication capabilities in red wines.
Collapse
|
42
|
Almanza-Aguilera E, Ceballos-Sánchez D, Achaintre D, Rothwell JA, Laouali N, Severi G, Katzke V, Johnson T, Schulze MB, Palli D, Gargano G, de Magistris MS, Tumino R, Sacerdote C, Scalbert A, Zamora-Ros R. Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:4157. [PMID: 34836412 PMCID: PMC8624971 DOI: 10.3390/nu13114157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
This study examines the correlation of acute and habitual dietary intake of flavan-3-ol monomers, proanthocyanidins, theaflavins, and their main food sources with the urinary concentrations of (+)-catechin and (-)-epicatechin in the European Prospective Investigation into Cancer and Nutrition study (EPIC). Participants (N = 419, men and women) provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day. Acute and habitual dietary data were collected using a standardized 24-HDR software and a validated dietary questionnaire, respectively. Intake of flavan-3-ols was estimated using the Phenol-Explorer database. Concentrations of (+)-catechin and (-)-epicatechin in 24-h urine were analyzed using tandem mass spectrometry after enzymatic deconjugation. Simple and partial Spearman's correlations showed that urinary concentrations of (+)-catechin, (-)-epicatechin and their sum were more strongly correlated with acute than with habitual intake of individual and total monomers (acute rpartial = 0.13-0.54, p < 0.05; and habitual rpartial = 0.14-0.28, p < 0.01), proanthocyanidins (acute rpartial = 0.24-0.49, p < 0.001; and habitual rpartial = 0.10-0.15, p < 0.05), theaflavins (acute rpartial = 0.22-0.31, p < 0.001; and habitual rpartial = 0.20-0.26, p < 0.01), and total flavan-3-ols (acute rpartial = 0.40-0.48, p < 0.001; and habitual rpartial = 0.23-0.33, p < 0.001). Similarly, urinary concentrations of flavan-3-ols were weakly correlated with both acute (rpartial = 0.12-0.30, p < 0.05) and habitual intake (rpartial = 0.10-0.27, p < 0.05) of apple and pear, stone fruits, berries, chocolate and chocolate products, cakes and pastries, tea, herbal tea, wine, red wine, and beer and cider. Moreover, all comparable correlations were stronger for urinary (-)-epicatechin than for (+)-catechin. In conclusion, our data support the use of urinary concentrations of (+)-catechin and (-)-epicatechin, especially as short-term nutritional biomarkers of dietary catechin, epicatechin and total flavan-3-ol monomers.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| | - Daniela Ceballos-Sánchez
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| | - David Achaintre
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (D.A.); (A.S.)
| | - Joseph A Rothwell
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
| | - Nasser Laouali
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
| | - Gianluca Severi
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (N.L.); (G.S.)
- Department of Statistics, Computer Science, Applications “G. Parenti” (DISIA), University of Florence, 50121 Florence, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (V.K.); (T.J.)
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Giuliana Gargano
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy;
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, 10126 Turin, Italy;
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (D.A.); (A.S.)
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.C.-S.)
| |
Collapse
|
43
|
Abstract
This paper is focused on the assessment of a multi-sensor approach to improve the overall characterization of sparkling wines (cava wines). Multi-sensor, low-level data fusion can provide more comprehensive and more accurate vision of results compared with the study of simpler data sets from individual techniques. Data from different instrumental platforms were combined in an enriched matrix, integrating information from spectroscopic (UV/Vis and FTIR), chromatographic, and other techniques. Sparkling wines belonging to different classes, which differed in the grape varieties, coupages, and wine-making processes, were analyzed to determine organic acids (e.g., tartaric, lactic, malic, and acetic acids), pH, total acidity, polyphenols, total antioxidant capacity, ethanol, or reducing sugars. The resulting compositional values were treated chemometrically for a more efficient recovery of the underlaying information. In this regard, exploratory methods such as principal component analysis showed that phenolic compounds were dependent on varietal and blending issues while organic acids were more affected by fermentation features. The analysis of the multi-sensor data set provided a more comprehensive description of cavas according to grape classes, blends, and vinification processes. Hierarchical Cluster Analysis (HCA) allowed specific groups of samples to be distinguished, featuring malolactic fermentation and the chardonnay and red grape classes. Partial Least Squares-Discriminant Analysis (PLS-DA) also classified samples according to the type of grape varieties and fermentations. Bar charts and complementary statistic test were performed to better define the differences among the studied samples based on the most significant markers of each cava wine type. As a conclusion, catechin, gallic, gentisic, caftaric, caffeic, malic, and lactic acids were the most remarkable descriptors that contributed to their discrimination based on varietal, blending, and oenological factors.
Collapse
|
44
|
Myrtsi ED, Koulocheri SD, Iliopoulos V, Haroutounian SA. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC-MS/MS. Antioxidants (Basel) 2021; 10:antiox10081174. [PMID: 34439422 PMCID: PMC8388954 DOI: 10.3390/antiox10081174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The well-established, health-benefitting effects of grapevines and derivatives (wines and vinification byproducts) are attributed to their antioxidant phenolic content. The dearth of an efficient method for the simultaneous quantitation of antioxidant phenolics prompted us to develop a novel method utilizing triple quadrupole LC-MS/MS for the accurate, fast, simultaneous quantitation of the 32 most abundant grapevine phenolics. The fully validated, novel method is capable to simultaneously record the quantitative presence of 12 phenolic acids, 19 polyphenols and coniferyl aldehyde (a phenolic compound extracted from cork stoppers into wines) and is applicable for the determination of antioxidant phenolics content of grape berries, pomace, stems and wines. Its utility was demonstrated for three native Greek grapevine varieties, two red (Mandilaria and Aidani mavro) and one white (Monemvassia). Results herein highlighted the stems of the Monemvassia white variety as particularly rich in antioxidant phenolics such as the flavonol monomer (+)-catechin (387 mg/kg) and the dimer procyanidin B1 (400 mg/kg) along with stilbene phytoalexin trans-resveratrol (24 mg/kg). These results are in line with the TPC, TFC and TTC content of stems and the determined antioxidant capacities, highlighting the stems of this Vitis vinifera variety as potentially exploitable source of antioxidant phenolics.
Collapse
|
45
|
Abstract
Wine quality is influenced by the presence of over 500 different chemical compounds, with polyphenols having a crucial role in color intensity and tonality, astringency, mouthfeel, and overall impression formation, especially in red wine production. Their concentrations in wine can vary notably depending on the grape variety, the temperature and the length of maceration process, aging duration, and yeast selection. Therefore, in this work, the main goal was to determine the influence of five commercially available Saccharomyces yeasts provided from Lallemand, France and AEB, Italy, on the phenolic compound composition and chromatic parameters of Plavac mali wines produced from the grapes from coastal Dalmatia, grown at two different micro-locations. The achieved results pointed out the marked difference in individual polyphenol compound adsorption between tested yeasts. Fermol Super 16 was the one with the lowest and Lalvin D21 the strongest adsorption ability, regardless of vine growing location. These differences can be explained by the content of some anthocyanins (delphinidin and petunidin-3-O-glucoside) and gallic acid, and some flavan-3-ols. Tested strains also influenced wine color intensity, pointing out the possibility of modulating the style of a Plavac mali by the use of commercial yeasts.
Collapse
|
46
|
Healthy Drinks with Lovely Colors: Phenolic Compounds as Constituents of Functional Beverages. BEVERAGES 2021. [DOI: 10.3390/beverages7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumers increasingly prefer and seek food and beverages, which, due to their natural characteristics, bring health benefits, both in the prevention of diseases and in their curative power. In this way, the production of nutraceutical foods and beverages gains more and more importance in the market. On the other hand, and because the eyes also eat, producing attractive foods due to their color, texture, appearance, and sensory characteristics is a permanent challenge in the food industry. Being able to gather healthy and attractive items in a single food is an even greater challenge. The long list of benefits associated with phenolic compounds, such as antioxidant, anticancer, anti-inflammatory, and antiaging properties, among others, fully justifies their use in the enrichment of various food products. Thus, in this review, we propose to summarize the potential use of phenolic compounds used as ingredients of pleasant and functional beverages.
Collapse
|