1
|
Zheng Y, Ke Z, Hu G, Tong S. Hydrogel promotes bone regeneration through various mechanisms: a review. BIOMED ENG-BIOMED TE 2025; 70:103-114. [PMID: 39571066 DOI: 10.1515/bmt-2024-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025]
Abstract
Large defects in bone tissue due to trauma, tumors, or developmental abnormalities usually require surgical treatment for repair. Numerous studies have shown that current bone repair and regeneration treatments have certain complications and limitations. With the in-depth understanding of bone regeneration mechanisms and biological tissue materials, a variety of materials with desirable physicochemical properties and biological functions have emerged in the field of bone regeneration in recent years. Among them, hydrogels have been widely used in bone regeneration research due to their biocompatibility, unique swelling properties, and ease of fabrication. In this paper, the development and classification of hydrogels were introduced, and the mechanism of hydrogels in promoting bone regeneration was described in detail, including the promotion of bone marrow mesenchymal stem cell differentiation, the promotion of angiogenesis, the enhancement of the activity of bone morphogenetic proteins, and the regulation of the microenvironment of bone regeneration tissues. In addition, the future research direction of hydrogel in bone tissue engineering was discussed.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Ningbo, China
| | - Zengguang Ke
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Ningbo, China
| | - Guofeng Hu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Ningbo, China
| | - Songlin Tong
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Ningbo, China
| |
Collapse
|
2
|
Hatami M, Khorasani MT, Ahmadi E, Mohamadnia S. Preparation and characterization of advancing wound care with PVP/QCS/DEX hydrogels: a multifunctional wound dressing composite: in vitro and in vivo assay. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-31. [PMID: 40244807 DOI: 10.1080/09205063.2025.2487655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Although the skin has a high healing capacity, severe skin wounds often require external interventions to heal properly. Tissue-engineered wound dressings have indeed gained significant attention among various treatment strategies for wound healing. This study focuses on the integration of polyvinyl pyrrolidone (PVP), quaternized chitosan (QCS), and dextran (DEX) to prepare a ternary composite (PVP/QCS/DEX) as a wound dressing hydrogels with varying concentration of PVP and DEX. A variety of analytical methods, including infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, and water vapor transmission rate (WVTR) were employed to assess the characteristics of the samples. The uniform and interconnected porous structure of the samples was confirmed by the SEM results. All the samples showed high porosity and water vapor transition rate, demonstrating their ability to provide a suitable moist environment and efficient exudate handling for wound healing. The antibacterial test conducted on hydrogels demonstrated the antibacterial activity of hydrogels and drug-loaded hydrogel samples including Escherichia coli and Staphylococcus aureus. The in vitro cytotoxicity evaluation using the MTT assay demonstrated that the developed PVP/QCS/DEX hydrogels exhibit satisfactory cytocompatibility and promote cell viability. The results of the scratch assay indicated that the samples had promoted the cell migration and would improve and accelerate wound healing process. The in vivo healing tests conducted by the drug-loaded hydrogel sample revealed a promising healing performance. Therefore, based on the favorable performance observed throughout the various tests and analysis, the as-prepared PVP/QCS/DEX hydrogels show significant promise in the field of wound dressings.
Collapse
Affiliation(s)
- Masoumeh Hatami
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, Iran
| | | | - Ebrahim Ahmadi
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, Iran
| | - Sonia Mohamadnia
- Department of Chemical and Biochemical Engineering Bio Conversions, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Wanat D, Garbowska C, Wrzesińska W, Grzywacz O, Sala K, Zapotoczny K, Bańkosz M, Jampilek J, Walter J, Tyliszczak B. Evaluation of Physicochemical Properties of Polymeric Systems for Potential Applications in Cartilage Tissue Engineering. Int J Mol Sci 2025; 26:2057. [PMID: 40076680 PMCID: PMC11900945 DOI: 10.3390/ijms26052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigates the physicochemical properties of hydrogels based on PVA and PVP crosslinked with PEGDA, focusing on their swelling capacity, surface roughness, incubation behavior, and structural modifications upon bioactive component incorporation. Swelling analysis demonstrated that the amount and molecular weight of PEGDA significantly influences the hydrogels' sorption properties, with the highest swelling coefficient observed for samples with 2 mL PEGDA (575 g/mol) due to a looser network structure, while the lowest was recorded for 2.5 mL PEGDA (700 g/mol), indicating a denser network. Surface roughness analysis revealed that increasing the crosslinker amount led to higher roughness both before and after incubation, with samples containing 575 g/mol PEGDA being more susceptible to structural changes in an incubation environment. FT-IR spectroscopy confirmed the presence of characteristic functional groups, providing insight into the chemical stability and hydration properties of the hydrogels. Modification with a bioactive mixture (glucosamine, chondroitin, and MSM) was confirmed by spectral analysis, indicating successful integration without compromising the hydrogel matrix. The modified hydrogels demonstrated potential applications in regenerative medicine, particularly for joint disease treatment and cartilage tissue repair.
Collapse
Affiliation(s)
- Dominika Wanat
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, CUT Doctoral School, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (D.W.); (M.B.)
| | - Claudia Garbowska
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Wiktoria Wrzesińska
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Oliwia Grzywacz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Katarzyna Sala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Kacper Zapotoczny
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, CUT Doctoral School, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (D.W.); (M.B.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| | - Janusz Walter
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland; (C.G.); (W.W.); (O.G.); (K.S.); (K.Z.); (J.W.)
| |
Collapse
|
4
|
Wang H, Wang L, Wang M, Niu J, Yang B, Wang Y, An M, Sun X, Yang Z, Li X, Shi Y. Design and development of a soluble PDA-Emodin-PVP-MN patch and its anti-obesity effect in rats. Drug Deliv Transl Res 2025; 15:655-669. [PMID: 38775884 DOI: 10.1007/s13346-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 01/01/2025]
Abstract
Emodin has been proven to have weight-reducing and lipid-lowering effects. In order to make emodin play a better anti-obesity role, we designed and developed an emodin loaded dissolving microneedle patch, in which emodin existed in the form of emodin-polyvinylpyrrolidone co-precipitate (Emodin-PVP). Meanwhile, polydopamine (PDA) was added to the microneedle patch (PDA-Emodin-PVP-MN) for photothermal-enhanced chemotherapy of obesity. The average weight of the patch was 0.1 ± 0.05 g and the drug loading was 0.37 ± 0.031 mg. After 5 min of NIR irradiation (808 nm, 0.6 W/cm2), the rat abdominal temperature could reach 48 ℃, and the cumulative release of emodin reached 96.25%. The diffusion coefficient of emodin in the in vitro agar diffusion experiment was 249.27 mm2 h-1. No obvious toxicity was observed in hemolysis test, CCK-8 assay and microscopic histopathological analysis. The patch significantly reduced the percent of body weight ( P < 0.01), lipid-body ratio ( P < 0.001), serum FFAs ( P < 0.01) and the cell volume of peritesticular adipose tissue in the high-fat diet induced obese rats, indicating the patch had good anti-obesity effect. The mechanism of action may be related to the up-regulation of HSL and LPL protein levels in rat peritesticular adipose tissue.
Collapse
Affiliation(s)
- Haijiao Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Lifang Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Meng Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jingjing Niu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Bowen Yang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yinxiong Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Min An
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiuxia Sun
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Zhigang Yang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xuefeng Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanbin Shi
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China.
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Jang H, Jeon J, Shin M, Kang G, Ryu H, Kim SM, Jeon TJ. Polydiacetylene (PDA) Embedded Polymer-Based Network Structure for Biosensor Applications. Gels 2025; 11:66. [PMID: 39852037 PMCID: PMC11764618 DOI: 10.3390/gels11010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions. This color change enables the detection of biomarkers, metal ions, and toxic compounds. Moreover, the combination of PDA with polymeric structures including hydrogels further enhances the sensitivity and structural stability of PDA-based biosensors, making them reliable and effective in complex biological and environmental conditions. This review comprehensively examines recent research trends and applications of PDA-polymeric structure hybrid biosensors, while discussing future directions and potential advancements in this field.
Collapse
Affiliation(s)
- Huisoo Jang
- Industrial Science and Technology Research Institute, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.J.); (H.R.)
| | - Junhyeon Jeon
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.J.); (H.R.)
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Mingyeong Shin
- Department of Food and Nutrition, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Geonha Kang
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Hyunil Ryu
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.J.); (H.R.)
| | - Sun Min Kim
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.J.); (H.R.)
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.J.); (H.R.)
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Mounayer N, Shoshani S, Afrimzon E, Iline-Vul T, Topaz M, Banin E, Margel S. Encapsulation of Hydrogen Peroxide in PVA/PVP Hydrogels for Medical Applications. Gels 2025; 11:31. [PMID: 39852002 PMCID: PMC11765405 DOI: 10.3390/gels11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) for medical applications. The resulting PVA/PVP-based hydrogel uniquely combines the water absorbency, biocompatibility, and biodegradability of the polymer composite. For hygiene products and medical uses, such as wound healing, hydrogen peroxide (HP) was encapsulated in the PVA/PVP hydrogels for controlled release application. Incorporating PVP into PVA significantly enhances the hydrogel water absorbency and improves the mechanical properties. However, to mitigate the disadvantage of high water absorbency which could result in undesired early dissolution, efforts were made to increase the water resistance and the mechanical characteristics of these hydrogels using freeze-thaw (F/T) cycles and chemical crosslinking PVA chains with trisodium trimetaphosphate (STMP). The resulting hydrogels serve as environmentally friendly bio-based polymer blends, broadening their applications in medical and industrial products. The structural and morphological properties of the hydrogel were characterized using Fourier transform infrared spectroscopy (FTIR), environmental scanning electron microscope analysis (E-SEM), and water-swelling tests. The HP controlled release rate was evaluated through kinetic release experiments using the ex vivo skin model. The antibacterial activity of the hydrogel films was examined on four medically relevant bacteria: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, with an adapted disk diffusion assay. Using this assay, we also evaluated the antibacterial effect of the hydrogel films over the course of days, demonstrating the HP controlled release from these hydrogels. These findings support further in vivo investigation into controlled HP release systems for improved wound-healing outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shlomo Margel
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel; (N.M.); (S.S.); (E.A.); (T.I.-V.); (M.T.); (E.B.)
| |
Collapse
|
7
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
8
|
Gillani SMH, Mughal A, Khan RAA, Nawaz MH, Razzaq Z, Ismat MS, Hussain R, Wadood A, Ahmed S, Minhas B, Abbas M, Vayalpurayil T, Rehman MAU. Development of hybrid polyvinylpyrrolidone/carboxymethyl cellulose/collagen incorporated oregano scaffolds via direct ink write printing for potential wound healing applications. Int J Biol Macromol 2024; 278:134528. [PMID: 39111499 DOI: 10.1016/j.ijbiomac.2024.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Additive manufacturing can develop regenerative scaffolds for wound healing. 3D printing offers meticulous porosity, mechanical integrity, cell adhesion and cost-effectiveness. Herein, we prepared ink composed of carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), collagen, and oregano extract for the fabrication of tissue constructs. The blend was optimized to form a homogeneous ink and rheological characterization demonstrated shear thinning behavior. The scaffolds were printed using Direct Ink Write (DIW) at a flow speed of 4 mm3/s and a layer height of 0.18 mm. The fabricated scaffolds demonstrated an ultimate tensile strength (UTS) and toughness of 730 KPa and 2.72 MJ/m3, respectively. Scanning Electron Microscopy (SEM) revealed an average pore size of 300 ± 30 μm. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that all materials were present. The contact angle of the composite scaffold was 68° ± 1°. Moreover, the scaffolds presented 82 % mass loss (degradation) in phosphate buffer saline (PBS) over 14 days. The composite scaffold exhibited inhibition zones of 9 mm and 12 mm against Staphylococcus aureus and Escherichia coli, respectively. The PVP/CMC/collagen/oregano 3D printed scaffolds exhibited excellent biocompatibility with the mesenchymal stem cells and humman dermal fibroblast cells, confirmed by water-soluble tetrazolium - 8 (WST-8) assay (test conducted for 7 days). The enhanced angiogenic potential of said scaffold was assesed by release of vascular endothelial growth factor followed by further validation through in-vivo CAM assay. Thus, confirming suitability for the potential wound healing application.
Collapse
Affiliation(s)
- Syed Muneeb Haider Gillani
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Awab Mughal
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Raja Aqib Akmal Khan
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Zohaib Razzaq
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Sameet Ismat
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Rabia Hussain
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Abdul Wadood
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Badar Minhas
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan.
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan.
| |
Collapse
|
9
|
Elbaz Y, Iline-Vul T, Dombrovsky A, Caspi A, Margel S. Synthesis and Characterization of Porous Hydrophobic and Hydrophilic Silica Microcapsules for Applications in Agriculture. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4621. [PMID: 39336362 PMCID: PMC11433191 DOI: 10.3390/ma17184621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size distribution. First, various layers of SiO2 micro/nano-particles (M/NPs) were grafted onto monodispersed polystyrene (PS) microspheres of a narrow size distribution. Hydrophobic and hydrophilic sintered SiO2 MCs were then prepared by removing the core PS from the PS/SiO2 core-shell microspheres by burning off under normal atmospheric conditions or organic solvent dissolution, respectively. We examined how the size and quantity of the SiO2 M/NPs influence the MC's properties. Additionally, we utilized two forms of hollow SiO2 MC for different applications; one form was incorporated into polymer films, and the other was free-floating. The hydrophobic microcapsules filled with 6% hydrogen peroxide were effective in killing the tomato brown rugose fruit virus (ToBRFV). The hydrophilic microcapsules filled with thymol and thin coated onto polypropylene films were successfully used to prevent mold formation for hay protection.
Collapse
Affiliation(s)
- Yeela Elbaz
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Taly Iline-Vul
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
| | - Ayelet Caspi
- TAMA Group, Kibbutz Mishmar HaEmek 1923600, Israel
| | - Shlomo Margel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
10
|
Darmawan A, Muhtar H, Pratiwi DN, Elma M, Astuti Y, Azmiyawati C. Robust construction of polyvinyl alcohol intercalated graphene oxide nanofiltration membrane for desalination via pervaporation. CHEMOSPHERE 2024; 360:142437. [PMID: 38797208 DOI: 10.1016/j.chemosphere.2024.142437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The construction and modification of a Graphene Oxide (GO) membrane, incorporating polyvinyl alcohol (PVA) cross-linked with maleic acid (MA) and supported by a nylon membrane, have been successfully completed. Systematic variations in PVA and MA concentrations were conducted to achieve membranes with favorable characteristics, stability, and excellent desalination performance. Optimization studies utilizing the Central Composite Design (CCD) revealed that the most optimal desalination results were obtained with 10 mL of PVA (0.1 mg mL-1) and 0.9 M of MA (GO-MA0.9-PVA10/Nylon membrane). Experimental findings demonstrated that the inclusion of PVA and MA resulted in an increased interlayer distance of GO and enhanced membrane stability. The addition of PVA increases GO membrane hydrophilicity, while the addition of MA reduces membrane hydrophilicity. The GO-MA0.9-PVA10/Nylon membrane exhibited the highest desalination performance, boasting a rejection value exceeding >99.9% and a permeance of 18.76 kg m-2.h-1 under 1% NaCl feed at a temperature of 50 °C. This membrane demonstrated consistent desalination performance stability over an extended period of up to 70 h. Moreover, it exhibited durability through 8 cycles of 24-h usage with washing treatment. In conclusion, the GO-MA0.9-PVA10/Nylon membrane is strongly recommended for practical applications, outperforming other membrane options based on the comprehensive evaluation of its stability and desalination efficiency.
Collapse
Affiliation(s)
- Adi Darmawan
- Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia.
| | - Hasan Muhtar
- Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
| | - Desi Nur Pratiwi
- Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
| | - Muthia Elma
- Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru, 70714, Indonesia
| | - Yayuk Astuti
- Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
| | - Choiril Azmiyawati
- Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
| |
Collapse
|
11
|
Porfiryeva NN, Zlotver I, Davidovich-Pinhas M, Sosnik A. Mucus-Mimicking Mucin-Based Hydrogels by Tandem Chemical and Physical Crosslinking. Macromol Biosci 2024; 24:e2400028. [PMID: 38511568 DOI: 10.1002/mabi.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Mucosal tissues represent a major interface between the body and the external environment and are covered by a highly hydrated mucins gel called mucus. Mucus lubricates, protects and modulates the moisture levels of the tissue and is capitalized in transmucosal drug delivery. Pharmaceutical researchers often use freshly excised animal mucosal membranes to assess mucoadhesion and muco-penetration of pharmaceutical formulations which may struggle with limited accessibility, reproducibility, and ethical questions. Aiming to develop a platform for the rationale study of the interaction of drugs and delivery systems with mucosal tissues, in this work mucus-mimicking mucin-based hydrogels are synthesized by the tandem chemical and physical crosslinking of mucin aqueous solutions. Chemical crosslinking is achieved with glutaraldehyde (0.3% and 0.75% w/v), while physical crosslinking by one or two freeze-thawing cycles. Hydrogels after one freeze-thawing cycle show water content of 97.6-98.1%, density of 0.0529-0.0648 g cm⁻3, and storage and loss moduli of ≈40-60 and ≈3-5 Pa, respectively, that resemble the properties of native gastrointestinal mucus. The mechanical stability of the hydrogels increases over the number of freeze-thawing cycles. Overall results highlight the potential of this simple, reproducible, and scalable method to produce artificial mucus-mimicking hydrogels for different applications in pharmaceutical research.
Collapse
Affiliation(s)
- Natalia N Porfiryeva
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
12
|
Mikhailidi A, Ungureanu E, Tofanica BM, Ungureanu OC, Fortună ME, Belosinschi D, Volf I. Agriculture 4.0: Polymer Hydrogels as Delivery Agents of Active Ingredients. Gels 2024; 10:368. [PMID: 38920915 PMCID: PMC11203096 DOI: 10.3390/gels10060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture-natural or synthetic-is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” Iasi University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ovidiu C. Ungureanu
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania;
| | - Maria E. Fortună
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières QC G8Z 4M3, Canada;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania;
| |
Collapse
|
13
|
Panova GG, Krasnopeeva EL, Laishevkina SG, Kuleshova TE, Udalova OR, Khomyakov YV, Mirskaya GV, Vertebny VE, Zhuravleva AS, Shevchenko NN, Yakimansky AV. Polymer Gel Substrate: Synthesis and Application in the Intensive Light Artificial Culture of Agricultural Plants. Gels 2023; 9:937. [PMID: 38131923 PMCID: PMC10743194 DOI: 10.3390/gels9120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work is devoted to the description of the synthesis of hydrogels in the process of cryotropic gel formation based on copolymerization of synthesized potassium 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate (SPMA-co-HEMA) and assessing the potential possibility of their use as substrates for growing plants in intensive light culture in a greenhouse. Gel substrates based on the SPMA-co-HEMA were created in two compositions, differing from each other in the presence of macro- and microelements, and their effects were studied on the plants' physiological state (content of chlorophylls a and b, activity of catalase and peroxidase enzymes, intensity of lipid peroxidation, elemental compositions) at the vegetative period of their development and on the plants' growth, productivity and quality of plant production at the final stages of development. Experiments were carried out under controlled microclimate conditions. Modern and standard generally accepted methods of gels were employed (ATR-FTIR and 13C NMR spectral studies, scanning electron microscopy, measurement of specific surface area and pore volume), as well as the methods of the physiological and chemical analysis of plants. The study demonstrated the swelling ability of the created gel substrates. Hydrogels' structure, their specific surface area, porosity, and pore volume were investigated. Using the example of representatives of leaf, fruit and root vegetable crops, the high biological activity of gel substrates was revealed throughout the vegetation period. Species specificity in the reaction of plants to the presence of gel substrates in the root-inhabited environment was revealed. Lettuce, tomato and cucumber plants were more responsive to the effect of the gel substrate, and radish plants were less responsive. At the same time, more pronounced positive changes in plant growth, quality and productivity were observed in cucumber and lettuce in the variant of gel substrates with macro- and microelements and in tomato plants in both variants of gel substrates. Further research into the mechanisms of the influence of gel substrates on plants, as well as the synthesis of new gel substrates with more pronounced properties to sorb and retain moisture is promising.
Collapse
Affiliation(s)
- Gayane G. Panova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Svetlana G. Laishevkina
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Tatiana E. Kuleshova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Olga R. Udalova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Yuriy V. Khomyakov
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Galina V. Mirskaya
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Vitaly E. Vertebny
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Anna S. Zhuravleva
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Natalia N. Shevchenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| |
Collapse
|