1
|
Evoli S, Kariyawasam NL, Nitiss KC, Nitiss JL, Wereszczynski J. Modeling allosteric mechanisms of eukaryotic type II topoisomerases. Biophys J 2024; 123:1620-1634. [PMID: 38720465 PMCID: PMC11213992 DOI: 10.1016/j.bpj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond-scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N and C termini of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point toward specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.
Collapse
Affiliation(s)
- Stefania Evoli
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, Illinois
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, Illinois
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois; Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois; Department of Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
2
|
Evoli S, Kariyawasam NL, Nitiss KC, Nitiss JL, Wereszczynski J. Modeling Allosteric Mechanisms of Eukaryotic Type II Topoisomerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551689. [PMID: 37577673 PMCID: PMC10418245 DOI: 10.1101/2023.08.02.551689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N- and C-terminals of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point towards specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular-level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.
Collapse
Affiliation(s)
- Stefania Evoli
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- these authors contributed equally to this work
| | - Nilusha L. Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- these authors contributed equally to this work
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, IL
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois at Chicago, Rockford, IL
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| |
Collapse
|
3
|
The remodeling of Z-DNA in the mammalian germ line. Biochem Soc Trans 2022; 50:1875-1884. [PMID: 36454621 PMCID: PMC9788570 DOI: 10.1042/bst20221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
We recently discovered a novel biological process, the scheduled remodeling of Z-DNA structures in the developing fetal mouse male germ cells [Nat. Cell Biol. 24, 1141-1153]. This process affects purine/pyrimidine dinucleotide repeat (PPR) rich sequences, which can form stable left-handed Z-DNA structures. The protein that carries out this function is identified as ZBTB43, member of a large family of ZBTB proteins. Z-DNA remodeling by ZBTB43 not only coincides with global remodeling of DNA methylation and chromatin events in the male germ line, but it also is a prerequisite for de novo DNA methylation. When ZBTB43 changes DNA structure from the left-handed zigzag shaped Z-DNA to the regular smooth right-handed B-DNA, it also generates a suitable substrate for the de novo DNA methyltransferase, DNMT3A. By instructing de novo DNA methylation at PPRs in prospermatogonia, ZBTB43 safeguards epigenomic integrity of the male gamete. PPRs are fragile sequences, sites of large deletions and rearrangements in mammalian cells, and this fragility is thought to be due to Z-DNA structure formation rather than the sequence itself. This idea is now supported by the in vivo finding that DNA double strand breaks accumulate in mutant prospermatogonia which lack ZBTB43-dependent Z-DNA remodeling. If unrepaired, double stranded DNA breaks can lead to germ line mutations. Therefore, by preventing such breaks ZBTB43 is critical for guarding genome stability between generations. Here, we discuss the significance and implications of these findings in more detail.
Collapse
|
4
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Hwang SY, Shrestha A, Park S, Bist G, Kunwar S, Kadayat TM, Jang H, Seo M, Sheen N, Kim S, Jeon KH, Lee ES, Kwon Y. Identification of new halogen-containing 2,4-diphenyl indenopyridin-5-one derivative as a boosting agent for the anticancer responses of clinically available topoisomerase inhibitors. Eur J Med Chem 2022; 227:113916. [PMID: 34678573 DOI: 10.1016/j.ejmech.2021.113916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Based on previous reports on the significance of halogen moieties and the indenopyridin-5-one skeleton, we designed and synthesized a novel series of halogen (F-, Cl-, Br-, CF3- and OCF3-)-containing 2,4-diphenyl indenopyridin-5-ones and their corresponding -5-ols. Unlike indenopyridin-5-ols, most of the prepared indenopyridin-5-ones with Cl-, Br-, and CF3- groups at the 2-phenyl ring conferred a strong dual topoisomerase I/IIα inhibitory effect. Among the series, para-bromophenyl substituted compound 9 exhibited the most potent topoisomerase inhibition and antiproliferative effects, which showed dependency upon the topoisomerase gene expression level of diverse cancer cells. In particular, as a DNA minor groove-binding non-intercalative topoisomerase I/IIα catalytic inhibitor, compound 9 synergistically promoted the anticancer efficacy of clinically applied topoisomerase I/IIα poisons both in vitro and in vivo, having the great advantage of alleviating poison-related toxicities.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ganesh Bist
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tara Man Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Haejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seojeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
6
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
7
|
Ashour ME, Allam W, Elsayed W, Atteya R, Elserafy M, Magdeldin S, Hassan MK, El-Khamisy SF. High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice. Cancers (Basel) 2021; 13:cancers13102315. [PMID: 34065967 PMCID: PMC8151962 DOI: 10.3390/cancers13102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Targeting topoisomerases has been widely used as anticancer therapeutics. Exposure to high temperature (hyperthermia) protects cells from the cytotoxic effect of topoisomerase-targeting therapeutics, yet the mechanism remains unknown. Here, we report that hyperthermia inhibits the nucleolytic processing of topoisomerase-induced DNA damage and drives repair to a more faithful pathway mediated by TDP1 and TDP2. We further show that hyperthermia suppresses topoisomerase-induced chromosomal translocation and hallmarks of inflammation, which has broad implications in cancer development and therapy. Abstract Cancer-causing mutations often arise from inappropriate DNA repair, yet acute exposure to DNA damage is widely used to treat cancer. The challenge remains in how to specifically induce excessive DNA damage in cancer cells while minimizing the undesirable effects of genomic instability in noncancerous cells. One approach is the acute exposure to hyperthermia, which suppresses DNA repair and synergizes with radiotherapy and chemotherapy. An exception, however, is the protective effect of hyperthermia on topoisomerase targeting therapeutics. The molecular explanation for this conundrum remains unclear. Here, we show that hyperthermia suppresses the level of topoisomerase mediated single- and double-strand breaks induced by exposure to topoisomerase poisons. We further uncover that, hyperthermia suppresses hallmarks of genomic instability induced by topoisomerase targeting therapeutics by inhibiting nuclease activities, thereby channeling repair to error-free pathways driven by tyrosyl-DNA phosphodiesterases. These findings provide an explanation for the protective effect of hyperthermia from topoisomerase-induced DNA damage and may help to explain the inverse relationship between cancer incidence and temperature. They also pave the way for the use of controlled heat as a therapeutic adjunct to topoisomerase targeting therapeutics.
Collapse
Affiliation(s)
- Mohamed E. Ashour
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Walaa Allam
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Waheba Elsayed
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Children Cancer Hospital (CCHE 57357), Cairo 11441, Egypt;
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed K. Hassan
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
- Biotechnology Program, Biology Department, Faculty of Science, Port Said University, Port Said 42522, Egypt
- Correspondence: (M.K.H.); (S.F.E.-K.); Tel.: +44-114-2222791 (S.F.E.-K.)
| | - Sherif F. El-Khamisy
- The Healthy Lifespan and the Neuroscience Institutes, University of Sheffield, South Yorkshire, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire BD7 1DP, UK
- Correspondence: (M.K.H.); (S.F.E.-K.); Tel.: +44-114-2222791 (S.F.E.-K.)
| |
Collapse
|
8
|
Sibuh BZ, Khanna S, Taneja P, Sarkar P, Taneja NK. Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci 2021; 273:119305. [PMID: 33675898 DOI: 10.1016/j.lfs.2021.119305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this study was to synthesize and evaluate anticancer activity of 2-hydroxy benzaldehyde and 4-hydroxy benzaldehyde thiosemicarbazone (2-HBTSc and 4-HBTSc) against MCF-7 breast cancer cell line. MATERIALS AND METHODS The ligands were prepared and characterized by UV vis, IR and NMR. MTT assay was used to assess viability of cells. RNA isolation, extraction and cDNA synthesis were done. Then all groups were subjected to RT-qPCR using Gene expression specific primers. Also, western blot protein expression and molecular docking were done. Two-way ANOVA with Tukey post-hoc test was employed to test the significance using GraphPad Prism. RESULTS The IC50 values were 3.36μg/ml and 3.60μg/ml for 2-HBTSc and 4-HBTSc treated MCF-7 tumor cells respectively. Tumor cell growth inhibition ranged from 38 to 49.27% in 4-HBTSc treated cells, and 19 to 25% in 2-HBTSc treated cells with increase in doses 5 μg/ml to 20 μg/ml. The protein and gene expression result showed a significant upregulation in tumor suppressor and apoptosis inducing genes while, oncogene activity was significantly downregulated. Specifically, BRCA2 and pRB gene showed the highest expression in 4-HBTSc and 2-HBTSc treated cells respectively. Conversely, RAS oncogene was downregulated significantly. Docking result showed that both 2-HBTSc and 4-HBTSc have the potential to inhibit Estrogen Receptor Alpha Ligand Binding Domain, Human 17-Beta-hydroxysteroid dehydrogenase type 1 mutant protein and Human Topoisomerase II alpha that are expressed more during Breast Cancer. CONCLUSION The findings of this study imply that the test compound has potential for further study.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U. P., India
| | - Sonia Khanna
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, U. P., India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U. P., India.
| | - Paratpar Sarkar
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, U. P., India
| | | |
Collapse
|
9
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|