1
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Jaszczuk I, Winkler I, Koczkodaj D, Skrzypczak M, Filip A. The Role of Cluster C19MC in Pre-Eclampsia Development. Int J Mol Sci 2022; 23:ijms232213836. [PMID: 36430313 PMCID: PMC9699419 DOI: 10.3390/ijms232213836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a placenta-related complication occurring in 2-10% of all pregnancies. miRNAs are a group of non-coding RNAs regulating gene expression. There is evidence that C19MC miRNAs are involved in the development of the placenta. Deregulation of chromosome 19 microRNA cluster (C19MC) miRNAs expression leads to impaired cell differentiation, abnormal trophoblast invasion and pathological angiogenesis, which can lead to the development of pre-eclampsia. Information was obtained through a review of articles available in PubMed Medline. Articles on the role of the C19MC miRNA in the development of pre-eclampsia published in 2009-2022 were analyzed. This review article summarizes the current data on the role of the C19MC miRNA in the development of pre-eclampsia. They indicate a significant increase in the expression of most C19MC miRNAs in placental tissue and a high level of circulating fractions in serum and plasma, both in the first and/or third trimester in women with PE. Only for miR-525-5p, low levels of plasma expression were noted in the first trimester, and in the placenta in the third trimester. The search for molecular factors indicating the development of pre-eclampsia before the onset of clinical symptoms seems to be a promising diagnostic route. Identifying women at risk of developing pre-eclampsia at the pre-symptomatic stage would avoid serious complications in both mothers and fetuses. We believe that miRNAs belonging to cluster C19MC could be promising biomarkers of pre-eclampsia development.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Izabela Winkler
- Second Department of Gynecological Oncology, St. John’s Center of Oncology of the Lublin Region, Jaczewski Street 7, 20-090 Lublin, Poland
- Correspondence:
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Maciej Skrzypczak
- Second Department of Gynecology, Lublin Medical University, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| |
Collapse
|
3
|
Kujawa M, O’Meara M, Li H, Xu L, Meda Venkata SP, Nguyen H, Minjares M, Zhang K, Wang JM. MicroRNA-466 and microRNA-200 increase endothelial permeability in hyperglycemia by targeting Claudin-5. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:259-271. [PMID: 35892090 PMCID: PMC9307898 DOI: 10.1016/j.omtn.2022.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) permeability is essential to vascular homeostasis in diabetes. MicroRNAs are critical gene regulators whose roles in the EC permeability have yet to be characterized. This study aims to examine the change in cell permeability induced by miR-200 and miR-466 in ECs. Human aortic ECs and dermal microvascular ECs from healthy subjects and type 2 diabetic patients were used. Our in vitro experiments unveiled higher expressions of miR-200 family members and miR-466 in diabetic ECs and in healthy ECs when exposed to high glucose. Overexpression of both miR-200 and miR-466 significantly increased EC permeability through transcriptional suppression of Claudin-5, the cell tight junction protein, by directly binding to its 3' untranslated region. In a mouse model of chronic hyperglycemia mimicking type 2 diabetes in humans (db/db mice), the delayed closure rate of a full-thickness excisional wound was partly rescued by topical application of the miR-200 inhibitor. The topical application of both miR-200 and miR-466 inhibitors exhibited improved efficacy in accelerating wound closure compared with the topical application of miR-200 inhibitor alone. Our study demonstrated the potentially effective approach of miR-200/miR-466 cocktail inhibition to restore vascular integrity and tissue repair in hyperglycemia.
Collapse
Affiliation(s)
- Marisa Kujawa
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Megan O’Meara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Haig D. A Textual Deconstruction of the RNA World. BIOSEMIOTICS 2021; 14:651-656. [PMID: 34457086 PMCID: PMC8380861 DOI: 10.1007/s12304-021-09444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
RNAs can do many things. They can store information, act in the world, and respond to the world. Because of these capabilities biologists have proposed a primordial 'RNA world' in which RNA, rather than DNA, performed the central role of replicator and repository of adaptive information. Deacon dismisses this hypothesis because replication is not about anything and because the structure of replicating molecules cannot contain information about the environment. I dispute both claims. An RNA and its opposite-sense complement represent each other and, by two rounds of complementation, represent themselves. Although (with some exceptions) nucleic acid sequences do not change in response to their present environment, these sequences embody information about ancestral environments via the selective filtering of alternative sequences in those environments. Nucleic acid sequences are the textual record of what has worked in the past.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|