1
|
Nadar-Ponniah PT, Lopez-Escamez JA. Preclinical Models to Study the Molecular Pathophysiology of Meniere's Disease: A Pathway to Gene Therapy. J Clin Med 2025; 14:1427. [PMID: 40094841 PMCID: PMC11899769 DOI: 10.3390/jcm14051427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Meniere's disease (MD) is a set of rare disorders that affects >4 million people worldwide. Individuals with MD suffer from episodes of vertigo associated with fluctuating sensorineural hearing loss and tinnitus. Hearing loss can involve one or both ears. Over 10% of the reported cases are observed in families, suggesting its significant genetic contribution. The condition is polygenic with >20 genes, and several patterns of inheritance have been reported, including autosomal dominant, autosomal recessive, and digenic inheritance across multiple MD families. Preclinical research using animal models has been an indispensable tool for studying the neurophysiology of the auditory and vestibular systems and to get a better understanding of the functional role of genes that are involved in the hearing and vestibular dysfunction. While mouse models are the most used preclinical model, this review analyzes alternative animal and non-animal models that can be used to study MD genes. Methods: A literature search of the 21 genes reported for familial MD and the preclinical models used to investigate their functional role was performed. Results: Comparing the homology of proteins encoded by these genes to other model organisms revealed Drosophila and zebrafish as cost-effective models to screen multiple genes and study the pathophysiology of MD. Conclusions: Murine models are preferred for a quantitative neurophysiological assessment of hearing and vestibular functions to develop drug or gene therapy.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
| | - Jose A. Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| |
Collapse
|
2
|
Escalera-Balsera A, Robles-Bolivar P, Parra-Perez AM, Murillo-Cuesta S, Chua HC, Rodríguez-de la Rosa L, Contreras J, Domarecka E, Amor-Dorado JC, Soto-Varela A, Varela-Nieto I, Szczepek AJ, Gallego-Martinez A, Lopez-Escamez JA. A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly. Genome Med 2025; 17:4. [PMID: 39815343 PMCID: PMC11737067 DOI: 10.1186/s13073-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown. METHODS We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families. Through gene burden analysis, we calculated the enrichment of rare variants (allele frequency < 0.05) in connexins genes in FMD individuals compared with the reference population. The connexin monomer and the homomeric connexon structural models were predicted using AlphaFold2 and HDOCK. RT-qPCR and immunofluorescence were done in mice cochleae to identify expression of the mouse ortholog candidate gene Gjd3. RESULTS We found an enrichment of rare missense variants in the GJD3 gene when comparing allelic frequencies in FMD (N = 94) with the Spanish reference population (OR = 3.9[1.92-7.91], FDR = 2.36E-03). In the GJD3 sequence, we identified a rare haplotype (TGAGT) composed of two missense, two synonymous, and one downstream variant. This haplotype was found in five individuals with FMD, segregating in three unrelated families with a total of ten individuals; and in another eight MD individuals. GJD3 encodes the gap junction protein delta 3, also known as human connexin 31.9 (Cx31.9). The protein model predicted that the NP_689343.3:p.(His175Tyr) missense variant could modify the interaction between connexins and the connexon assembly, affecting the homotypic GJD3 gap junction between cells. Our studies in mice revealed that Gjd3-encoding Gjd3 or mouse connexin 30.2 (Cx30.2)-was expressed in the organ of Corti and vestibular organs, particularly in the tectorial membrane, the base of inner and outer hair cells and the nerve fibers. CONCLUSIONS The present results describe a novel association between GJD3 and FMD, providing evidence that FMD is related to changes in the inner ear channels, and supporting a new role of tectorial membrane proteins in MD.
Collapse
Affiliation(s)
- Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Paula Robles-Bolivar
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alberto M Parra-Perez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lourdes Rodríguez-de la Rosa
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Julio Contreras
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
- Anatomy and Embryology Department, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Andrés Soto-Varela
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Varela-Nieto
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Institute for Biomedical Research Sols-Morreale (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Faculty of Medicine & Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Sun S, Huang C, Fan W, Wang Z, Li K, Liu X, Wang Z, Zhao T, Zhang G, Li X. FAM136A as a Diagnostic Biomarker in Esophageal Cancer: Insights into Immune Infiltration, m6A Modification, Alternative Splicing, Cuproptosis, and the ceRNA Network. Adv Biol (Weinh) 2024; 8:e2400157. [PMID: 39185769 DOI: 10.1002/adbi.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Indexed: 08/27/2024]
Abstract
FAM136A promotes the progression and metastasis of various tumors. However, there are few studies on the role of FAM136A in esophageal cancer (ESCA). The TCGA, GTEx, and GEO databases are employed to analyze the expression of FAM136A in ESCA, and qPCR and TMA experiments are performed for validation. Enrichment analyzes are performed to investigate the association of FAM136A expression with immune features, m6A modification, alternative splicing, cuproptosis, and the ceRNA network via bioinformatics analysis. FAM136A is highly expressed in ESCA and correlated with lymph node metastasis and overall survival (OS). Bioinformatics analysis suggested that FAM136A may participate in the following processes to promote ESCA development and progression: 1) Promotion of mast cells infiltration to influence the ESCA immune microenvironment, 2) HNRNPC upregulation to regulate m6A modification, 3) ALYREF upregulation to increase the occurrence of retained intron (RI) events, 4) CDK5RAP1 upregulation to achieve inhibition of tumor cell apoptosis, and 5) promotion of ESCA progression through the lncRNA SNHG15/hsa-miR-29c-3p/FAM136A ceRNA network. FAM136A is a potential biomarker for ESCA diagnosis and treatment response evaluation, and the underlying mechanisms may be associated with immune infiltration, m6A modification, alternative splicing, cuproptosis, and the ceRNA regulatory network.
Collapse
Affiliation(s)
- Shaowu Sun
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunyao Huang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenbo Fan
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhulin Wang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kaiyuan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xu Liu
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zelong Wang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tianliang Zhao
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangnan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Province Engineering Research Center of molecular pathology and clinical experiment of thoracic diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
4
|
Bakhtiarizade MR, Heidari M, Ghanatghestani AHM. Comprehensive circular RNA profiling in various sheep tissues. Sci Rep 2024; 14:26238. [PMID: 39482374 PMCID: PMC11527890 DOI: 10.1038/s41598-024-76940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
Collapse
Affiliation(s)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
5
|
Parra-Perez AM, Gallego-Martinez A, Lopez-Escamez JA. An overload of missense variants in the OTOG gene may drive a higher prevalence of familial Meniere disease in the European population. Hum Genet 2024; 143:423-435. [PMID: 38519595 PMCID: PMC11043142 DOI: 10.1007/s00439-024-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/14/2024] [Indexed: 03/25/2024]
Abstract
Meniere disease is a complex inner ear disorder with significant familial aggregation. A differential prevalence of familial MD (FMD) has been reported, being 9-10% in Europeans compared to 6% in East Asians. A broad genetic heterogeneity in FMD has been described, OTOG being the most common mutated gene, with a compound heterozygous recessive inheritance. We hypothesize that an OTOG-related founder effect may explain the higher prevalence of FMD in the European population. Therefore, the present study aimed to compare the allele frequency (AF) and distribution of OTOG rare variants across different populations. For this purpose, the coding regions with high constraint (low density of rare variants) were retrieved in the OTOG coding sequence in Non-Finnish European (NFE).. Missense variants (AF < 0.01) were selected from a 100 FMD patient cohort, and their population AF was annotated using gnomAD v2.1. A linkage analysis was performed, and odds ratios were calculated to compare AF between NFE and other populations. Thirteen rare missense variants were observed in 13 FMD patients, with 2 variants (rs61978648 and rs61736002) shared by 5 individuals and another variant (rs117315845) shared by two individuals. The results confirm the observed enrichment of OTOG rare missense variants in FMD. Furthermore, eight variants were enriched in the NFE population, and six of them were in constrained regions. Structural modeling predicts five missense variants that could alter the otogelin stability. We conclude that several variants reported in FMD are in constraint regions, and they may have a founder effect and explain the burden of FMD in the European population.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Alvaro Gallego-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Jose A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain.
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Parra-Perez AM, Lopez-Escamez JA. Types of Inheritance and Genes Associated with Familial Meniere Disease. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00896-0. [PMID: 37022572 DOI: 10.1007/s10162-023-00896-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Meniere disease (MD) is a rare disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes of vertigo and tinnitus. The phenotype is variable, and it may be associated with other comorbidities such as migraine, respiratory allergies, and several autoimmune disorders. The condition has a significant heritability according to epidemiological and familial segregation studies. Familial MD is found in 10% of cases, the most frequently found genes being OTOG, MYO7A, and TECTA, previously associated with autosomal dominant and recessive non-syndromic SNHL. These findings suggest a new hypothesis where proteins involved in the extracellular structures in the apical surface of sensory epithelia (otolithic and tectorial membranes) and proteins in the stereocilia links would be key elements in the pathophysiology of MD. The ionic homeostasis of the otolithic and tectorial membranes could be critical to suppress the innate motility of individual hair cell bundles. Initially, focal detachment of these extracellular membranes may cause random depolarization of hair cells and will explain changes in tinnitus loudness or trigger vertigo attacks in early stages of MD. With the progression of the disease, a larger detachment will lead to an otolithic membrane herniation into the horizontal semicircular canal with dissociation in caloric and head impulse responses. Familial MD shows different types of inheritance, including autosomal dominant and compound recessive patterns and implementation of genetic testing will improve our understanding of the genetic structure of MD.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia.
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| |
Collapse
|
7
|
Zou W, Li Q, Peng F, Huang D. Worldwide Meniere's disease research: A bibliometric analysis of the published literature between 2002 and 2021. Front Neurol 2022; 13:1030006. [PMID: 36313500 PMCID: PMC9597620 DOI: 10.3389/fneur.2022.1030006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background In recent years, there has been an increasing number of publications on Meniere's disease. However, there are no bibliometric research on Meniere's disease. The purpose of this study was to find the focus and trends of Meniere's disease research through bibliometric approach. Methods Publications related to Meniere's disease in the Web of Science Core Collection (WOSCC) from 2002 to 2021 were collected. The bibliometric approach was used to estimate the searched data. Research foci of the studies were identified using VOSviewer and CiteSpace software. Results A total of 1,987 articles meet the inclusion criteria and are included in the study. In the past 20 years, the number of Meniere's disease publications is gradually increasing, especially in the past 3 years. The country with the largest contribution to Meniere's disease research is the United States, followed by Europe and Japan. High-frequency keywords included Meniere's disease, endolymphaic hydrops, vertigo, meniere-disease, inner ear, dizziness, symptoms, hearing, diagnosis, and tentamicin. The analyses of keyword burst direction indicate that evoked myogenic potential, MRI, and committee are emerging research hotspots. Conclusion This study provides an objective, systematic, and comprehensive analysis of Meniere's disease-related literature. In addition, we find a dramatic increase in studies in this field over the past 3 years. Evoked myogenic potentials and MRI may become the research hotspots of Meniere's disease in future. This study will help otolaryngologists, neurologists, and audiologists to clarify the research direction and potential hotspots of Meniere's disease and further help clinicians improve patients' prognosis.
Collapse
Affiliation(s)
- Wujun Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Qian Li
- Department of Otorhinolaryngology Head and Neck Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Fei Peng
- Department of Anesthesia, West China Hospital of Sichuan University, Chengdu, China
| | - Dingqiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Chengdu Second People's Hospital, Chengdu, China
- *Correspondence: Dingqiang Huang
| |
Collapse
|
8
|
Xie R, Wu J, Shang B, Cao C, Bi X, Shi H, Shou J, Guan Y. Transmembrane Transporter Sema3D Serves as a Tumor Suppressor in Localized Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3204189. [PMID: 35813868 PMCID: PMC9262505 DOI: 10.1155/2022/3204189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Background The transmembrane transporter Sema3D is a vital molecule involved in axon guidance and carcinogenesis of variant malignancies. However, the relationship between Sema3D and clear cell renal cell carcinoma (ccRCC) is barely reported and remains unclear. Methods Sema3D expression and the connection of clinical and histological characteristics were first analyzed with transcriptome data in the TCGA repository. We then located and examined the Sema3D expression in ccRCC patients by using immunofluorescence staining in the tissue microarray. The prognostic value of Sema3D in localized ccRCC was evaluated by Cox proportional hazard analysis. Functional and gene set enrichment analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to describe the potential mechanisms of Sema3D in ccRCC. Correlation analysis between Sema3D and tumor-infiltrating lymphocytes was calculated by ssGSEA. Results In 86 ccRCC patients, Sema3D mRNA and protein expression were downregulated in tumor tissues than the para-tumor tissues, and Sema3D was dominantly expressed in the extracellular space. Low expression of Sema3D was associated with advanced tumor stage, advanced histological grade, and poor prognosis in ccRCC. In the subgroup analysis of 81 localized ccRCC patients, Sema3D expression level was an independent protective prognostic factor for overall survival (OS) (HR = 0.125, p=0.043). Coagulation, complement, estrogen response, and KRAS signaling hallmark gene sets were identified as Sema3D-related signaling pathways. The expression level of Sema3D was significantly correlated with a high abundance of several immune cells (neutrophils, eosinophils, and T helper cells). Conclusions Transmembrane transporter Sema3D is an efficient prognostic biomarker for localized ccRCC patients, by playing the role of tumor suppressor in ccRCC. Sema3D can be a novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Ruiyang Xie
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Jie Wu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Bingqing Shang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Xingang Bi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| |
Collapse
|
9
|
Roman-Naranjo P, Parra-Perez AM, Escalera-Balsera A, Soto-Varela A, Gallego-Martinez A, Aran I, Perez-Fernandez N, Bächinger D, Eckhard AH, Gonzalez-Aguado R, Frejo L, Lopez-Escamez JA. Defective α-tectorin may involve tectorial membrane in familial Meniere disease. Clin Transl Med 2022; 12:e829. [PMID: 35653455 PMCID: PMC9162437 DOI: 10.1002/ctm2.829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Division of Otolaryngology, Department of Surgery, University of Granada, Granada, Spain
| | - Alberto M Parra-Perez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Division of Otolaryngology, Department of Surgery, University of Granada, Granada, Spain
| | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialities, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | | | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland, Zurich, Switzerland
| | - Andreas H Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland, Zurich, Switzerland
| | - Rocio Gonzalez-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marques de Valdecilla, Cantabria, Spain
| | - Lidia Frejo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.,Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Division of Otolaryngology, Department of Surgery, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Kremer H, del Castillo I. Genetics of Hearing Impairment. Genes (Basel) 2022; 13:genes13050852. [PMID: 35627237 PMCID: PMC9140334 DOI: 10.3390/genes13050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Asgarbeik S, Vahidi A, Yazdani N, Tajdini A, Amoli MM. VEGFA gene haplotypes in Meniere's disease. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Roman-Naranjo P, Moleon MDC, Aran I, Escalera-Balsera A, Soto-Varela A, Bächinger D, Gomez-Fiñana M, Eckhard AH, Lopez-Escamez JA. Rare coding variants involving MYO7A and other genes encoding stereocilia link proteins in familial meniere disease. Hear Res 2021; 409:108329. [PMID: 34391192 DOI: 10.1016/j.heares.2021.108329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
The MYO7A gene encodes a motor protein with a key role in the organization of stereocilia in auditory and vestibular hair cells. Rare variants in the MYO7A (myosin VIIA) gene may cause autosomal dominant (AD) or autosomal recessive (AR) sensorineural hearing loss (SNHL) accompanied by vestibular dysfunction or retinitis pigmentosa (Usher syndrome type 1B). Familial Meniere's disease (MD) is a rare inner ear syndrome mainly characterized by low-frequency sensorineural hearing loss and episodic vertigo associated with tinnitus. Familial aggregation has been found in 6-8% of sporadic cases, and most of the reported genes were involved in single families. Thus, this study aimed to search for relevant genes not previously linked to familial MD. Through exome sequencing and segregation analysis in 62 MD families, we have found a total of 1 novel and 8 rare heterozygous variants in the MYO7A gene in 9 non-related families. Carriers of rare variants in MYO7A showed autosomal dominant or autosomal recessive SNHL in familial MD. Additionally, some novel and rare variants in other genes involved in the organization of the stereocilia links such as CDH23, PCDH15 or ADGRV1 co-segregated in the same patients. Our findings reveal a co-segregation of rare variants in the MYO7A gene and other structural myosin VIIA binding proteins involved in the tip and ankle links of the hair cell stereocilia. We suggest that recessive digenic inheritance involving these genes could affect the ultrastructure of the stereocilia links in familial MD.
Collapse
Affiliation(s)
- P Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - M D C Moleon
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - I Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - A Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - A Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - D Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - M Gomez-Fiñana
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almeria, Spain
| | - A H Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - J A Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain; Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain.
| |
Collapse
|
13
|
Choi KD, Kim JY, Choi SY, Oh EH, Lee HM, Roh J, Choi JH. Case Report: Ménière's Disease-Like Symptoms in 22q11.2 Deletion Syndrome. Front Neurol 2021; 12:690078. [PMID: 34220691 PMCID: PMC8250142 DOI: 10.3389/fneur.2021.690078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS), caused by a microdeletion on the long arm of chromosome 22, is characterized by congenital heart disease, hypoparathyroidism, immunodeficiency, developmental delay, and velopharyngeal insufficiency. Anatomic malformations of the middle and inner ears are frequently present, leading to high prevalence of hearing impairment. We present a first case of 22q11.2DS showing fluctuating hearing loss with recurrent vertigo attacks, resembling Ménière's disease. A 38-year-old male known to have 22q11.2DS developed recurrent vertigo, tinnitus, and fluctuating hearing loss in the left ear during a 10-year follow-up period. During vertigo attack, he had spontaneous left-beating nystagmus with downbeat components, but bithermal caloric and video head impulse tests showed normal vestibulo-ocular reflex functions. Sequential pure tone audiograms demonstrated fluctuating sensorineural hearing loss (SNHL) in both ears, which finally progressed to permanent hearing loss in the left ear. Computed tomography imaging of the temporal bone exhibited bilaterally malformed lateral semicircular canals, and delayed 3D-FLAIR sequences revealed cochlear endolymphatic hydrops with dilation of the scala media in the left ear. This case shows that acute vertigo with SNHL can be one of the audiovestibular presentations in 22q11.2DS caused by disturbance of endolymphatic flow.
Collapse
Affiliation(s)
- Kwang-Dong Choi
- Department of Neurology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Jeong-Yeon Kim
- Department of Neurology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Seo-Young Choi
- Department of Neurology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Hyun-Min Lee
- Department of Otorhinolaryngology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jieun Roh
- Department of Radiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|