1
|
Li CH, Poulin R. Alteration of host gene and protein expression by manipulative parasites. Trends Parasitol 2025; 41:83-86. [PMID: 39721905 DOI: 10.1016/j.pt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Host manipulation mechanisms remain poorly understood. We summarize recent studies using -omics approaches (transcriptomics, proteomics) to explore alteration in gene expression in hosts infected by manipulative parasites. To guide future research, we highlight the common pattern of neuromodulation, as well as other diverse combinations of functions targeted across different host manipulation systems.
Collapse
Affiliation(s)
- Chen-Hua Li
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| |
Collapse
|
2
|
Hartke J, Ceron-Noriega A, Stoldt M, Sistermans T, Kever M, Fuchs J, Butter F, Foitzik S. Long live the host! Proteomic analysis reveals possible strategies for parasitic manipulation of its social host. Mol Ecol 2023; 32:5877-5889. [PMID: 37795937 DOI: 10.1111/mec.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.
Collapse
Affiliation(s)
- Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tom Sistermans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Fuchs
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG. Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 2023; 32:5028-5041. [PMID: 37540037 PMCID: PMC10529729 DOI: 10.1111/mec.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Joaquin C B Nunez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Shawn Williams
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - John T Burley
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Kimberly B Neil
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Wilson McKerrow
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Yevgeniy Raynes
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Thomas J Fayton
- University of Southern Mississippi, Hattiesburg, Mississippi, USA
- Cornell University, Ithaca, New York, USA
| | - Nicholas Skvir
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David A Ferranti
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Maya Greenhill Zeff
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Amanda Lyons
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Naima Okami
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - David M Morgan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | | | - Bianca R P Brown
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anne E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
4
|
Dong Y, Peng X, Hussain R, Niu T, Zhang H, Wang H, Xing LX, Wang R. Elevated expression of immune and DNA repair genes in mated queens and kings of the Reticulitermes chinensis termites. Exp Gerontol 2023; 178:112228. [PMID: 37271408 DOI: 10.1016/j.exger.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Studies have identified that mating induces a series of physiological changes in animals. In this period, males tending to invest more energy, immune peptides, and other substances to reduce the cost of living for females. This results in lower survival rates in later life than females. Meanwhile, both males and females shorten lifespans due to reproduction. However, the reasons why termites' queens and kings are both extremely long-lived and highly fecund are unclear. Therefore, this study aimed to examine the effects of mating on the expression of immune and DNA repair genes for lifespan extension in termite queens and kings. Here, we reported that mated queens show relatively higher expression of immune genes (phenoloxidase, denfensin, termicin, transferrin), antioxidant genes (CAT, SOD), detoxification genes (GST, CYP450) than virgin queens in the Reticulitermes chinensis. In addition, mated kings also highly expressed these genes, except for termicin, transferrin, GST, and CYP450. After mating, both queens and kings significantly upregulated the expression of DNA repair genes (MLH1, BRCA1, XRCC3, RAD54-like). Mismatch repair genes (MMR) MSH2, MSH4, MSH6 were considerably increased in mated queens, while MSH4, MSH5, MSH6 were upregulated in mated kings. Our results suggest that mating increases the expression of immune and DNA repair genes in the termite queens and kings, and thus possibly improving their survival during reproductive span due to the omnipresent pathogens.
Collapse
Affiliation(s)
- Yanan Dong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Riaz Hussain
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tong Niu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - He Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Huan Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lian-Xi Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ruiwu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
Feldmeyer B, Gstöttl C, Wallner J, Jongepier E, Séguret A, Grasso DA, Bornberg-Bauer E, Foitzik S, Heinze J. Evidence for a conserved queen-worker genetic toolkit across slave-making ants and their ant hosts. Mol Ecol 2022; 31:4991-5004. [PMID: 35920076 DOI: 10.1111/mec.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialised morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in non-parasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of co-expressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - C Gstöttl
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - J Wallner
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - E Jongepier
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - A Séguret
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - D A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parma, Italy
| | - E Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - S Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - J Heinze
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Csősz S, Báthori F, Molet M, Majoros G, Rádai Z. From Parasitized to Healthy-Looking Ants (Hymenoptera: Formicidae): Morphological Reconstruction Using Algorithmic Processing. Life (Basel) 2022; 12:life12050625. [PMID: 35629292 PMCID: PMC9145562 DOI: 10.3390/life12050625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Parasites cause predictable alternative phenotypes of host individuals. Investigating these parasitogenic phenotypes may be essential in cases where parasitism is common or taxa is described based on a parasitized individual. Ignoring them could lead to erroneous conclusions in biodiversity-focused research, taxonomy, evolution, and ecology. However, to date, integrating alternative phenotypes into a set of wild-type individuals in morphometric analysis poses extraordinary challenges to experts. This paper presents an approach for reconstructing the putative healthy morphology of parasitized ants using algorithmic processing. Our concept enables the integration of alternative parasitogenic phenotypes in morphometric analyses. Methods: We tested the applicability of our strategy in a large pool of Cestoda-infected and healthy individuals of three Temnothorax ant species (T. nylanderi, T. sordidulus, and T. unifasciatus). We assessed the stability and convergence of morphological changes caused by parasitism across species. We used an artificial neural network-based multiclass classifier model to predict species based on morphological trait values and the presence of parasite infection. Results: Infection causes predictable morphological changes in each species, although these changes proved to be species-specific. Therefore, integrating alternative parasitogenic phenotypes in morphometric analyses can be achieved at the species level, and a prior species hypothesis is required. Conclusion: Despite the above limitation, the concept is appropriate. Beyond parasitogenic phenotypes, our approach can also integrate morphometric data of an array of alternative phenotypes (subcastes in social insects, alternative morphs in polyphenic species, and alternative sexes in sexually dimorphic species) whose integrability had not been resolved before.
Collapse
Affiliation(s)
- Sándor Csősz
- Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
- MTA-ELTE-MTM Ecology Research Group, Eötvös Loránd University, 1053 Budapest, Hungary
- Correspondence:
| | - Ferenc Báthori
- Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
| | - Mathieu Molet
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRAE, IRD, F-75005 Paris, France;
| | - Gábor Majoros
- Department of Parasitology and Zoology, Faculty of Veterinary Sciences, Szent István University, István u. 2., 1078 Budapest, Hungary;
| | - Zoltán Rádai
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
| |
Collapse
|
7
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Beros S, Lenhart A, Scharf I, Negroni MA, Menzel F, Foitzik S. Extreme lifespan extension in tapeworm-infected ant workers. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202118. [PMID: 34017599 PMCID: PMC8131941 DOI: 10.1098/rsos.202118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 06/01/2023]
Abstract
Social insects are hosts of diverse parasites, but the influence of these parasites on phenotypic host traits is not yet well understood. Here, we tracked the survival of tapeworm-infected ant workers, their uninfected nest-mates and of ants from unparasitized colonies. Our multi-year study on the ant Temnothorax nylanderi, the intermediate host of the tapeworm Anomotaenia brevis, revealed a prolonged lifespan of infected workers compared with their uninfected peers. Intriguingly, their survival over 3 years did not differ from those of (uninfected) queens, whose lifespan can reach two decades. By contrast, uninfected workers from parasitized colonies suffered from increased mortality compared with uninfected workers from unparasitized colonies. Infected workers exhibited a metabolic rate and lipid content similar to young workers in this species, and they received more social care than uninfected workers and queens in their colonies. This increased attention could be mediated by their deviant chemical profile, which we determined to elicit more interest from uninfected nest-mates in a separate experiment. In conclusion, our study demonstrates an extreme lifespan extension in a social host following tapeworm infection, which appears to enable host workers to retain traits typical for young workers.
Collapse
Affiliation(s)
- Sara Beros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Lenhart
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Laciny A. Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 2021; 12:2. [PMID: 33653386 PMCID: PMC7923345 DOI: 10.1186/s13227-021-00173-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
As social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.
Collapse
Affiliation(s)
- Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| |
Collapse
|