1
|
Iyer P. Pediatric AML: state of the Art and Future Directions. Pediatr Hematol Oncol 2025; 42:126-145. [PMID: 39889807 DOI: 10.1080/08880018.2025.2453861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous and aggressive hematological malignancy. Despite advances in treatment, the survival rates remain unsatisfactory, emphasizing the need for innovative therapeutic approaches. This narrative review presents a comprehensive overview of the current approach and likely future directions for pediatric AML. The distinct genetic, epigenetic, and molecular features of pediatric AML contribute to its complex pathophysiology and impact on prognosis. Current treatment practices involve a multifaceted approach combining chemotherapy, molecularly targeted therapies, and hematopoietic stem cell transplantation. However, intensive treatment often leads to significant acute and long-term toxicity. Emerging strategies, including precision medicine, immunotherapy, and novel agents, hold promise for improving outcomes and minimizing adverse effects. Ongoing clinical trials are investigating the potential of these innovative approaches to transform pediatric AML care. By highlighting the evolving treatment paradigms and future perspectives, this review underscores the importance of continued research and development in pediatric AML to enhance the survival rates and quality of life of these young patients.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore
- Duke NUS Medical School, Singapore
| |
Collapse
|
2
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
3
|
Lamba J, Marchi F, Landwehr M, Schade AK, Shastri V, Ghavami M, Sckaff F, Marrero R, Nguyen N, Mansinghka V, Cao X, Slayton W, Starostik P, Ribeiro R, Rubnitz J, Klco J, Gamis A, Triche T, Ries R, Kolb EA, Aplenc R, Alonzo T, Pounds S, Meshinchi S, Cogle C, Elsayed A. Long-read epigenomic diagnosis and prognosis of Acute Myeloid Leukemia. RESEARCH SQUARE 2024:rs.3.rs-5450972. [PMID: 39711573 PMCID: PMC11661290 DOI: 10.21203/rs.3.rs-5450972/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Acute Myeloid Leukemia (AML) is an aggressive cancer with dismal outcomes, vast subtype heterogeneity, and suboptimal risk stratification. In this study, we harmonized DNA methylation data from 3,314 patients across 11 cohorts to develop the Acute Leukemia Methylome Atlas (ALMA) of diagnostic relevance that predicted 27 WHO 2022 acute leukemia subtypes with an overall accuracy of 96.3% in discovery and 90.1% in validation cohorts. Specifically, for AML, we also developed AML Epigenomic Risk, a prognostic classifier of overall survival (OS) (HR=4.40; 95% CI=3.45-5.61; P<0.0001), and a targeted 38CpG AML signature using a stepwise EWAS-CoxPH-LASSO model predictive of OS (HR=3.84; 95% CI=3.01-4.91; P<0.0001). Finally, we developed a specimen-to-result protocol for simultaneous whole-genome and epigenome sequencing that accurately predicted diagnoses and prognoses from twelve prospectively collected patient samples using long-read sequencing. Our study unveils a new paradigm in acute leukemia management by leveraging DNA methylation for diagnostic and prognostic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xueyuan Cao
- University of Tennessee Health Science Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cardoso C, Pestana D, Gokuladhas S, Marreiros AD, O'Sullivan JM, Binnie A, TFernandes M, Castelo-Branco P. Identification of Novel DNA Methylation Prognostic Biomarkers for AML With Normal Cytogenetics. JCO Clin Cancer Inform 2024; 8:e2300265. [PMID: 39052947 PMCID: PMC11371081 DOI: 10.1200/cci.23.00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE AML is a hematologic cancer that is clinically heterogeneous, with a wide range of clinical outcomes. DNA methylation changes are a hallmark of AML but are not routinely used as a criterion for risk stratification. The aim of this study was to explore DNA methylation markers that could risk stratify patients with cytogenetically normal AML (CN-AML), currently classified as intermediate-risk. MATERIALS AND METHODS DNA methylation profiles in whole blood samples from 77 patients with CN-AML in The Cancer Genome Atlas (LAML cohort) were analyzed. Individual 5'-cytosine-phosphate-guanine-3' (CpG) sites were assessed for their ability to predict overall survival. The output was validated using DNA methylation profiles from bone marrow samples of 79 patients with CN-AML in a separate data set from the Gene Expression Omnibus. RESULTS In the training set, using DNA methylation data derived from the 450K array, we identified 2,549 CpG sites that could potentially distinguish patients with CN-AML with an adverse prognosis (intermediate-poor) from those with a more favorable prognosis (intermediate-favorable) independent of age. Of these, 25 CpGs showed consistent prognostic potential across both the 450K and 27K array platforms. In a separate validation data set, nine of these 25 CpGs exhibited statistically significant differences in 2-year survival. These nine validated CpGs formed the basis for a combined prognostic biomarker panel, which includes an 8-CpG Somatic Panel and the methylation status of cg23947872. This panel displayed strong predictive ability for 2-year survival, 2-year progression-free survival, and complete remission in the validation cohort. CONCLUSION This study highlights DNA methylation profiling as a promising approach to enhance risk stratification in patients with CN-AML, potentially offering a pathway to more personalized treatment strategies.
Collapse
Affiliation(s)
- Cândida Cardoso
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Daniel Pestana
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | - Ana D. Marreiros
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Justin M. O'Sullivan
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alexandra Binnie
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada
| | - Mónica TFernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- School of Health, Universidade do Algarve, Faro, Portugal
| | - Pedro Castelo-Branco
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve/Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| |
Collapse
|
5
|
Al-Antary ET, Gupte A, Ravindranath Y. Targeted Therapies in Pediatric Acute Myeloid Leukemia - Evolving Therapeutic Landscape. Indian J Pediatr 2024; 91:176-183. [PMID: 37450248 DOI: 10.1007/s12098-023-04741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Acute myeloid leukemia (AML) accounts for 25% of all leukemia diagnosis and is characterized by distinct cytogenetic and molecular profile. Advances in the understanding of the causative driver mutations, risk-based therapy and better supportive care have led to an overall improvement in survival with frontline therapy. Despite these improvements, a significant number fail either because of primary refractory disease to the conventional 7+3 combination of anthracyclines and cytosine arabinoside (Cytarabine; Ara-C) or experience relapse post remission. Salvage therapy is complicated by the cardiotoxicity driven limitations on the reuse of anthracyclines and development of resistance to cytarabine. In this chapter authors will review the recent studies with targeted agents for refractory AML including targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Eman T Al-Antary
- Division of Hematology/Oncology, Children's Hospital of Michigan, Pediatric Blood and Marrow Transplantation Program, Barbara Ann Karmanos Cancer Center, Detroit, MI, USA.
- Department of Pediatrics, Central Michigan University College of Medicine, Mt Clemons, MI, USA.
| | - Avanti Gupte
- Division of Hematology/Oncology, Children's Hospital of Michigan, Pediatric Blood and Marrow Transplantation Program, Barbara Ann Karmanos Cancer Center, Detroit, MI, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt Clemons, MI, USA
| | - Yaddanapudi Ravindranath
- Division of Hematology/Oncology, Children's Hospital of Michigan, Pediatric Blood and Marrow Transplantation Program, Barbara Ann Karmanos Cancer Center, Detroit, MI, USA
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
6
|
Tao Y, Wei L, Shiba N, Tomizawa D, Hayashi Y, Ogawa S, Chen L, You H. Development and validation of a promising 5-gene prognostic model for pediatric acute myeloid leukemia. MOLECULAR BIOMEDICINE 2024; 5:1. [PMID: 38163849 PMCID: PMC10758381 DOI: 10.1186/s43556-023-00162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox analysis, LASSO regression analysis, Kaplan-Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognostic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), clustered P-AML patients in training dataset into high-risk group (above optimal cut-off) with shorter OS, and low-risk group (below optimal cut-off) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal validation dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group defined with the Children's Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pediatric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated significant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup of the combined dataset, outperforming two Children's Oncology Group (COG) risk stratification systems, 2022 European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene prognostic model generated by a single assay can further refine the current COG risk stratification system that relies on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML patients receiving chemo-therapy only treatment.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma and Institute of Physiology and Medicine, Gunma Children's Medical Center, Jobu University, Gunma, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, 17177, Stockholm, Sweden
| | - Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, Zachariadis V, Heinäniemi M, Suhonen J, Oksa L, Vepsäläinen K, Öfverholm I, Barbany G, Nordgren A, Lilljebjörn H, Fioretos T, Madsen HO, Marquart HV, Flaegstad T, Forestier E, Jónsson ÓG, Kanerva J, Lohi O, Norén-Nyström U, Schmiegelow K, Harila A, Heyman M, Lönnerholm G, Syvänen AC, Nordlund J. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. NPJ Precis Oncol 2023; 7:131. [PMID: 38066241 PMCID: PMC10709574 DOI: 10.1038/s41698-023-00479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2025] Open
Abstract
Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype frequencies in the Nordic countries.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Pia Enblad
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Oksa
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Kaisa Vepsäläinen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Ingegerd Öfverholm
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hans O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Tromsø, Norway
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Erik Forestier
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Ólafur G Jónsson
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Reykjavik, Iceland
| | - Jukka Kanerva
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- New Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ulrika Norén-Nyström
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Mats Heyman
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Chen Z, Zheng S, Han J, Fu L, Fu J, Zhang Z, Hong P, Feng W. Molecular mechanisms of ferroptosis and its roles in leukemia. Front Oncol 2023; 13:1308869. [PMID: 38125948 PMCID: PMC10731040 DOI: 10.3389/fonc.2023.1308869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Cell death is a complex process required to maintain homeostasis and occurs when cells are damage or reach end of life. As research progresses, it is apparent that necrosis and apoptosis do not fully explain the whole phenomenon of cell death. Therefore, new death modalities such as autophagic cell death, and ferroptosis have been proposed. In recent years, ferroptosis, a new type of non-apoptotic cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, has been receiving increasing attention. Ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of leukemia still need to be more fully and deeply studied. In this review, we present the research progress on the mechanism of ferroptosis and its role in leukemia, to provide new theoretical basis and strategies for the diagnosis and treatment of clinical hematological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiying Feng
- Department of Hematology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
9
|
Han L, Wu J, Lyu X, Yu J, Han X, Zhao H, Bian Z, Li W, Fan W, He C, Wang W, Zhang M, Li Y, Liu C, Sun H, Cao H, Sang L, Zhang J, Jiang Z, Peng J. Genetic mutation signature for relapse prediction in normal karyotype acute myeloid leukemia. Exp Hematol 2023; 128:67-76. [PMID: 37739208 DOI: 10.1016/j.exphem.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Risk stratification for normal karyotype acute myeloid leukemia (NK-AML) remains unsatisfactory, which is reflected by the high incidence of leukemia relapse. This study aimed to evaluate the role of gene mutations and clinical characterization in predicting the relapse of patients with NK-AML. A prognostic system for NK-AML was constructed. A panel of gene mutations was explored using next-generation sequencing. A nomogram algorithm was used to build a genomic mutation signature (GMS) nomogram (GMSN) model that combines GMS, measurable residual disease, and clinical factors to predict relapse in 347 patients with NK-AML from four centers. Patients in the GMS-high group had a higher 5-year incidence of relapse than those in the GMS-low group (p < 0.001). The 5-year incidence of relapse was also higher in patients in the GMSN-high group than in those in the GMSN-intermediate and -low groups (p < 0.001). The 5-year disease-free survival and overall survival rates were lower in patients in the GMSN-high group than in those in the GMSN-intermediate and -low groups (p < 0.001) as confirmed by training and validation cohorts. This study illustrates the potential of GMSN as a predictor of NK-AML relapse.
Collapse
Affiliation(s)
- Lijie Han
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jiaying Wu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodong Lyu
- Central Lab, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolin Han
- Department of Hematology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjuan Fan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen He
- Laboratory of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weimin Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengmeng Zhang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Li
- Laboratory of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Liu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Sun
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haixia Cao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li'na Sang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Oncology, the Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jie Peng
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Oncology, the Second Affiliated Hospital of Guizhou Medical University, Kaili, China.
| |
Collapse
|
10
|
Shao J, Shah S, Ganguly S, Zu Y, He C, Li Z. Classification of Acute Myeloid Leukemia by Cell-Free DNA 5-Hydroxymethylcytosine. Genes (Basel) 2023; 14:1180. [PMID: 37372359 PMCID: PMC10298116 DOI: 10.3390/genes14061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients. Using an unbiased clustering approach, we found that 5hmC levels in genomic regions with a histone mark H3K4me3 classified AML samples into three distinct clusters that were significantly associated with leukemia burden and survival. Cluster 3 showed the highest leukemia burden, the shortest overall survival of patients, and the lowest 5hmC levels in the TET2 promoter. 5hmC levels in the TET2 promoter could represent TET2 activity resulting from mutations in DNA demethylation genes and other factors. The novel genes and key signaling pathways associated with aberrant 5hmC patterns could add to our understanding of DNA hydroxymethylation and highlight the potential therapeutic targets in AML. Our results identify a novel 5hmC-based AML classification system and further underscore cfDNA 5hmC as a highly sensitive marker for AML.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shilpan Shah
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Siddhartha Ganguly
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
11
|
Hua J, Ma C, Wang CH, Wang Y, Feng S, Xiao T, Zhu C. Abnormal GRHL2 Methylation Confers Malignant Progression to Acute Leukemia. Appl Bionics Biomech 2022; 2022:9708829. [PMID: 35855840 PMCID: PMC9288345 DOI: 10.1155/2022/9708829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. Materials and Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. Results We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Conclusion Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Congcong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - Chao Hui Wang
- Department of Hematology, Qingdao Haici Medical Group, China
| | - Yan Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - ChuanSheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| |
Collapse
|