1
|
Singh D. The Impact of the COVID-19 Pandemic on Women’s Health: A Review. CURRENT WOMEN S HEALTH REVIEWS 2025; 21. [DOI: 10.2174/0115734048273722231201080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2025]
Abstract
:
During any crisis, whether it is health, economic, or environmental, people are more
likely to experience stress, anxiety, and other psychological issues that jeopardize their general
well-being. The Coronavirus, or COVID-19, is considered a global pandemic that affects millions
of persons. Many people of different ages have significantly suffered from mental illness as a result
of COVID-19, especially women affected vulnerable. As per the report, the death rates of
men have doubled in comparison with women; this epidemic shows a bigger influence on the
health of women than men. Even quarantine impacts make the females afraid, bewildered, and
feel alone, which is terrible for them, as it also disturbs their health, such as pregnancy, sexual
life, postpartum depression, etc. This review article reveals the COVID-19 impact on the health of
women and finds a way to prevent and manage the health implications in women at various periods
throughout their lives.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University
of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
2
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
3
|
Krause C, Bergmann E, Schmidt SV. Epigenetic modulation of myeloid cell functions in HIV and SARS-CoV-2 infection. Mol Biol Rep 2024; 51:342. [PMID: 38400997 PMCID: PMC10894183 DOI: 10.1007/s11033-024-09266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/26/2024]
Abstract
Myeloid cells play a vital role in innate immune responses as they recognize and phagocytose pathogens like viruses, present antigens, produce cytokines, recruit other immune cells to combat infections, and contribute to the attenuation of immune responses to restore homeostasis. Signal integration by pathogen recognition receptors enables myeloid cells to adapt their functions by a network of transcription factors and chromatin remodelers. This review provides a brief overview of the subtypes of myeloid cells and the main epigenetic regulation mechanisms. Special focus is placed on the epigenomic alterations in viral nucleic acids of HIV and SARS-CoV-2 along with the epigenetic changes in the host's myeloid cell compartment. These changes are important as they lead to immune suppression and promote the progression of the disease. Finally, we highlight some promising examples of 'epidrugs' that modulate the epigenome of immune cells and could be used as therapeutics for viral infections.
Collapse
Affiliation(s)
- Carolyn Krause
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Microbiology and Immunology, the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Eva Bergmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Susanne Viktoria Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Legaki E, Taka S, Papadopoulos NG. The complexity in DNA methylation analysis of allergic diseases. Curr Opin Allergy Clin Immunol 2023; 23:172-178. [PMID: 36752374 DOI: 10.1097/aci.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW This review aims to report all the recent studies that are implicated in DNA methylation analysis in the field of allergy and to underline the complexity of the study methodologies and results. RECENT FINDINGS Although the growing number of DNA methylation studies have yet to point to a specific mechanism, herein we provide an overview of the majority of pathways considered to be implicated and highlight particular genes, like KNH2 , ATPAF2 and ZNF385A , for their potential as biomarkers. SUMMARY The epigenetic profile of respiratory allergic diseases, and particularly DNA methylation, has been investigated in various populations, so as to gain a better understanding of its role in pathogenesis. Through our analysis, multiple links are presented between differential DNA methylation loci and IgE sensitization, lung functionality and severity of the disease. Additionally, associations of this epigenetic change with maternal asthma, age, sex and environmental factors are described, thus uncovering specific gene families that, after further examination could be used as methylation biomarkers in cases of allergic disease.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
5
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Rathod R, Zhang H, Karmaus W, Ewart S, Mzayek F, Arshad SH, Holloway JW. Association of childhood BMI trajectory with post-adolescent and adult lung function is mediated by pre-adolescent DNA methylation. Respir Res 2022; 23:194. [PMID: 35906571 PMCID: PMC9335987 DOI: 10.1186/s12931-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Rathod A, Zhang H, Arshad SH, Ewart S, Relton CL, Karmaus W, Holloway JW. DNA Methylation and Asthma Acquisition during Adolescence and Post-Adolescence, an Epigenome-Wide Longitudinal Study. J Pers Med 2022; 12:202. [PMID: 35207690 PMCID: PMC8877984 DOI: 10.3390/jpm12020202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The role of epigenetics in the pathogenesis of asthma acquisition in adolescence and post-adolescence has been unknown. We carried out a longitudinal epigenome-wide association study, using data from the Isle of Wight Birth Cohort (IOWBC). To improve statistical power, we first screened CpGs based on associations of DNA methylation (DNAm) at an age of 10 years (pre-adolescence) with asthma acquisition at 10-18 years (during adolescence). A logistic regression with repeated measures was applied to CpGs that passed screening to examine the associations of pre-adolescence DNAm with asthma acquisition from 10-18 years and 18-26 years, with an interaction term to evaluate transition period specificity. Findings were further tested in an independent birth cohort, ALSPAC. In total, 205 CpGs (with 150 being females) showed associations with asthma acquisition (main or interaction effects) at FDR = 0.05 in IOWBC, of which 112 (90 being females) showed consistent associations in the ALSPAC. Genes that the identified CpGs were mapped to, e.g., AKAP1 and ENO1, have been shown to be associated with the risk of asthma. Our findings indicated that DNAm at specific CpGs was associated with asthma acquisition. CpGs showing such associations were likely to be different between males and females and, at certain CpGs, were unique to a specific transition period.
Collapse
Affiliation(s)
- Aniruddha Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK;
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol BS8 2BN, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
8
|
Rathod A, Rathod R, Zhang H, Rahimabad PK, Karmaus W, Arshad H. Association of Asthma and Rhinitis with Epigenetics of Coronavirus Related Genes. Epigenet Insights 2021; 14:25168657211039224. [PMID: 34604700 PMCID: PMC8485269 DOI: 10.1177/25168657211039224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Susceptibility factors for coronavirus disease 2019 (COVID-19) include sex and medical conditions such as asthma and rhinitis. DNA methylation (DNAm) is associated with asthma, rhinitis, and several viruses. We examined associations of asthma/rhinitis with DNAm at CpGs located on coronavirus related genes, and if these associations were sex-specific. Methods: In total, n = 242 subjects aged 26 years from the Isle of Wight Birth Cohort were included in the study. Linear regressions were used to examine sex specific and non-specific associations of DNAm at CpGs on coronavirus related genes with asthma/rhinitis status. Associations of DNAm with gene expression in blood were assessed for functional relevance of identified CpGs. Results: Statistically significant interaction effects of asthma or rhinitis with sex were identified at 40 CpGs for asthma and 27 CpGs for rhinitis. At 21 CpGs, DNAm was associated with asthma, and at 45 CpGs with rhinitis, regardless of sex. Assessment of functional relevance of the identified CpGs indicated a potential of epigenetic regulatory functionality on gene activity at 14 CpGs for asthma and 17 CpGs for rhinitis, and of those 6 CpGs for asthma and 7 CpGs for rhinitis were likely to be sex-specific. Conclusion: Subjects with asthma/rhinitis may have altered susceptibility to COVID-19 due to changes in their DNAm associated with these conditions. Sex specificity on association of asthma/rhinitis with DNAm at certain CpGs, and on the association of DNAm at asthma/rhinitis-linked CpGs with gene expression have the potential to explain the reported sex-specificity in COVID-19 morbidity and mortality.
Collapse
Affiliation(s)
- Aniruddha Rathod
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Rutu Rathod
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Center, University Hospital Southampton, Southampton, UK
| |
Collapse
|